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Abstract: Barcode reading mobile applications to identify products from pictures acquired by mobile devices are
widely used by customers from all over the world to perform online price comparisons or to access reviews written
by other customers. Most of the currently available 1D barcode reading applications focus on effectively decoding
barcodes and treat the underlying detection task as a side problem that needs to be solved using general purpose ob-
ject detection methods. However, the majority of mobile devices do not meet the minimum working requirements of
those complex general purpose object detection algorithms and most of the efficient specifically designed 1D barcode
detection algorithms require user interaction to work properly. In this work, we present a novel method for 1D barcode
detection in camera captured images, based on a supervised machine learning algorithm that identifies the character-
istic visual patterns of 1D barcodes’ parallel bars in the two-dimensional Hough Transform space of the processed
images. The method we propose is angle invariant, requires no user interaction and can be effectively executed on a
mobile device; it achieves excellent results for two standard 1D barcode datasets: WWU Muenster Barcode Database
and ArTe-Lab 1D Medium Barcode Dataset. Moreover, we prove that it is possible to enhance the performance of a
state-of-the-art 1D barcode reading library by coupling it with our detection method.
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1. Introduction

In the last few years, online shopping has grown constantly,
and so have the number of customers that use smartphones or
tablets to purchase products online. Most of those mobile devices
integrate high quality cameras; as such, many researchers and
companies focused on solving the problem of identifying prod-
ucts shown in camera captured images on the basis of their visual
features [1]. However, the task of recognizing both the brands
and the models of products from pictures has yet to be efficiently
solved; this is mostly due to the large number of issues that need
to be addressed when using images captured by customers, such
as poor light conditions, occlusions and variations in poses and
scales.

As proved by many successful applications currently available
in most mobile application stores, an easier and more efficient
way to approach the object identification task in the field of e-
commerce lies in exploiting barcodes, as they univocally identify
almost every item in the market and have strong characteristic
visual patterns [2].

While both the detection and the decoding tasks have already
been exhaustively faced for two-dimensional (2D) barcodes (e.g.,
Quick Read codes) [3], [4], [5], the same does not hold for
one-dimensional (1D) barcodes, even though Universal Product
Codes (UPC) and European Article Numbers (EAN) barcode
standards are widely diffused all over the world.

The task of reading 1D barcodes from camera captured im-
ages has been approached in different ways [6], [7], [8], [9], [10],
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[11], [12]. Most of the currently available barcode reading mo-
bile applications analyze the gray intensity profiles of single lines
in the given images to identify typical patterns associated with
the parallel bars of 1D barcodes, thus they usually require the
user to place the barcodes in a specific position within the camera
screen [12]. Some industrial approaches obtain excellent results
using hardware implementations of their barcode reading soft-
wares [13] while exploiting prior knowledge related to the spe-
cific domain, e.g., the dimension and the position in which a bar-
code may appear inside the processed image. Other works pro-
pose different techniques of decoding 1D barcodes to deal with
camera related issues, such as poor light conditions or lack of
focus [9], [10], [11].

Currently, most of the 1D barcode related works in literature
address the decoding phase and treat the underlying detection task
as a side problem; nonetheless, we argue that the task of detect-
ing multiple arbitrary rotated barcodes in real world images is
crucial to reduce the amount of user interaction involved in the
subsequent decoding process. Moreover, real time angle invari-
ant barcode detection algorithms can be exploited by automated
systems to identify products without defining placement or order-
ing constraints.

Even though 1D barcodes can be effectively detected by gen-
eral purpose object detection methods, this is not an optimal so-
lution, as most of the interesting applications of barcode reading
algorithms lie in the mobile field and the majority of currently
available mobile devices do not meet the minimum working re-
quirements of those object detection approaches.

In this work, we propose an Hough Transform [14] based
method for angle invariant 1D barcode detection in camera cap-
tured images. In our method, a properly trained supervised ma-
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Fig. 1 Examples showing the bounding boxes automatically identified by
the proposed method for arbitrary rotated 1D barcodes in images ac-
quired using smartphones. The results produced by the proposed
method are satisfying even when the 1D barcodes are warped, oc-
cluded or partially illegible due to reflections.

chine learning model identifies the rotation angle of every bar-
code in the processed image by analysing the two-dimensional
Hough Transform discrete space of the given image; a subsequent
simple and fast procedure detects the bounding boxes surround-
ing those barcodes by exploiting the information received from
the machine learning model.

The main novelties of our approach are: (i) the ability of de-
tecting the exact positions and rotation angles of 1D barcodes
without exploiting prior knowledge nor user interaction, (ii) the
capacity of precisely identifying the bounding boxes for 1D bar-
codes in the processed image, this is particularly interesting be-
cause the identified bounding boxes can be used in a subsequent
decoding phase to efficiently read barcodes without wasting any
time searching for them in the processed image.

