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Abstract: As distributed computing becomes part of the daily life of an expressive number of people, it becomes
important to rethink the way we express compatibility between the components of distributed systems. This paper
proposes a mechanism to check service compatibility based on service contracts. We propose that a contract should
be specified in terms of a process calculus and that interacting services should have their algorithms verified against
such contracts. This way, we can formally check if they can reach a target state, meaning that they can successfully
interact. In order to guide the compatibility check we propose a variation of the Java programming language to create a
Domain-Specific Language (DSL). This DSL, along with a run time model, was specially designed to allow for an au-
tomated examination of behavior in a message-oriented middleware environment. We provide a qualitative evaluation
of our proposal through the analysis of an example involving the dynamic creation of interconnections.
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1. Introduction

In a world where distributed systems are pervasive and each
day more relevant, it is important to analyze how developers cre-
ate clients and services. We are witnessing the appearance of a
distributed service market in which developers do not have the
luxury of fully understanding the internals of the remote services
that they use as part of their applications. So trying to come
out with service interfaces that prevent misuse by clients can be
tricky. For instance, in cloud computing, a service is usually pro-
vided by a company for a fee, which is one of the key differ-
ences between computing clouds and computer grids, according
to Ref. [15]. So the same client application may interact with a
range of service providers that are chosen based on a number of
factors, including the price of the service and the service provider
reputation.

To keep development costs low, client applications should be
checked before a remote service is hired. Also, the same client
should be able to successfully interact with any service that im-
plements a certain contract to avoid vendor lock-in. One of the
problems we need to address is then how to allow for the develop-
ers of client applications to formally verify if their software can
successfully interact with a service specification rather than with
a specific service implementation. We assume that the selection
of the right service provider can be done in an automated fashion,
for instance, using some scheme in which services compete to
serve a certain client (as in the Grid economy model [7]), so the
actual software composition cannot be determined during coding.

Here we propose a method to verify agent implementations
against contracts. We take into account interactions between ob-
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jects and object mobility in order to allow for computation to be
placed close to data without impacts in contracts. Both mobil-
ity and interaction between services are aspects addressed by the
π-calculus [41], which we apply to be part of contracts.

But what does it mean for two loosely coupled agents to be
compatible? It means that the assumptions under which they were
both built will be met during run time. For instance, let P be an
agent that was built to interact with an abstraction Q of a remote
service. Let us also assume that the model implemented by P

states that initially Q should offer a function m1 and that when-
ever m1 is called, another function m2 becomes available. A con-
tract of Q should, then, impose that Q should be either in a state in
which only m1 can be called or in a state in which only m2 can be
called. Also, the contract should impose that a call to m1 should
be responsible for the state transition. A contract may go as far as
explaining what should go on inside of Q but we do not need (and
do not encourage) this sort of details since, as we said, we base
our model on the assumption that many implementations may be
available and too detailed contracts leave no room for adaptation
or creativity.

Our main contribution to the field is a Domain-Specific
Language (DSL) that was specifically designed for developers
to express agent interactions by means of either implicit chan-
nels (calls to remote methods), or explicit channels that can be
passed from agent to agent the same way that object references
are passed. The DSL also makes it possible for an automated
process to extract from its source code an equivalent π-calculus
expression that is later checked against the contract. Characteris-
tics of the proposed DSL are based on the blueprint of a Message-
Oriented Middleware (MOM), which we also outline.

The rest of this paper is organized as follows. The follow-
ing section introduces related research. Section 3 introduces our
model for service contracts and the outline of the MOM model
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that we use. Section 4 introduces a DSL we have created on top
of the Java programming language to support advanced contract
verification. Section 5 is an example of our proposal. In Sec-
tion 6, we discuss our contributions. Finally, we conclude this
paper on Section 7. We also provide two appendices at the end
of this paper. Appendix A.1 defines a special π-calculus context
that we use to check client implementations of contracts. Ap-
pendix A.2 describes the grammar of our DSL.

