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Abstract: Features play crucial role in the performance of classifier for object detection from high-resolution remote
sensing images. In this paper, we implemented two types of deep learning methods, deep convolutional neural network
(DNN) and deep belief net (DBN), comparing their performances with that of the traditional methods (handcrafted
features with a shallow classifier) in the task of aircraft detection. These methods learn robust features from a large
set of training samples to obtain a better performance. The depth of their layers (>6 layers) grants them the ability to
extract stable and large-scale features from the image. Our experiments show both deep learning methods reduce at
least 40% of the false alarm rate of the traditional methods (HOG, LBP+SVM), and DNN performs a little better than
DBN. We also fed some multi-preprocessed images simultaneously to one DNN model, and found that such a practice
helps to improve the performance of the model obviously with no extra-computing burden adding.
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1. Introduction

Aircraft detection is an important task for both military and
commercial applications. One thinks it might have been solved
well. For more than 10 years, lots of work has been done
[1], [2], [3], [4], [5], [6], [7], [8], [9], [10], [11], [12] on detec-
tion of different types of small objects from large remote sensing
images, such as aircraft and vehicle. Many methods depending
on the combinations of various features have been proposed.

Yet the fact is aircraft detection remains an unsolved challenge,
no really satisfactory result has been made of aircraft detection in
a large set of complex real airports images, no locating method
has been found efficient enough to locate them quickly from large
images (20000×20000, for instance), no feature has been proved
robust enough to overcome the influence of various illumination.

In the past literatures, Cai et al. [4] showed the difficulty to
segment aircraft exactly from its backgrounds by the effect of
shadow. They used an anisotropic heat diffusion model to remove
the shadow. However, their method only worked well for white
aircrafts, more likely, failed in the cases of aircrafts with various
colors. Global thresholding method has been proved efficient in
removing the background of white aircrafts [1], [3]. Figures 1
and 2 show that image thresholding at a suitable value shows a
better effect than the gradient or the canny edge images, and lo-
cating white aircraft on thresholding images is easier than that on
gradient images.

However, Fig. 3 shows that some blue aircrafts have disap-
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Fig. 1 Locating white aircrafts on the gray thresholding image (d) is easier
than that on the image of canny (b) and gradient image of Dalal and
Triggs [15] (c).

Fig. 2 On a gradient image, some aircrafts are connected with their board-
ing bridges, this adds difficulty to the locating problem. Suitable gray
thresholding separates the white aircrafts from such attachments of
background, makes the locating problem easier.

peared, and no suitable thresholding can separate them from their
background, because the blue color and the background have an
equal gray scale. But they can be located successfully on a gradi-
ent image. The method based on the gradient image can not dis-
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Fig. 3 Locating colorful aircrafts on gradient image is easier than that on
gray thresholding image.

tinguish the edge of objects from their shadows, and this indeed
reduces its efficiency to some degree, but its partial immunity to
changes of color and illumination is worth appreciating. Dalal
and Triggs [15] proposed a simple gradient computing method
by the maximal norm of the three RGB color channels. Figure 1
shows it performs much better than canny algorithm. In the paper,
we utilize Dalal and Triggs’ gradient to locate colorful aircrafts.

Features are critical for the performance of object detectors,
combinations of different types of features have been tested for
object detection from satellite images. Hsieh [1] used aircraft
contour, Zernike moments, wavelet and SVM classifier to detect
aircraft. Yildiz and Polat [2] used Gabor+SVM. Liu et al. [3]
proposed a coarse-to-fine shape modeling method based on edge
computing (Sobel). Sun et al. [5] used the key-points and spatial
sparse coding bag-of-words model to detect aircraft. Li et al. [6]
used visual saliency computation and symmetry detection. Tien
et al. [8] used cross-ratios to model curve data of aircraft con-
tour. Xu and Duan [9] used artificial bee colony algorithm with
edge potential function to seek aircraft targets. However, invari-
ant moment, saliency and symmetry features, geometric contour,
edge, shape and curve data are not stable to the disturbance of all
kinds, especially for tiny blurred aircraft. Background and illu-
mination will impose considerable influences on such geometri-
cal features. Grabner et al. [14] used boosting method based on
Haar wavelets, HOG (histogram of oriented gradients) [15] and
LBP (local binary patterns) [32]. Kembhavi et al. [11] computed
multi-scales HOG features on color maps to detect vehicle in the
San Francisco images from google earth, they showed that HOG
outperforms SIFT (Scale Invariant Feature Transform) [33].