In our experiments, we prove that the proposed model can ob-
tain excellent results for three different 1D barcode datasets and
that it is also effective in detecting barcodes that are warped, par-
tially occluded or illegible due to reflections, some examples are
provided in Fig. 1. We publicly release the source code used in
our experiments as it can be used by most of the barcode read-
ing algorithms presented in literature *1; we also introduce a new
dataset specifically designed to evaluate the performances of an-
gle invariant 1D barcode detection methods. A live demo of our
approach is available online and can be used to evaluate the pro-
posed method with user uploaded images *2.

The method presented in this manuscript is an extension of our
previous work on barcode detection [15], in this extended version
we provide a deeper analysis of all the components involved in the
method’s pipeline in order to understand how they are affected by
parameter changes.

*1 http://github.com/SimoneAlbertini/BarcodeDetectionHough
*2 http://artelab.dicom.uninsubria.it/projects/projects.html

We have also previously proposed a robust 1D barcode de-
coding system [10] which can be combined with the detection
method presented in this paper to provide an effective end-to-end
system for 1D barcode reading on mobile devices or desktop ap-
plications.

2. Related Works

2.1 Hough Transform
The classical Hough Transform [14] is a feature extraction

technique commonly used in Image Processing and Computer
Vision for the detection of regular shapes such as lines, circles
or ellipses.

The Hough Transform for lines detection adopts a voting pro-
cedure to identify the set of linear shapes L in a given image ι.
The normal form equation of a generic line l ∈ L in ι can be
defined as follows:

ρ = x · cos θ + y · sin θ (1)

where ρ ≥ 0 is the distance of l from the origin of ι and θ ∈ [0, 2π)
is the angle of l with the normal.

Let the two-dimensional Hough Transform space H be the
(ρ, θ) plane, for an arbitrary point (xi, yi) ∈ I, Eq. (1) corresponds
to a sinusoid in H. If two points (x0, y0), (x1, y1) ∈ I belong to
the same line l, their corresponding sinusoids intersect in a point
(ρl, θl) ∈ H; the same holds true for all the points of l. Note that
the coordinates of the point (ρl, θl) ∈ H correspond to the main
parameters of l, therefore it is possible to detect the set of linear
shapes L by identifying the points of intersection in the Hough
Transform space H of the given image ι.

In a discrete implementation, the Hough Transform algorithm
uses a two-dimensional array A, called accumulator, to represent
the plane H. In its first step, the algorithm executes an edge de-
tection algorithm on ι. Let ιe be the edge map computed for ι,
for each pixel p ∈ Ie the Hough Transform algorithm determines
whether p corresponds to an edge in ι, if so, for every line lp (in
the discrete space defined by A) that may pass through p, the al-
gorithm increases the value of the element in A that corresponds
to the main parameters of lp. Finally, the linear shapes in ι are
identified by applying a local threshold operator to A to detect its
peak elements.

2.2 Barcode Detection
The barcode detection task consists in locating the barcodes

that appear in a given image; the output of a barcode detection
algorithm should consist of a set of bounding boxes that surround
those barcodes.

This task has been faced using many different techniques, for
example: (i) in Refs. [12], [16] scan lines are drawn over the
image to detect the exact position of a barcode, (ii) Basaran et
al. [17] rely on the properties of the Canny Edge Detector [18] to
identify edges corresponding to the parallel bars of 1D barcodes,
(iii) Gallo and Manduchi [9] assume that the regions in the image
characterized by weak horizontal gradients and strong vertical
gradients correspond to barcodes. In order for those cited models
to operate effectively, the barcodes shown in the processed im-
ages need to satisfy a set of constraints, e.g., none of them can
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Fig. 2 A visual overview of the sequence of steps performed by the proposed model to detect the bound-
ing boxes for an image extracted from the Rotated Barcode Database.

detect arbitrary rotated 1D barcodes.

2.3 Barcode Decoding
The barcode decoding task consists in exploiting the informa-

tion provided by a barcode detection algorithm to identify the
sequence of numbers represented by the barcodes appearing in a
given image. As for barcode detection, the task of decoding 1D
barcodes is really challenging because it has to deal with issues
that mostly depends on the final domain of application; for ex-
ample, when designing a barcode reading algorithm for mobile
devices, the problem of decoding blurred barcodes needs to be
addressed in order to obtain a robust and effective algorithm.

There are many interesting works in literature that face the 1D
barcode decoding task: (i) Gallo and Manduchi [9] exploit de-
formable templates to efficiently read extremely blurred barcodes,
(ii) in [8], [12], [16] the authors adopt different thresholding tech-
niques to decode the typical black parallel bars of 1D barcodes,
(iii) Zamberletti et al. [10] use a supervised neural network to im-
prove the performance of the Zebra Crossing (ZXing) [19] algo-
rithm, (iv) Muñiz et al. [20] decode 1D barcodes by “reading” the
sequence of intensity values in the accumulator matrix of the lin-
ear Hough Transform algorithm. Note that the work of Muñiz
et al. [20] does not perform any detection as it assumes that the
images provided as input to the model consist in 1D barcodes
cropped exactly to their bounding boxes.