2. Related Research

Interoperability between old and new code based on types was
proposed in Ref. [42]. It also uses π-calculus, but as a means to
define a type system, instead of trying to check code against a
contract.

Reference [30] proposes that internal finite state machines
should be added to the service definition in order to enable the ser-
vice contract to describe legal sequences of method calls. An ap-
proach using finite state machines was also proposed in Ref. [10].
Verifications based on finite state machines allow us to identify
illegal sequences of service methods, but they do not take into ac-
count behavior equivalence by means of simulation, they do not
offer a way to represent channels, they do not allow us to easily
represent unobservable transitions, and they do not cope with a
variable number of states. The π-calculus includes all those miss-
ing features.

Service compatibility is an issue addressed both in Refs [5] and
[6]. Both tackle the problem from the point of view of message
types and termination protocols. Termination is an important fea-
ture also addressed here (a termination can be modeled as both in-
teracting services reaching a zero state *1), but we also tackle the
problem of message sequences, especially in cases in which states
are time dependent (which we model using the π-calculus τ).

Analyzing Web service compatibility using graphs and proto-
cols was addressed in Refs. [4], [9], and [12]. A formalization of
compatibility was also proposed in Ref. [18].

OurGrid [28], [29] also proposes using transformations over
an Object-Oriented Programming (OOP) language to create dis-
tributed systems. The strategy of OurGrid is to allow program-
mers to mark certain Java threads as points to be exported for
the grid to execute. The transformations are performed by As-
pectJ [1], an Aspect-Oriented Programming (AOP) language for
Java. Aspects identify those explicit marks and replace calls to
the execution of threads with procedures that will request the ex-
ecution of the threads in a remote node. AOP is based on the
idea that standard OOP design does not allow for correct map-
ping of crosscutting concerns. Aspects provide for a unique
concretion for crosscutting concerns. AOP languages (even the
ones that have more expressive point cut grammars such as Log-
icAJ [40]) limit themselves to manipulate procedures in interac-
tion points between classes: method calls and method declara-
tions. In general, field introductions provide support for addi-
tional logic. But the interactions between agents are not only

*1 Although a zero state is formally defined in the π-calculus as a state in
which further interactions are impossible, it is also reasonable to des-
ignate certain states as accepting ones, even if a further interaction is
possible from them.

subject to their method structure, but also the result of the struc-
ture of algorithms, which AOP ignores.

In contrast, in our design, we propose that we should extract
behavioral patterns from a meticulous analysis of a method struc-
ture. In our model, direct interactions with each remote service
should be restricted to a single client object, so we can predict
how each service method will be called. Restricting interactions
to those special client objects is what allowed us to check contract
compatibility as we will see in the next section.

On Ref. [33] it is proposed that Web Service Business Activity
(WS-BA) [34] termination protocols (coordinator initiated or par-
ticipant initiated completion) should be applied to web services
as a set of constraints that allows for formal verification of algo-
rithms to ensure both services reach an acceptance state. This
property is used as a compatibility criteria. To avoid dead-
locks and race conditions, the paper proposes to use SOAP
Service Description Language (SSDL) to express constraints.
SSDL constraints are then translated into Process Meta Language
(PROMELA) source code, which is in turn executed by the SPIN
model checker [21] *2. Interaction between services should be
grouped into activities that take place sequentially. Each activity
should complete in a consistent state. Our compatibility criteria
differs from Ref. [33] in that we propose that compatible services
are those that can interact based on a process expressed in terms
of π-calculus. Our model allows for representing entities that are
equivalent to parallel activities.