SIFT, LBP, HOG and Gabor [31] are popular features used in
object detection. Both of SIFT and HOG rely on the gradient his-
togram of blocks, but HOG has a flexible bins of gradient orien-
tation and overlapped blocks of dividing pattern. They are stable
because the gradient norm is stable, but the gradient orientation is
not as stable as the magnitude, So the orientation bins cannot be
cut too fine (usually 8 or 9 bins). LBP is the histogram of binary
patterns of all pixels of a block. It would be a good texture de-
scriptor, only if its patterns were dividing into suitable bins, and
because it relies on the gray scale, it is not stable to noise and illu-
mination. Gabor is actually a multi-scales (usually 5) and multi-

directions (usually 8) gradient descriptor, which is used widely in
saliency computation and object recognition. Gabor is not stable
because it has no statistic expression like a histogram of some-
thing. Of cause, Gabor can be transformed into a histogram-
type descriptor as HOG does, and we believe such a transfor-
mation will enhance its stability more likely. Another problem
is the scale variety of objects in real images. In most applications,
features are computed on overlapped blocks of variable scales to
enhance its scale-invariant capability.

In the case when only a small training set is available, using
such handcrafted fixed features is reasonable. But if you have
thousands or more samples for each class (such as in the case
of aircraft detection), learning intrinsic features from the training
samples is more advisable. Such features are now learned by the
deep learning methods from the input data automatically. Fig-
ures 5 and 11 show these features are random and noisy images,
actually, no existent theory has given a satisfactory explanation
on why such features work well, the actual roles of such features
remains as much a mystery as it was when Hinton first proposed
the deep belief nets (DBN) [21] in 2006.

Convolutional neural networks (CNN) originates from Hubel
and Wiesel’s study [16] on cats striate cortex. They first proposed
the concept “receptive field”. Fukushima [17] designed a self-
organizing neural networks, which was unaffected by shifts of
position. The normal structure of CNN was proposed by LeCun
et al. [18] who first used the concept “convolutional layer”. Gar-
cia an Delakis [19] used a 6-layer CNN for face detection in CMU
and MIT test sets. Recently, Ciresan et al. [20] presented the
structure of Deep CNN (DNN), and achieved the state-of-the-art
performances on six benchmark image classification databases,
including the MNIST (handwritten digits), NIST SD-19, hand-
written Chinese characters, traffic signs, CIFAR10 and NORB.
The results in MNIST and traffic signs are even superior to hu-
man performance.

Yu et al. [24] first showed that DBN achieved very promising
recognition results on large vocabulary speech recognition tasks.
Their work revealed the potential power of deep learning method
in practical application. Later, many works were done using DBN
for speech recognition [25], [26], [27], [28], [29], [30]. it seems
that DNN is more suitable for image classification, and DBN is
suitable for speech recognition. In this paper, we compare both
types of deep learning methods in aircraft detection, and show
that DNN outperforms DBN slightly.

The remainder of this paper is organized as the following: Sec-
tion 2 presents the architectures of the DNN and DBN. Section 3
gives the implementation details of our algorithm of aircraft de-
tection, we implemented DNN and DBN by ourselves. Section 4
presents the experimental results, and Section 5 makes the con-
clusion.

2. Deep Learning Methods

In this section, we first discuss the structure of DNN, then we
discuss the structure of DBN, and its pretraining process.

2.1 Deep Convolutional Neural Networks
The layers of DNN can be divided into two parts: feature ex-
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Fig. 4 An example of DNN. Where nl=3, nm=84.