Based on the results provided by the authors, the algorithm pro-
posed by Gallo and Manduchi [9] proves to be significantly more
robust than the others when applied to images acquired by mo-
bile devices. The methods presented in [9], [10], [19] are able to
efficiently read 1D barcodes even on low end mobile phones.

3. Proposed Model

A detailed description of the proposed method is given in the
following paragraphs.

Given an image ι, we apply the Canny Edge Detector [18] to ι
to obtain its edge map ιe; this step can be performed efficiently
even on a mobile device, for example by exploiting the imple-
mentation of the Canny Edge Detector algorithm provided by the
OpenCV library [21], like we currently do in our experiments and
mobile application. Once the edge map ιe has been determined,
we compute its Hough Transform in the two-dimensional space
H = (ρ, θ). Finally, as described in Section 3.1, we detect the
rotation angle for the barcode in ι and subsequently identify its
bounding box by exploiting both a neural generated accumulator
matrix and the linear segments identified by the Hough Trans-

form, as described in Section 3.2. In Fig. 2 we provide a simple
visual representation of the sequence of steps performed by our
proposed method to detect the barcode bounding boxes for an
image belonging to the Rotated Barcode Database (introduced in
Section 4.1).

3.1 Angle Detection
Let AH be the accumulator matrix for the two-dimensional

Hough Space H = (ρ, θ) of an image ι; as described in Sec-
tion 2.1, every element a ∈ AH in position (ρa, θa) denotes a po-
tential line in ιe having rotation angle θa and distance from the
origin of the axes ρa. The goal of the angle detection phase is to
identify which elements of AH are associated with barcode bars
in ι.

Even though this task may look easy at first glance because
of the regularities usually shown by 1D barcodes (parallel black
bars, guard bars on the left and right, numbers under the bars,
etc.), we were not able to solve it using a set of handcrafted rules
because of all the issues that arise when identifying barcode bars
in the Hough Transfom accumulator matrices of real world im-
ages. For example, a barcode may appear warped, this causes the
elements denoting its barcode bars in the accumulator matrix to
have different values for the angle coordinate θ. The barcode may
also appear partially illegible due to reflections and this causes the
expected regular sequence of elements denoting its barcode bars
in the accumulator matrix to be irregular, as some of those bars
are not correctly identified by the edge detection algorithm. Most
of the other examples that can be provided are related to the issues
usually faced by the decoding algorithms described in Section 2.3
(lack of focus, scale variations, etc.). For those very reasons, we
decided to employ a supervised machine learning algorithm in
place of handcrafted rules to efficiently solve the angle detection
task.

As shown in Fig. 3, a regular grid of cells C is superimposed
over AH ; the height and the width of each cell are defined as n and
m respectively. Every cell ci ∈ C is processed by a Multi Layer
Perceptron (MLP) [22] neural network that produces a new cell ti
as follows. Let ci(x, y) be the value of the element of ci in posi-
tion (x, y) with 0 ≤ x < n and 0 ≤ y < m, the value assigned by
the MLP network to its corresponding element ti(x, y) is defined
as follows:

ti(x, y) =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

1 if ci(x, y) is a barcode bar in ι.

0 otherwise.
(2)

where an element ci(x, y) denotes a barcode bar in ι if the sinu-
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Fig. 3 An example showing how the regular grid of cells C is superimposed
over the Hough accumulator matrix AH and how the elements ci(x, y)
are mapped into the (ρ, θ) plane.

soid defined by Eq. (1) for the pair (ρci(x,y), θci(x,y)) corresponds to
a barcode bar in ι. As stated by Eq. (2), the goal of the neural
network is to assign an high intensity value to ti(x, y) if it cor-
responds to a ci(x, y) that denotes a barcode bar in the original
image ι.

Let Ω be a dataset splitted into training and test sets defined
as Ωtrain and Ωtest respectively, in which Ωtrain ∩ Ωtest = ∅ and
Ωtrain ∪ Ωtest = Ω; in order to accomplish the task described by
Eq. (2), the neural network model needs to be properly trained us-
ing a set of patterns generated from the samples in Ωtrain ⊂ Ω as
follows.

Let ωi ∈ Ωtrain ⊂ D be a training image, each training pattern
extracted from ωi consists in a pair (in, out) in which:
• in - is the linear representation of a cell extracted from the

Hough Transform accumulator matrix of the training image
ωi.

• out - is the linear representation of the same cell associated
with in, in which, according to Eq. (2), the elements of in

that denote barcode bars in the original training image ωi are
assigned 1 as intensity value; the remaining are assigned 0.

Once all the training patterns for the training images inΩtrain have
been extracted from AH , they are used to train the MLP using
the resilient backpropagation algorithm with the default parame-
ter values proposed by Igel et al. [23].

The trained network can be exploited to solve the task de-
scribed by Eq. (2) simply by processing all the cells defined for
the accumulator matrix AH of the image ι; once all those cells
have been processed, they are combined together to generate a
new accumulator matrix AN , called neural accumulator matrix,
in which the elements having high intensity values represent po-
tential barcode bars.