In this paper, we claim that exposing service state can im-
prove the client-service cooperation and the formal verifica-
tion of compatibilities. This approach is similar to Design by
Contract (DbC) [31], which is the foundation of some program-
ming languages such as Eiffel *3. The Java Modeling Language
(JML) [20], [26], [27], succeeding iContract [24], is perhaps the
most widely used approach for DbC in Java. The idea behind
JML (as is the approach of other DbC languages such as Eif-
fel [2]) is that contracts should be written as part of the source
code. In our model, on the other hand, contracts are not spe-
cific to one particular source code or implementation. Another
difficulty to adapt the DbC to our proposal would be to track in-
teractions between agents in order to extract interaction patterns
which, using JML can only take place during run time. We want
to check contract adherence before run time. Another dimension
in which the classic DbC is not enough for our needs is interac-
tions by means of channels. We need the π-calculus and to use
bisimulation in order to describe processes that exchange mes-
sages and that have a connection topology that is dynamic by
passing channels as message data.

We can state that we also exploit DbC since our contracts can
also express pre-conditions and post-conditions. We model chan-
nel interaction as method calls. So in our model, a pre-condition
is the assumption that the caller will be able to receive results
from the called peer. Post-conditions are assumptions that the
caller has regarding the state that the called peer will have after
interaction. This is expressed by the caller exposing output chan-
nels after interaction. Invariants, on the other hand, are not as

*2 http://spinroot.com
*3 http://www.eiffel.com/
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straightforward. It is possible to specify asserts that enforce in-
variants, but they cannot be considered to be a syntactic feature
of our model.

Architecture Description Languages (ADLs) are languages to
provide specifications of distributed systems. Not only these lan-
guages provide a more convenient method to describe distributed
systems, but they also produce system descriptions that can be
subject to formal verification and simulation. Among the ADLs,
at least the ScuADL [45] and the π-ADL [36] use the π-calculus
principles to describe systems. Both provide a syntax to described
systems as processes that communicate (or interact) over chan-
nels, and channels that can be passed as parameters.

The semantic properties of Java in terms of the π-calculus have
been investigated in Ref. [22]. The equivalences between Java
code and π-calculus that we use here are compatible with the ones
in Ref. [22], but we study a special case of objects in a controlled
environment and expressed using a DSL. We only consider those
elements in the source code that are relevant to interactions be-
tween agents in the contract.

Agent mobility by means of process passing, instead of chan-
nel passing, is the core of the HOπ (Higher-order π-calculus) and
has been established in Ref. [44]. A detailed account on the topic
can be found in Ref. [11]. Here we opted to address agent mo-
bility using simple channel passing instead of a more complex
representation of object mobility. Calculi of higher orders are
used in scenarios in which incomplete processes are passed. This
is the case of dynamic and functional programming languages.
But here we aim at judging the possibility of loosely coupled sys-
tems to successfully interact. Therefore, not only channel passing
is enough for our needs (as we model visibility extrusion, which
can be completely represented using channel transmission), but a
higher-order calculus would make it hard for us to prove bisimu-
lation which equates to behavioral equivalence.

We define a component model and focus on applying the π-
calculus as the means for contract specification to describe be-
havior and mobility, rather than trying to make a contribution to
the field of the calculus itself.

We are basing our middleware on the Java Message Service
(JMS) message topics, in which agents subscribe to topics and
messages are directed to all connected nodes. Node subscrip-
tion can contain a filter that may be used by the server to emu-
late one-to-one messages. The Calculus of Broadcasting Systems
(CBS) [13], [39] provides a formalization for systems based on
one-to-many messages, which are the most natural transmission
mode in JMS. Here we decided not to address one-to-many mes-
sages the way CBS does since we are basing our assumptions
on an OOP programming model in which objects exchange mes-
sages through method calling. However, we use broadcast mes-
sages exchange in message topics for tasks such as service decla-
ration for resource brokers [3]. Such details regarding the under-
lying MOM are beyond the scope of this paper.