Fig. 5 An example of the structure of DBN and its partial weight images
after pretraining.

tractor and Multi-Layer Perceptron (MLP) classifier. Let nl de-
note the number of the convolutional layers, nm denotes the map
number of one convolutional layer. For convenience, we suppose
all convolutional layers have the same map number. The convo-
lutional layers of DNN are defined as: C1, · · ·, Cnl . The max-
pooling layers of DNN are defined as: M1, · · ·, Mnl . All the con-
volutional and max-pooling layers compose the feature extractor
of DNN. Mnl output the extracted features to the MLP Classifier.

MLP classifier includes the hidden layers and the output layer.
Its output value can be transformed into the output image (right
part of Fig. 1) where bright dots represent the aircraft candidates.
The brightness of the dot is proportionate to the classifier output
value. The tanh function is used as the kernel function for all
nodes in DNN. Figure 4 gives an example of DNN. The con-
volutional layer maps are determined by the filters sliding on the
previous layer pixel by pixel. The max-pooling layer maps are
determined by the max-pooling function on the non-overlapped
max-pooling fields sliding over the previous convolutional layer.
The max-pooling function has two significant effects: reducing
the map size, enhancing the shift-invariant ability and anti-noise
ability by the “winner-take-all” principle.

2.2 Deep Belief Nets
Deep Belief Nets (DBN) are consisted by a visible input layer,

several hidden layers and an output layer. The visible layer input
the image data, whose gray range has been normalized into [0,1],
the hidden layers are invisible, their state are binary values, be-
ing activated by the sigmoid kernel function. Figure 5 show an
example of the structure of DBN.

The Restricted Boltzmann Machine (RBM) is the basic block
of Deep Belief Networks (DBN), it is trained by a learning al-
gorithm called Contrastive Divergence (CD) [20], [21], which
uses the Gibbs sampling and the reconstruction error to train the
weights of RBM. The energy function of RBM is defined by [23]:

E(v, h) = −∑
ij
vihjWij − ∑

i∈pixels
vici − ∑

j∈hiddenlayer
hjbj (1)

where vi is the pixel of the visible input layer, hj is the node of
the hidden layer, whose value must be 0 or 1. b j and ci are their
biases, Wij are the weights of RBM, its update formula is given
by:
⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

ΔWi j = −ε ∂E∂Wi j
= ε(〈vih j〉 |v − 〈vih j〉 |recon )

Δb j = −ε ∂E∂b j
= ε(h j |v − h j |recon )

Δci = −ε ∂E∂ci
= ε(vi |v − vi |recon ))

(2)

ε is the LearnRate, 〈 〉 is the inner product. ∗ |v means ∗ is get
from visible input data. ∗ |recon denote the reconstruction value of
∗, ∗ |v are shown as the following:
⎧⎪⎪⎨⎪⎪⎩
vi |v = vi
h j |v = Pro(h j = 1) = sigm(b j +

∑
i viWi j)

(3)

Pro(∗) is the probability of ∗. sigm is the standard sigmoid

function. Because the states of the hidden layer are invisible bi-
nary value, we perform Gibbs sampling to estimate its states. We
denote rand value = 1.0 × rand()/RAND MAX, rand value is a
random value in [0,1]. RAND MAX is a constant of C language.
We have:

S ample(h j) =

⎧⎪⎪⎨⎪⎪⎩
1, i f Pro(h j = 1) > rand value

0, otherwise
(4)

S ample(∗) means the Gibbs sample of ∗. Now we reconstruct the
visible layer and the hidden layer:
⎧⎪⎪⎨⎪⎪⎩
vi |recon = sigm(ci +

∑
j Wi jS ample(h j))

h j |recon = sigm(b j +
∑

i vi |recon Wi j)
(5)

The weights update formulas can be rewritten as:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ΔWi j = ε(vi sigm(b j +
∑

i viWi j)
− vi |recon sigm(b j +

∑
i vi |recon Wi j))

Δb j = ε(sigm(b j +
∑

i viWi j)
− sigm(b j +

∑
i vi |recon Wi j))

Δci = ε(vi − sigm(ci +
∑

j Wi jS ample(h j)))

(6)

The RBM must be trained properly when the reconstruction
error diminishes to a small value. All weights of DBN must
be pre-trained layer-by-layer as the RBM training. After pre-
training, the weights of DBN are fine-tuned by the standard back-
propagation algorithm and the steepest descent algorithm as the
Multi-Layer Perceptron (MLP).