Finally, we identify the correct rotation angle of the barcode in
ι by analizing AN . Taking into account that the main feature of
a 1D barcode is that its bars are parallel, we expect the elements
denoting those bars in the Hough Transform accumulator matrix
of ι to appear in the same row of AN ; for this reason, we define
the likelihood lr of a barcode appearing in ι rotated by the angle
associated with a row r in AN as the sum of all the elements of
r. This process is repeated for all the k rows of AN to obtain an
histogram hAN = [b0, . . . , bk] in which each bin b j, 0 ≤ j ≤ k

represents the likelihood that the elements of the row j denote
the bars of a barcode in ι. Examples showing the angle detection
procedure applied to images from ArTe-Lab 1D Medium Barcode

Dataset are provided in Figs. 2 and 4.

Let br be a bin in hAN and max(hAN ) be the maximum value
among the bins of hAN , if br is equal to max(hAN ) then we assume
that some of the elements of r denote the bars of a barcode in ι.
Given θr as the rotation angle specified by the row r of AN , with-
out further operations, a set of scan lines [12], [16] rotated by θr
could be performed all over the image ι to decode the barcode as-
sociated with r. However, this is an expensive operation, as those
scan lines must be performed over all the lines of ι having rotation
angle θr. For this reason, we decided to try a more efficient and
novel way to decode the barcode by running a single scan line in
the middle of its bounding box, as described in Section 3.2.

3.2 Bounding Box Detection
Given the neural accumulator matrix AN for a given image ι and

the rotation angle θr identified by the angle detection phase de-
scribed in Section 3.1, we want to determine the bounding boxes
for the 1D barcodes in ι. There are many reasons why we want
to identify those bounding boxes, e.g., they can be exploited to
speed up the decoding process because we do not need to run
scan lines all over the images but just in the middle part of the de-
tected bounding boxes, or to define commercial applications that
overlay images/videos over the areas occupied by 1D barcodes to
create particular visual effects and enhance the user experience
during the decoding phase.

To identify those barcode bounding boxes, we start by deter-
mining the set S of all the linear segments in ι by applying the
same technique used by Matasyz et al. [24] to the edge map ιe.
Given the rotation angle θr identified by the angle detection phase,
we define S θr ⊆ S as the subset of linear segments in S whose ro-
tation angles differ by at most ±5◦ from θr and we create a binary
image Iθr in which the intensity value assigned to the pixels be-
longing to the segments in S θr is 1, while the others are assigned
0. The binary image Iθr is then rotated so that the majority of
its segments are parallel to the vertical. Similarly to Section 3.1,
we define two histograms hrows

Iθr
and hcols

Iθr
that describe the inten-

sity profile of the rows and the columns of Iθr respectively, as
shown in Fig. 2. More specifically, each bin of those histograms
is computed as the sum of the elements of a row/column in Iθr .
Finally, we apply a smoothing filter to each histogram to remove
low value bins corresponding to isolated non-barcode segments
and we determine the bounding box for the barcodes as the inter-
section area between the rows and the columns associated with
the remaining non-zero bins in hrows

Iθr
and hcols

Iθr
respectively. All

the previously described operations can be performed in parallel
for each barcode in ι.

3.3 Discussion
The computational complexity of the proposed model strictly

depends on the size of the accumulator AH . Note that, due to its
aspect ratio, it is possible to successfully decode a non-deformed
1D barcode using a scan line if the rotation angle of the scan line
differs by at most ±30◦ from the one of the barcode [9]. This
feature enables us to obtain good results even when a single row
in AH is associated with multiple consecutive rotation angles. In
theory, we could speed up the detection process by employing
accumulator matrices having just 180

30 rows, in which each row
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Fig. 4 An example showing the accumulator matrices generated by the an-
gle detection phase for an image in the ArTe-Lab 1D Dataset. In the
right part of the figure, from top to bottom: the original accumulator
matrix AH ; the ground-truth accumulator matrix in which elements
denoting barcode bars in the original image have been assigned an
high intensity value; the neural accumulator matrix AN generated by
our trained neural model for AH .

represents 30 consecutive angles. In practice, as shown in our
experiments, this is not feasible, since the neural network is not
able to correctly recognize the visual patterns produced by bar-
code bars because of the limited number of training patterns that
can be extracted from those “condensed” accumulator matrices
using the training procedure described in Section 3.1.

As proved in Section 4.3, the capability of the MLP network
to detect warped barcodes depends on the parameters n and m.
This is due to the fact that the bars of a warped barcode (e.g., a
barcode printed on an irregular object) are not parallel, therefore
some of the points generated in AH for such bars lie on different
subsequent rows; if we increase n, each cell provided as input
to the MLP network spans over multiple subsequent rows of AH

and this enables the neural model to successfully identify those
multiple rows patterns characteristic of warped 1D barcodes.