3. A model for Service Contracts

In this section we describe our model for service contracts.
A contract is an abstraction for process behavior expressed by
means of channel interactions. While contracts are expressed us-

ing the π-calculus, the implementations are written using a Java-
based DSL. To make such relation more clear, let us consider a
contract K, and an agent implementation c. Also, let [[c]] be the
translation of c into the π-calculus. What we want to achieve is
a set of syntactic structures that, when used to encode c, will en-
able us to tell if [[c]] has a behavior that is compatible with K. We
will see later a more formal definition of compatibility, but for
now we can state that if K has the form P1 | P2, then for c to be
compatible with K, [[c]] has to successfully replace either P1 or
P2. In other words, c should be a concretion of one of the roles
(or abstractions) defined by K.

Because introducing the π-calculus is beyond the scope of this
paper, we refer the reader to Ref. [41] for a detailed account. The
π-calculus grammar we use is as follows.

P � (P | P) | P + P | !P | new{x1, · · · , xn}P | S eq

S eq � A1. · · · .An(.0 | .S )?
A � M(X1, · · · , Xn) | M〈X1, · · · , Xn〉 | τ
M � m : (T1 × · · · × Tn)→ T

X � x : T

S � stateName ‘=’ P

T � unit | Int | Boolean | · · · | Class

Class � M1, · · · ,Mn

(1)

The first vertical bar represents processes in parallel, while the
rest of the vertical bars mark EBNF options. The plus sign rep-
resents mutually exclusive options. An exclamation point is a
replication (!P is equivalent to P|!P), and new identifies bound
(restricted) variables. P, S eq, A, M, and T stand for “process,”
“sequence,” “action,” “method,” and “type” respectively. X is a
method argument. The question mark is the EBNF mark for op-
tional terms (zero or one). A zero marks the end of a sequence
or is itself a sequence, and is implicit when not present at the
end of a sequence. The Greek letter τ is the silent action. S is
a named state, which is defined by a state name and a process
expression. When a state is reached, necessarily at the end of
a sequence, the sequence becomes whatever is expressed as the
state. T represents a type, which can be a unit (equivalent to a
void in Java or C), a primitive, or a class. Methods m receive zero
or more parameters and have one result type. Classes are a col-
lection of methods and have no fields, in contrast with Ref. [11].
We model interactions between objects, not the internal structure
of methods or algorithms, so there are no variables available. The
only possible reference are those to objects and channels. We
can think of our definition of classes as OOP interfaces with ex-
tra requirements that govern the interactions between instances
of those interfaces. Instead of fields that determine object state,
objects have named states, as we will see in the following section.

The following equation illustrates the notation we use in this
paper for clarity:

o!m(x).P | o!m〈y〉.Q→ {x/y}P | Q (2)

We use the notation o!m to mean a channel m which is part of
an array of channels grouped under the name or class o, which is
used on Ref. [11] and is roughly equivalent to a standard polyadic
calculus convention: m!x1, . . . ,m!xn instead of �x = (x1, . . . , xn).
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The notation {x/y}P is an alpha conversion in which all names y
in P are replaced by x. We are now ready to define agents and
contracts.
Definition 1 – Agent role. An agent role C is a π-calculus class
with at least one unbound channel. All its unbound channels are
represented using C!m, so that every passing of C in a reaction
implicitly passes references to all its unbound channels.
Definition 2 – Contract. A contract K is a set of m restricted
channels xm, n agents roles Cn, and p client agent roles C(client)

p

having the form:

K = new{x1, . . . , xm} (C1 | . . . | Cn | C(client)
1 | . . . | C(client)

p )

(3)

We assume that contracts are free from deadlocks, live locks,
lack of possible mutual termination, and other defects. It is not
the contracts that we are trying to check, but the candidates to
materialize the contracts.

Each agent role Cn or C(client)
p should be implemented by a sin-

gle class in an OOP language. But the contract should not nec-
essarily specify the internal behavior of methods. Contracts can
be purposefully unspecific to allow for service implementations
to define their own internal strategies to realize the contract. The
expression of an agent role can consist of many sub-processes
communicating through private channels. There is then a com-
promise between two extremes. On the one hand, a too vague
contract will prevent us from detecting implementations that have
run time interaction issues. On the other hand, specifying roles
in too many details may leave no room for improvements in algo-
rithms.