3. Implementation Detail

In this section, we first discuss the thresholding method we
used in gray and gradient images, then we present the orientation
computing method we used. Thirdly, we show the multi-scale
sliding window technique we used. At last, we exhibit the struc-
ture and parameters of DNN we used, and discuss its training
processes.

3.1 Gray Thresholding and Gradient Thresholding
Aircraft detection is a difficult problem. As shown in Figs. 1

and 2, locating white aircrafts on a suitable gray thresholding
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Fig. 6 For white aircrafts, constant multi-thresholds are suitable for seg-
menting aircrafts from different airport images.

Fig. 7 For aircrafts on the gradient images, suitable thresholding reduces
the background textures.

Table 1 Locating results on different preprocessed images.

Preprocessing Images #samples locating accuracy(%)
Gray, Gradient 149923 99.15
Gradient 187892 98.15

image is more easy for complex environments. However, com-
puting suitable threshold is a difficult problem, and the risk of
an unsuitable threshold is unendurable. So we use multiple con-
stant thresholds. Figure 6 shows such simple multi-thresholding
method is suitable for various airports. It is obvious that the more
thresholds are used, the more easier the locating work is. In the
experiments of Section 4, three constant thresholds (210, 240,
250) are used. In our database, a few images contain colorful
aircrafts which can not be located on gray thresholding images.
We locate those colorful aircrafts on their gradient (Dalal and
Triggs [15]) images. However, to erase some subtle textures of
the background, we threshold the image of gradient-magnitude at
100 (we have normalized the magnitude into the range [0,255]).
Figure 7 shows the effects of such a thresholding. It is possible to
locate white aircrafts on gradient thresholding image also. In Sec-
tion 4, Table 1 lists the comparative results of two methods. The
former method is locating white and colorful aircrafts on gray or
gradient thresholding images respectively. The later is locating
all aircrafts on gradient thresholding images. The former method
has a higher locating accuracy and a higher search efficiency.

Figure 6 shows that even the aircrafts under strong sunshine
are segmented clearly in one of the thresholding images. Fig-

Algorithm 1 Main-axis Computing
Input: a sliding window Wp at position p = (x0, y0), ws=window
scale, w=1.0×ws, h=1.25×ws.
Output: The main-axis orientation, position, length.

1: for i = 0, 1, · · · , 39 do
2: Rotate Wp by angle=i× 4.50, denote the rotated window as Wpi.
3: Compute Cpi= the gray projection curve of Wpi to horizonal

axis, Mpi=maximal value of Cpi, Xpi=x-position of Mpi, Ypi=y-
position of the geometric center of Wpi.

4: end for
5: Compute j = arg maxi

{
Mpi : i = 0, · · · , 39

}
.

6: Segment Rp j= the rectangle region of Wp j, which is centered at
(Xp j, Yp j), width=w, height=h.

7: Compute CRp j= the gray projection curve of Rp j to vertical axis.
8: The main-axis orientation= j × 4.50, x-position=Xp j, y-

position=Yp j, length=width of CRp j.

Fig. 8 Only when the window is rotated to the main-axis orientation, can its
gray projection curve have the steepest peak.

ure 7 shows that after thresholding at 100, the aircrafts’ edge are
enhanced and the background textures are reduced.

3.2 Orientation Computing
Computing the orientation, position and length of the main-

axis of the object is very important for exact location. The tradi-
tional orienting method is based on the minimal geometric 1 or 2
order central moments, some new methods are based on the mini-
mal area of including rectangle [13] or symmetric properties. The
geometric central moments are easily disturbed by a small noise,
the farer the noise from the central axis, the higher the weights
it owned. The method based on area or symmetric property is
not stable also, for the reason area and symmetric property are
actual geometric property. We proposed a new method based on
the maximal projection height. The peek of a projection curve is
very stable, because projection is an accumulating procession, its
curve peek is rather stable.