As described in Section 4.3, in our experiments we explore the
possibility of employing overlapping cells instead of the regular
grid C superimposed over AH ; as shown by the results we ob-
tained, we decided not to use this approach, as it substantially in-
creases the time required by the neural model to process a single
image and does not increase the overall angle detection perfor-
mance.

The computational complexity of the bounding box detection
phase described in Section 3.2 depends on the size of the input
image ι. In our experiments we always rescale ι to a 640 × 480
pixels resolution without losing overall detection accuracy.

4. Experiments

4.1 Datasets
In this section we provide an overall description of the datasets

used to evaluate the performance of the proposed model.

In our experiments, we employ two standard 1D barcode
datasets: the ArTe-Lab 1D Medium Barcode Dataset [10] and the
WWU Muenster Barcode Database [12]; as described in the next
paragraphs, those two datasets do not contain images of barcodes
rotated by more than ±30◦ from the vertical, for this reason we
decided to build an additional dataset, called Rotated Barcode

Database, specifically designed to evaluate the performances of
angle invariant 1D barcode detection algorithms. In order to en-
able other researchers to compare their results with ours, this last
dataset has been made publicly available on our website. Since
our method involves a supervised machine learning algorithm,
we split each dataset into training and test sets: we randomly se-
lect 66% of the dataset’s images as training set Ωtrain and the re-
maining 33% as test set Ωtest. Moreover, in order to evaluate the
accuracy of the bounding box detection phase described in Sec-
tion 3.3, we define the ground truth figure-ground segmentation
masks for all the images of the previously cited datasets; those
masks have also been made available online on our website.

A more detailed description of the datasets used in our experi-
ments is given in the following paragraphs.

ArTe-Lab 1D Medium Barcode Dataset [10]. It consists of 215
1D barcode images acquired using a Nokia 5800 mobile phone.
This dataset is not specifically designed to evaluate the perfor-
mances of angle invariant algorithms; as such, the barcodes ap-
pearing in the images are rotated by at most ±30◦ from the verti-
cal. Each image contains at most one non-blurred EAN barcode.
In our experiments, we do not employ the extended version of this
dataset because the proposed method is not specifically designed
to deal with unfocused images.

WWU Muenster Barcode Database [12]. It consists of 1055
1D barcode images acquired using a Nokia N95 mobile phone.
As for the ArTe-Lab 1D Medium Barcode Dataset, this dataset
has not been specifically designed for angle invariant detection
algorithms, for this reason most of the barcodes that appear in the
images are not rotated from the vertical. Each image contains at
most one non-blurred EAN or UPC-A barcode.

Rotated Barcode Database. It consists of 368 1D barcode im-
ages acquired using multiple smartphones; all the images are
scaled to a 640×480 pixels resolution. This dataset is specifically
designed to evaluate the performances of angle invariant barcode
detection algorithms; as such, the barcodes appearing in the im-
ages are rotated by arbitrary angles. Each image may contain
multiple EAN and UPC barcodes, moreover, the barcodes may
appear warped, illegible due to reflections or partially occluded.
The dataset is publicly available for download and use *3.

4.2 Evaluation metrics
We measure the performances of the two main phases of the

proposed model using the overall angle detection accuracy OAθ

for the angle detection phase of Section 3.1 and the overall

bounding box detection accuracy OAbb for the bounding box de-
tection phase of Section 3.3. Those two metrics are defined as
follows.

*3 http://artelab.dicom.uninsubria.it/downloads.html
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Overall angle detection accuracy. Given a set of test images
Ωtest, the overall angle detection accuracy achieved by the pro-
posed model for Ωtest is computed as follows:

OAθ =
tp

tp + f n + f p
(3)

where tp is the number of barcode rotation angles successfully
detected in Ωtest, tp + f n is the total number of 1D barcodes that
appear in the images of Ωtest and f p is the number of objects
wrongly identified as barcodes. The rotation angle detected for a
barcode b is considered correct if it differs by at most ±10◦ from
the truth rotation angle θb. In Section 4.3, we provide a sensitivity
analysis of the angle detection phase by reducing this tolerance
value to check the precision and the robustness of the proposed
method, results are shown in Fig. 5.

Overall bounding box detection accuracy. Given a set of test
images Ωtest, the overall bounding box detection accuracy OAbb

is calculated by redefining tp in Eq. (3) as the number of barcode
bounding boxes correctly detected. Let bbb be the bounding box
for a barcode b, a detected bounding box db is considered correct
for b if the following condition holds:

|bbb ∩ db|
|bbb ∪ db| ≥ 0.5 (4)

4.3 Results
In this section we discuss the results obtained by the two phases

of the model presented in Section 3 for the three datasets de-
scribed in Section 4.1.

In all our experiments we adopt an MLP neural network com-
posed by a single hidden layer whose size is equal to n×m, where
n and m are the height and the width of each cell in the regular grid
C superimposed over the Hough Transform accumulator matrix,
as described in Section 3.1. The MLP is trained using resilient
backpropagation with the default parameter configuration of Igel
et al. [23], using 150 “background” and 50 “foreground” training
patterns randomly extracted from each image in the given train set
Ωtrain. A training pattern p = (in, out) is a “background” training
background pattern if it satisfies the following condition:

∀x ∈ out, x � 1 (5)

if this condition is not met then p is a “foreground” training pat-
tern.