3.1 Middleware Model
We specify that the actual communication between agents has

the following characteristics:
• all agents communicate through message topics, which are

logical domains identified by a name and in which all con-
nected agents can exchange messages freely;

• each agent subscription to a message topic is subject to its
own reading and writing restrictions;

• references to topics can be passed along messages;
• new message topics may be created and destroyed dynami-

cally according to commands issued by agents with enough
rights.

Such model provides the vocabulary for the translation of
classes written using the DSL. Programmers do not write their
code based on such a model, but on a more abstract object model.
For instance, when a programmer writes a code that sends the
reference to an agent, the equivalent process (in terms of the
π-calculus) is one in which a new channel reference is passed
through an output channel, whereas the procedure that is actually
executed is a message being sent through a message topic. Such
message contains a reference to the topic in which the remote
object can be reached.

Another reason for adopting such a model is a practical one.
We created a prototype implementation of our proposal using the

ActiveMQ *4 implementation of the JMS specification, which has
all the characteristics above except for the last one. We have de-
veloped the last capability by using tools that are not part of the
JMS specification. Instead of going into implementation details,
we outline that we can realistically assume the behavior described
above for an MOM.

Actual message delivery, which implies a translation from a
topic name to the actual physical location of agents, is done
by the underlying message delivery method. This allows us to
change the actual location of agents without changing the way
agents communicate provided that agents are insulated from ef-
fects caused by changes in environment. We accomplish that by
allowing only channel name exchange, not actual objects, as pro-
posed by Ref. [44].

3.2 Compatibility Criteria
We take a source code c representing a single OOP class and

obtain from it a π-calculus equivalent process C = [[c]]. Our trans-
lation process differs from Ref. [22] in that we only consider ele-
ments of c that either make direct references to other agents in the
contract or that change the execution flow in which those interac-
tions occur. Also, c is written using a DSL built on top of Java,
which allows for a more expressive power and extractions of C

that fit into our middleware model. The translation is described
in details in the next subsection. Here we define compatibility
with a contract.

We allow for the DSL source code to make reflections over the
availability of methods. For this to be possible, the client imple-
mentation is put in a context Θ that differs from the one that the
client contract expresses. A formal definition of Θ is too long
for the body of this paper, so we left it for Appendix A.1. For
now, we only need to know that Θ([[c]],Cx) is the environment in
which a class c is checked for compatibility with an agent role
Cx using (strong or weak) simulation or bisimulation. Θ provides
reflection channels for each method in Cx. Originally proposed to
prove algorithm equivalence [32], bisimulation allows us to ver-
ify behavior equivalence in distributed systems.
Definition 3 – Compatibility with a client role. We consider
a class c to be compatible with the client agent role C(client)

x in a
contract K, if Θ([[c]],Cx) simulates Cx.
Definition 4 – Compatibility with a non-client role. We con-
sider a class c to be compatible with the non-client agent role Cx

in a contract K, if Θ([[c]],Cx) bisimulates Cx.
In other words, we have a compatibility if there is a binary re-

lation R such that Θ([[c]],Cx)RCx is a simulation. A more forgiv-
ing definition of compatibility accepts all Θ([[c]],Cx) that weakly
simulates Cx. For bisimulation in clients, we have the following
definition:
Definition 5 – Canonical implementation of client role. We say
that c is a canonical implementation of C(client)

x if Θ([[c]],C(client)
x )

strongly bisimulates C(client)
x .

In the definitions above we have used three kinds of relations:
(unilateral) simulation, bisimulation, and strong simulation. Each
kind of simulation has its own purpose.