Our orientation process is shown in Algorithm 1 and Fig. 8.
Figure 9 shows that our method is more robust than other three

methods in complex environments.
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3.3 Object Locating
On the gray or gradient thresholding images, the sizes of the

aircrafts in the airports vary in a wide range, we use multi-scale
sliding windows to locate the aircrafts on multiple gray threshold-
ing images or gradient thresholding images. In the experiments of
Section 4, three window scales (16, 20, 30) are used. Algorithm 2

Fig. 9 Partial orientation computing results of four methods. (a) is our
method, (b) and (c) are the methods based on minimal one or two or-
der geometric center moments. (d) is the method proposed by Zunic
and Kopanja [13], which is based on the minimal including rectangle
area.

Algorithm 2 Object Locating
Input: an initial sliding window Wp at position p = (x0, y0).
Output: The exact location window.

1: Compute the geometric center p1 = (x1, y1) of Wp, move the Wp

to (x1, y1), denote it as Wp1.
2: Enlarge the size of Wp1 twice, compute the new geometric center

p2 = (x2, y2) of the enlarged window.
3: Move Wp1 to (x2, y2), denote it as Wp2.
4: Compute the main-axis of Wp2, rotate and move Wp2 to its main-

axis orientation and position, change the window scale to the main-
axis length.

Fig. 10 The four steps of our multi-scales object locating process. The first row is a clear gray threshold-
ing image (threshold=210), the second row is a noisy thresholding image (threshold=250), and
the third row is a gradient thresholding image (threshold=100).

and Fig. 10 show our locating process in details.
At last, some repetitive windows are filtered by a small dis-

tance limit (5 pixel). After filtering, all windows are normalized
into 48×48 size. Their gray scales are normalized into [0, 255].
Then we sent them to the DNN classifier for feature extracting
and aircraft detection. An window is regarded to be a positive
sample, if it covers the center of an aircraft, and its scale and
orientation are in reasonable ranges that compared with the scale
and orientation of the contained aircraft (the allowed scale range
is [0.5, 1.5], the orientation range is [−300,+300]).

Fig. 11 Structure and parameters of the DNN we used.
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3.4 Training DNN
Figure 11 shows the structure of the 9-layer DNN we used in

aircraft detection. Here nl=3, nm=84. There is only one hidden
layer H1 which has 300 nodes, the output layer has 2 nodes.

The convolutional filter size of C1 is 7×7, that of C2 is 4×4,
that of C3 is 4×4. The max-pooling field sizes of M1, M2 and M2

are 2×2. The total node number of M3 is 84×(3×3)=756. This is
also the total dimension of the features extracted by the DNN.

The output label of the positive sample is [1,−1], and that of
the negative sample is [−1,1]. We trained DNN by the back prop-
agation algorithm on the GPU card, initial weights were set by
an uniform random distribution in the range [−0.05, 0.05], all
initial biases were set to zero. LearnRate=0.001, Momentum=0,
WeightDecay=0, batch size=50. Training is ended when the val-
idation error is near-zero, it usually needs 4-5 days on our GPU
cards. After training, we tested all samples in the test set. Test an
image in GPU needs about 7 seconds.

4. Experiment

Our database contains 51 airport images (1300 × 950) which
were collected from the Google Earth. The airports include many
famous international city such as Beijing, Los Angeles, Atlanta,
Moscow, etc. We selected 26 images, 654 aircrafts as the train-
ing set. Other 25 images, 630 aircrafts are used as the test set.
The database is very challenging, because some aircrafts are very
blurred and their backgrounds are complex.

We define an aircraft is located accurately if it has at least one
positive sample.

Table 1 gives the locating accuracy of Algorithm 2 for all 1284
aircrafts in all 51 images. Its first row gives the results of the
method that locates white aircrafts on three gray thresholding
(thresholds=210, 240, 255), and colorful aircrafts on gradient
thresholding (threshold=100) images. The second row shows the
results of the method that locates all aircrafts on gradient thresh-
olding (threshold=100) images. It shows the first row has a higher
search efficiency and a higher locating accuracy. Where #samples
denotes the sample number, we used the samples produced by the
first row for the following experiments.