For every experiment, we define the accumulator AH as a ma-
trix having 180 rows and

√
2 ·max(h, w) columns, where h and w

Fig. 5 Overall angle detection accuracy OAθ achieved by our angle detec-
tion method for the Rotated Barcode Database while varying the
tolerance from the true angle values. The predictions generated by
this phase almost always fall within ±4◦ from the correct values.

are the height and the width of ι respectively.

Angle detection evaluation. In our first experiment we analyze
the performances of the angle detection phase described in Sec-
tion 3.1 while varying the size of the cells extracted from AH ; the
results we obtain are shown in Fig. 6. It is possible to observe
that, as stated in Section 3.3, the parameters n and m deeply af-
fect the overall angle detection accuracy. The best value for m is
3; lower values do not allow the MLP network to detect warped
barcodes while higher values introduce too much noise in the pat-
terns processed by the MLP network and reduce its effectiveness.
Overall, we achieve excellent angle detection performances: if
we set n = 3 and m = 61, we obtain a 100% OAθ for the sim-
ple ArTe-Lab 1D Medium Barcode Dataset and an average of
95.5% OAθ for the other two datasets. In this configuration, the
time required to process an image is roughly 200 ms on a Sam-
sung I9300 Galaxy S III.

These overall accuracies have been measured by considering
a prediction correct if it falls within ±10◦ from the true angle
value. However, it may be interesting to evaluate the precision of
our method by measuring the distance between the predictions it
generates and the true values in a more detailed way; for this rea-
son, we compute the overall angle accuracy OAθ achieved by our
method while varying the accepted tolerance from ±10◦ to ±1◦

from the true values. Results are shown in Fig. 5 ; the predictions
generated by our method almost always fall within ±4◦ from the
true values. Note that, as stated in Section 3.1, such degree of pre-
cision is acceptable thanks to the typical geometric proportions of
1D barcodes.

Another interesting experiment consists in understanding

Fig. 6 Overall angle detection accuracy OAθ achieved by the proposed an-
gle detection method described in Section 3.1 for the three 1D bar-
code datasets presented in Section 4.1 while varying the height n and
the width m of the cells extracted from the Hough Transform accu-
mulator matrix.
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whether our neural filtering technique can be improved by pro-
cessing multiple times every element of the accumulator matrix
AH . Given n = 3 and m = 61 as the pair of parameters that pro-
vide the best overall results, instead of extracting those cells as
described in Section 3.1 (using a regular grid superimposed over
AH), we extract them using a n×m sliding window approach. The
sliding window strides over AH from left to right and from top to
bottom with different horizontal and vertical step values. The re-
sults we obtain from adopting this method are shown in Fig. 7.
Note that, when the horizontal step on the ρ-axis is less than 61
or the vertical step on the θ-axis is less than 3, every element in
AH is processed multiple times by the MLP and those multiple
predictions are averaged to obtain the neural accumulator matrix
AN . Our results prove that this “overlapped” approach performs
well when the vertical step is equal to 1, mainly because every
row of AH is processed 3 different times by the MLP. However,
this technique increases the time required by the MLP to process
a single accumulator matrix approximately by an order of magni-
tude; moreover the best results are achieved when the horizontal
step is equal to 61 and the vertical step is equal to 3. In such sit-
uation the “overlapped” approach corresponds to our simple grid
approach.

In Fig. 8, we evaluate the performance of the MLP on Rotated
Barcode Database using the optimal cell size (n = 3 and m = 61),
while varying both the number of hidden layer and the number of
hidden units. The best results are obtained when using 2 hidden
layers with 200 hidden units each. As the number of hidden units
increases, the MLP starts to overfit the training data and loses its
generalization ability. The MLP has been trained using the de-
fault parameter configuration proposed by Igel et al. [23]. Since
the MLP has to be implemented in a mobile enviroment, in our
experiments we employ a MLP just having a single hidden layer

Fig. 7 Overall angle detection accuracy OAθ achieved by our angle detec-
tion method for the Rotated Barcode Database using cells of size
3 × 61 that stride over the accumulator matrices, while varying the
step values for the horizontal ρ-axis and the vertical θ-axis.

Fig. 8 Overall angle detection accuracy OAθ achieved by the Multilayer
Perceptron for the test set of Rotated Barcode Database, while vary-
ing both the number of hidden layers and the number of hidden units.

and the same amount of input, hidden, and output units: 3 × 61;
this is the configuration that provides the best compromise be-
tween performance and computational complexity.