*4 http://activemq.apache.org/
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For the client role, we should not impose a strong simulation to
allow for clients to provide partial implementations of contracts.
If, for instance, the client contract enables the client to call fifty
different methods, we should not expect each client implementa-
tion to call all those methods. Conversely, we should not force
the client to accept whatever response the server wants to send.
That does not imply that clients should not have any responsi-
bility. The immediate question that arises is how to ensure that
a client implementation does not break the service. The answer
is by imposing that mutual termination (reaching an acceptance
state) should be possible.

We call a canonical implementation of a client one that uses all
service capabilities exactly as specified. Such property is equiva-
lent to saying that the client in the Θ context is a strong bisimula-
tion. In other words, not only everything that the client can do is
possible under the contract, but also everything that the contract
stipulates is possible under the client implementation without any
of the parts having to wait for the other one to transition through
intermediate states not present in the contract. For instance, if the
client contract is m1.m2, then we cannot call canonical an imple-
mentation with the form m1.τ.m2.

For the non-client role, bisimulation is required since, as we
stated, we want any client implementation to be compatible with
any non-client implementation. Therefore, each non-client role
implementation should be capable of expressing the complete be-
havior specified by the contract. Nevertheless, we do not impose a
strong bisimulation to non-client roles to allow for a certain flex-
ibility to non-client agents in which the agent has intermediate
states not present in the contract. For instance, if the non-client
agent contract is m1.m2, then m1.τ.m2 is a valid implementation.
As we will see in Section 4.3, it is possible for clients to check if
a certain output channel (such as m2 in our example) is available.

4. A Domain Specific Language for Process
Calculus-based Contracts

Now that we have established our compatibility criteria, in this
section we introduce how we translate source code into π-calculus
expressions. This section will present the DSL in a descriptive
manner while a formal definition of the syntax is explained on
Appendix A.2.

We start by discussing the proposed programming model
around which the DSL was built. Figure 1 is a diagram of this
programming model. The figure represents one client accessing
one remote server. Business objects in the client side indirectly
access resources Res.1 and Res.2 that are located in a remote
host. Examples of such resources include a remote database or
some special kind of sensor. In our proposed architecture each
node is capable of hosting agents on the client and service layers.
These two layers host objects written using our DSL and that are
checked against contracts.

Objects in the client host are divided into three layers: a busi-
ness layer that contains business logic objects from Java classes,
a client layer that contains objects specified using our DSL, and
the object proxy layer that contains proxies to remote services.

Business objects are ordinary Java classes that can only in-
directly interact with services through client objects. Business

Fig. 1 Programming model for client and service.

objects may have a behavior that is hard if ever possible to pre-
dict. For instance, some of these objects may respond directly to
user input.

Client objects are agents that implement a client agent role
and are therefore checked against C(client) roles. Each client ob-
ject provides one or more public methods (marked as “c1m1” etc
in Fig. 1). These methods are accessed by business objects under
conditions specified by the declaration of client object classes, as
we will see later. Each client object interacts with one or more
proxy objects.

Proxy objects are an implementation of the remote proxy de-
sign pattern, which were also applied by Ref. [43]. Each proxy
object is a reference to a remote service and encapsulates a con-
nection. Calls to methods in a proxy object start a process that
uses the network to call the equivalent method on the remote ob-
ject.

On the server side there is one service instance (a service ob-
ject) for each proxy object. Each such object should behave as
specified in the contract.

On the top of Fig. 1 there are database-like cardinality rela-
tions. When a client object is instantiated this object receives
one of more service references through inversion of control (also
known as “dependency injection”). Service references are not
shared with other client objects, so client objects have a one-to-
many cardinality with service proxies and service objects. Each
service proxy represents a single instance of a service object, so
the cardinality is one-to-one.