The baseline sliding window method needs about ( 1300×950
15×15 +

1300×950
10×10 +

1300×950
8×8 ) × 51 = 1, 893, 923 samples at all. The search

efficiency of our method is 12 times (1893923/149923=12.63)
more than the baseline sliding window method.

We denote False Alarm Rate (FAR), Precision Rate (PR) and
Recall Rate (RR) as:

Fig. 12 Partial positive and negative samples in the training database.

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

FAR = number of false alarms
number of aircrafts × 100%

PR = number of detected aircrafts
number of detected objects × 100%

RR = number of detected aircrafts
number of aircrafts × 100%

(7)

To be fair and objective, some overlapped false alarms are
fused into one alarm.

Table 2 lists the results of five different methods on our air-
craft test set, where the input is only a gray image. Here DNN
(9-layer) has the structure and parameters as Fig. 11. DBN (800,
800,400,200,2) means that the DBN has 800, 800, 400 and 200
nodes in the first, second, third and fourth hidden layers respec-
tively, and two nodes in the output layer. The HOG feature is
computed as [15], its orientation bins is 9. The 48×48 gray im-
age is divided into 1×1+2×2+3×3+4×4+5×5=55 blocks. The
HOG dimension is 55×9=495. LBP(8,2) feature means P=8,
R=2. LBP(8,3) means P=8, R=3. They include 58 uniform pat-
terns and 1 nonuniform pattern (refer to [32]). The LBP dimen-
sion is 59×55=3245. We utilized the rbf kernel, 3000 support
vectors in SVM. The kernel parameter is optimized in a range
[1/dimension, 30/dimension]. Table 2 reveals that DNN performs
better than DBN, and DBN exceeds the traditional methods far
away. HOG is better than LBP(8,2), and LBP(8,2) is better than
LBP(8,3).

In Table 3, G1 is the gray image of the sample. G2 includes
the gray image and gradient image of the sample. G4 includes the
gray image, a gray thresholding image at 180, a gray thresholding
image at 210 and the gradient image of the sample. For example,
when input Data is G4, each image of G4 is fed to 21 maps of
the C1 layer. This means that the 84 maps of C1 are divided into

Table 2 False alarm rates (%) on test set.

Recall Rate (%)
Method 90 85 80 75 70

DNN (9-layer) 47.5 29.3 18.7 12.8 8.80
DBN (800,800,400,200,2) 54.9 35.9 23.7 16.4 10.0
HOG+SVM 101 57.1 38.8 25.6 17.7
LBP(8,2)+SVM 166 118 86.8 65.4 49.4
LBP(8,3)+SVM 192 138 104 82.0 60.4

Table 3 False alarm rates of DNN (9-layer).

Recall Rate
Input Data 90 85 80 75 70

G1 47.5 29.3 18.7 12.8 8.80
G2 39.9 24.9 16.2 10.8 7.05
G4 35.1 19.4 12.4 8.28 5.76

Fig. 13 The RPC curves of five methods in our test database.
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Fig. 14 The RPC curves of the 9-layer DNNs with different input data.

Fig. 15 Partial detection results of DNN in our test database.

four parts, each part has 21 maps and accepts one image of G4,
four parts accept the four images of G4 respectively. All samples
are preprocessed and fed to C1 in the same multi-images ways,
no matter whether it belongs to the train set or the test set.

Table 3 shows that Inputting multi-preprocessed images helps
to improve the performance of DNN obviously.

Figure 15 displays partial detection results on the test airport
images, owing to the multi-scales object localization method and
the powerful DNN detector, most aircrafts are detected repeti-
tively, including some tiny and very blurred aircrafts.

5. Conclusion

Aircraft detection is a difficult problem. We proposed an ob-
ject location method based on constant multiple gray or gradient
thresholding images, which is suitable for white and colorful air-
crafts. Our method has a high location precision, with search

efficiency 12 times more than the baseline sliding window ap-
proach. We trained the Deep convolutional Neural Networks
(DNN) as the final detector. Experiments shows that our DNN
outperforms another deep machine learning method, the famous
Deep Belief Nets (DBN), and DBN outperforms the traditional
Feature+Classifier methods with ease. Furthermore, inputting
multiple preprocessed images helps to improve the performance
of DNN obviously.
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