Bounding box detection evaluation. We evaluate the overall
bounding box detection accuracy OAbb obtained by the bound-
ing box detection phase for the three datasets described in Sec-
tion 4.1; the results are presented in Table 1. Unfortunately, we
cannot provide any comparison with other barcode detection al-
gorithms as they do not usually detect region of interests within
the processed images; to our knowledge, the only method that
performs a similar detection process is the one in [9], however
we cannot use it to provide a comparison because its source code
is not currently available. The bounding box detection accuracies
we obtain are close to 85% OAbb for all the analyzed datasets,
this is a good result considering that our method does not impose
constraints and requires no user interaction. On our mobile im-
plementation, the completion time for the bounding box detection
phase is 70 ms per 640 × 480 pixels image.

Modifying ZXing [19]. We perform a final experiment to prove
that it is possible to improve the performance of an existing bar-
code reading algorithm by replacing its detection algorithm with
our method. We decided to use the ZXing [19] algorithm because
it is one of the most widely used open source multi-format bar-
code reading algorithms currently publicly available.

ZXing is a scanline based barcode reading algorithm that looks
for the characteristic patterns of 1D barcodes by reading mul-
tiple rows of the processed images. The number of rows that
are analysed when looking for barcodes is determined by the
boolean TRY HARDER parameter. When TRY HARDER is true,
ZXing has an increased chance of detecting barcodes within
the processed images because it scans twice the lines it scans
when TRY HARDER is false. As shown in [10], TRY HARDER

affects both the recall and the computational time of ZXing:
for the ArTe-Lab 1D Medium Barcode Dataset, the recall of
ZXing goes from 0.62 with TRY HARDER=false to 0.82 with
TRY HARDER=true, while the computational time required to
successfully decode an image increases by an order of magnitude
when setting TRY HARDER=true. Nonetheless, even when using
TRY HARDER and similarly to most of the other libraries for 1D
barcode detection, in its original configuration, ZXing cannot de-
tect rotated 1D barcodes because all the scanlines are horizontally
traced. However, as shown in Table 2, by properly replacing the
standard detection algorithm integrated in ZXing with one that
exploits either the bounding boxes or the rotation angle identified
by the proposed solution, the resulting algorithm becomes able
to successfully decode arbitrary rotated 1D barcodes and there-
fore achieves significantly better results on all the three evaluated
datasets.

Table 1 Overall bounding box detection accuracy OAbb achieved by the
proposed method for three 1D barcode datasets.

Dataset OAbb

ArTe-Lab 1D Dataset [10] 0.86

Muenster BarcodeDB [12] 0.83

Rotated Barcode Database 0.84
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Table 2 Comparison between the overall barcode reading accuracy [10]
achieved by the ZXing algorithm, two modified versions of ZX-
ing that exploit our method (OurBB and OurAN) and the ZXing
algorithm applied 6 times to 6 different rotation angles for every
processed image (ZXing-6rot).

Dataset
Barcode Reading Algorithm

ZXing OurBB OurAN ZXing-6rot

ArTe-Lab [10] 0.82 0.85 0.95 0.85

Muenster [12] 0.73 0.81 0.93 0.78

Rotated DB 0.61 0.82 0.93 0.77

More in details, in Table 2, we compare the results achieved
by the original ZXing algorithm with the ones obtained by two
modified versions of ZXing that exploit our detection method to
decode rotated barcodes (OurBB and OurAN) and by those ob-
tained by the classic ZXing algorithm applied 6 times to 6 dif-
ferent rotation angles (ZXing-6rot). The results of Table 2 have
been measured using the same metric of Zamberletti et al. [10].
• ZXing has been evaluated in its TRY HARDER=true config-

uration to obtain the best possible results for the three eval-
uated datasets. ZXing with TRY HARDER=true requires on
average 122 ms to decode an image from the ArTe-Lab 1D
Dataset (roughly 1 ms per scanline).

• OurBB denotes a modified version of ZXing that exploits the
bounding boxes detected by our method and traces 10 uni-
formly sampled scan lines, rotated by the angle detected by
our method, over the components intersecting the detected
bounding boxes in the original images. This modified ZX-
ing requires roughly 280 ms to decode a single image from
ArTe-Lab 1D Dataset: 200 ms for the Hough angle detection
phase described in Section 3.1, 70 ms for the bounding box
detection phase described in Section 3.2 and 10 ms to decode
10 scanlines using ZXing.

• OurAN denotes a modified version of ZXing that exploits the
rotation angles identified by our method and traces scan lines
rotated by those angles over the whole images (similarly to
the classic ZXing algorithm). The time required to decode
an image in this configuration is roughly 322 ms: 200 ms for
the Hough angle detection phase of Section 3.1 and 122 ms
for the execution of ZXing with TRY HARDER=true over
the whole image.

• ZXing-6rot denotes an algorithm obtained by applying 6
times the original ZXing algorithm to 6 different angles
for every processed image. The average time required by
ZXing-6rot to process an image is equal to 6 times the time
required to process a single angle using ZXing: 732 ms.