Figure 2 shows an example of a client object class. The
InitialState(A) annotation decorating the client class sets the
initial state of this object to be A. The two State annotations
specify which should be the current state in order for each method
to be called. If any business object tries to call any of these two
methods while the client object is on the wrong state, an excep-
tion is thrown for the caller and the method does not get invoked.
The to() method sends the object to another state. During ex-
ecution of the method, the object is in an undefined state until a
to() is reached. This is because we equate states with π-calculus
process definitions. For instance, if we have a process P that starts
at a configuration A = m1.m2.B, in which B is a process defini-
tion, we call A and B named states that can be referred to in the
source code and m2.B an unnamed intermediate state between A

and B. If a method does not call to() as the last statement, or as
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@InitialState(A)

clientclass Client1 {

Service s;

@State(A)

public void x(String d) {

s.m1(d); s.m2();

System.out.println("Message to console");

s.m3(); s.m2();

to(B); // state transition to B

}

@State(B)

@Scope(s)

public void m4(String d) {

// use data from service...

to(C); // state transition to C

}

}

Fig. 2 Example of client object class.

the statement right before a return statement, we assume that the
method makes a transition to the state in which it started, having
an unnamed state during its execution.

The Scope annotation in the m4 method makes this method
available only for the service identified by s. So no object in the
business layer and no other service can call this method.

From the perspective of the service s, the source code in Fig. 2
translates into:

new{r} (s!m1〈r〉.r).new{r} (s!m2〈r〉.r).
new{r} (s!m3〈r〉.r).new{r} (s!m2〈r〉.r).s!m4(r).r

(4)

Restricted channels r are callback channels that are called by
the service to signal the end of a method call. Arguments passed
to m1 and m4 are ignored since they represent data sent by value,
not agents described in the contract. This concept will become
more clear when we explain the translation process. The call to
System.out.println() is ignored for a similar reason, as it
does not affect the execution flow, neither interacts with the ser-
vice.

The service s is represented by a generic Service type, in-
stead of a reference to any particular service type. The type
Service simply states that s in fact should be checked against
a yet to be specified service contract.

Figure 3 shows another client object class Client2 that in-
teracts with two remote services. This class is translated into two
distinct expressions, one for each service. The interaction with s1
is translated into CC,i3 = new{r} (s1!m4(r).r).new{r} (s1!m3〈r〉.r),
while the interaction with s2 is translated into CC,i4 =

τ.new{r} (s1!m6(r).r).
CC,i3 means that s1 has the opportunity to call m4 and then

some unknown event may trigger the call to m3 on s1. It is un-
known by s1 that an interaction with s2 is responsible for such
call to m3.

The expression of CC,i4 shows a different perspective towards
the Client2 class. Although the method m4 has no reference
to s2, the state dependency adds a τ to CC,i4. If, for instance,
CC = new{r} (s!m6.r.0), then CC,i4 simulates CC , but only weakly,

since CC,i4 → s!m6−−−→ 0. In other words, CC,i4
s!m6
===⇒ 0.

Besides the extensions to the Java syntax that we introduce in

@InitialState(A)

clientclass Client2 {

Service s1;

Service s2;

@State(A)

@Scope(s1)

public void m4(String d) {

System.out.println("x");

to(B);

}

@State(B)

@Scope(s2)

public void m6(String d) {

s1.m3();

to(C);

}

}

Fig. 3 A client object class interacting with two services.

this section, client objects also have some additional restrictions:
External observation – A client method should not be called

from another client method on the same client object. This
avoids having a recursive call to the same method.

Controlled interaction domain – A service reference cannot
leave the client object. If a reference to a service leaves
the client object, other objects in the client may call service
methods. So from the point of view of the service, client
requests would be not limited to client objects. Coming up
with the equivalent π expression would be impossible, as we
could predict which classes will end up having access to the
service.

Opacity – Fields of client objects should not be directly accessi-
ble from other objects.

In the rest of this section, we present how control flow blocks
and some DSL-specific features we have created are translated
into π-calculus expressions. We will represent generic sections of
code using processes P, Q, . . . that can be translated to π-calculus.