OurAN obtains better results than OurBB since, as expected from
the results presented in Table 1, some bounding boxes are not
correctly detected by our bounding box detection method (Sec-
tion 3.2), therefore the scan lines traced over the rows intersecting
those bounding boxes in the original do not produce any results.
On the other hand, OurAN exhaustively looks for barcodes ro-
tated by the angles detected by our Hough based procedure (Sec-
tion 3.1) within the whole image, this increases the chances to
successfully decode 1D barcodes but also increases the computa-
tional time required to process an image (from 280 ms to 322 ms).

OurBB and OurAN achieve better overall performances than

Fig. 9 Negative examples of bounding boxes identified by our method
for some sample images extracted from three 1D barcode datasets.
In some instances, the edges of text characters in the images are
wrongly identified as the bars of a 1D barcode.

both ZXing and ZXing-6rot algorithms for all the three evaluated
datasets. ZXing-6rot is also substantially slower than all the other
evaluated algorithms and cannot overcome OurBB or OurAN, es-
pecially for the Rotated Barcode Database, because the assump-
tion of Gallo and Manduchi [9] that 1D barcodes can be success-
fully decoded when a scanline is traced within ±30◦ from the true
rotation angles of the barcodes does not hold true for deformed
barcodes, e.g., the ones printed over non planar surfaces (typical
of the Rotated Barcode Database).

Failure examples. In Fig. 9, we present some negative examples
of bounding boxes identified by the proposed method for differ-
ent images extracted from the three datasets described in Sec-
tion 4.1. It is possible to observe that: (i) the errors committed
by the bounding box detection phase for the images (a) and (b)
are caused by the vertical edges of text characters that resemble
the bars of barcodes and share the same orientation of the real
barcodes; in such situation, even though the rotation angles of
the barcodes are correctly identified by the angle detection phase,
the subsequent segment extraction, performed by the bounding
box detection phase, wrongly extracts those characters’ edges be-
cause they are stronger than the edges produced by the bars of the
real barcodes; (ii) in the examples (c) and (d), the distance be-
tween the rotation angles detected by the MLP and the true angle
values is 90◦; as such, the output of the bounding box detection is
flawed; (iii) the examples (e) and (f) highlight the limit of the pro-
posed approach when detecting heavy occluded and unfocused
1D barcodes.

5. Conclusion

In this work, we have presented a simple method for detect-
ing one-dimensional barcodes from camera captured images that
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requires no user interaction and is angle invariant.
We proved the effectiveness of the proposed approach using

three EAN/UPC datasets, one of which has been specifically built
to evaluate the performance of angle invariant barcode detection
methods.

The obtained results prove that our method can be used to pre-
cisely detect both the rotation angles and the bounding boxes of
one-dimensional barcodes even when such barcodes are partially
occluded, warped or illegible due to reflections.

The time required by our approach to process an entire image
is roughly 270 ms (200 ms for the Hough based angle detection
phase described in Section 3.1 and 70 ms for the bounding box
detection phase described in Section 3.2) on a modern mobile de-
vice; this is an acceptable result, as it is possible to obtain a robust
one-dimensional barcode reading algorithm simply by coupling
our approach with a fast scan line decoding algorithm that pro-
cesses only the center of the detected bounding boxes.
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[20] Muñiz, R., Junco, L. and Otero, A.: A robust software barcode reader

using the Hough Transform, Proc. International Conference on Infor-
mation, Intelligence, Systems and Applications (IISA’99), pp.313–319
(1999).

[21] Bradski, G.: The OpenCV Library, Dr. Dobb’s Journal of Software
Tools (2000).

[22] Bishop, C.M.: Neural Networks for Pattern Recognition (1995).
[23] Igel, C., Toussaint, M. and Weishui, W.: Rprop using the natural gra-

dient (2005).
[24] Matasyz, J., Galambosy, C. and Kittler, J.: Progressive probabilistic

Hough Transform for line detection, Proc. Internation Conference on
Computer Vision and Pattern Recognition (CVPR’99) (1999).

Alessandro Zamberletti graduated from
the University of Insubria, Varese, Italy
(2011). He is currently a Ph.D. candi-
date in the Applied Recognition Tech-
nology research laboratory. His research
interests include Object Recognition and
Object Class Segmentation from natural
scene images.

Ignazio Gallo received his degree in
Computer Science at the University of
Milan, Italy, in 1998. He became an as-
sistant professor at University of Insubria,
Varese in 2003. His research interest are
Computer Vision, Image Processing, Pat-
tern Recognition, Neural Computing.

Simone Albertini received his M.S. de-
gree in Computer Science in 2011 and he
is attending a Ph.D. course while collabo-
rating with the Applied Recognition Tech-
nology Laboratory (Arte-Lab) of the Uni-
versity of Insubria. His research interests
are Computer Vision, Pattern Recognition
and Automatic Feature Learning.

Lucia Noce received her M.S. degree in
2012 and is currently a Ph.D. student in
the Applied Recognition Technology Lab-
oratory (Arte-lab) within the Department
of Theoretical and Applied Science at the
same University. Her research interests
are in the areas of Data Mining and Com-
puter Vision.

(Communicated by Koichi Kise)

c© 2015 Information Processing Society of Japan 9