4.1 Method Calls
Method calls are based on the standard encoding for objects in

the π-calculus [44]. A method call consists of an output channel
in which is passed a list of arguments arg1, arg2, . . . and a return
channel r. We also allow for an extra channel e to receive excep-
tions or errors that occur during the method execution. The fol-
lowing equation shows the general expression of a non-blocking
method call, where P and Q are processes whose execution is trig-
gered by a method return and a method exception respectively. R

is a process that starts running right after the call to the method.

new{r, e} (ob j!method〈arg1, arg2, . . . , r, e〉.
([[R]] | r.[[P]] | e.[[Q]]))

(5)

This strategy uses the Visitor design pattern [17], freeing the
client from having to parse service responses before taking ac-
tion. Instead, the response from the server activates the correct
reaction in the client. A blocking version of method calls omits
[[R]] from the equation above. Here we treat all method calls as
blocking for simplicity. A non-blocking version requires the use
of a specific API for this purpose, such as the Java Future inter-
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face *5.

4.2 Generic If-blocks
If-blocks are replaced by a sum in which internal actions con-

trol execution flow. All internal actions will be restricted to the
context of the expression and represented by the Greek letter κ.

new{κ1, κ2} ([[P]].κ1 | κ1.[[Q]].κ2 + κ1.[[R]].κ2 | κ2.[[S ]]) (6)

An if-block without an else-block is modeled the same way
with the exception of else part which is not present. If-blocks
with many if-else conditions (which are equivalent to switch-case
blocks) are modeled as many items in the summation, each of
them starting with κ1 and ending with κ2. Note that the condition
on Fig. 4 was simply replaced by a sum, as the general case is
that the condition cannot be evaluated from the perspective of the
service contract. For instance, the values referenced by the test
condition may come from outside the class, as a method argu-
ment.

Clearly, such execution flow controlled by something unrelated
to the contract impoverishes all analysis that can be made using
equivalent process calculus expressions such as Eq. (6). We offer
a better construct on the next subsection.

4.3 Contract-based If-blocks
Our DSL allows for contract entities to be used as if block con-

ditions. For instance, consider the source code in Fig. 5.
The main difference from the previous source code is that this

one verifies if the method m2 is available. The actual difference
is on the equivalent π-calculus expression:

new{κ2, ϑT , ϑF} ([[P]].ϑm2〈ϑT , ϑF〉 |
ϑT .[[Q]].κ2 + ϑF .[[R]].κ2 | κ2.[[S ]])

(7)

The call ϑm2 represents a test that interacts with the current ser-
vice state to check what is the current state, while ϑT and ϑF stand
for a true or false responses respectively. Interaction is provided
by the Θ context we briefly introduced on the previous section
and that we describe in details on Appendix A.1.

4.4 Generic Loop Blocks
Loops such as the one in Fig. 6 are translated into more com-

plex structures. Again, we need restrictions in order to create
internal reactions.

public void x(boolean condition) {

P

if (condition) { Q } else { R }

S

}

Fig. 4 Simple if-block.

P

if (s.m2 callable) { Q } else { R }

S

Fig. 5 Simple if-block.

*5 http://docs.oracle.com/javase/7/docs/api/java/util/concurrent/
Future.html

new{κ1S , κ1E , κ2S , κ2E} ([[P]].κ1S .κ1E .[[R]]) |
!(κ1S .κ2S + κ1S .κ1E) | !(κ2S .[[Q]].κ1S )

(8)

Each of the three expressions in parallel has an equivalence in
the source code. The first expression is the routine that contains
the loop. A loop call and return point are emulated by κ1S and
κ1E respectively. The first replication is equivalent to the loop
control. Note that from the perspective of the contract, the deci-
sion to continue or stop the loop (represented by the plus sign) is
simply non-deterministic. The second replication is the content
of the loop block.

So we do not try to interpret the control of the loop since the
number or iterations can be dependent on data that is provided ex-
ternally. Because we model loop controls as a non-determinism
(therefore the usage of the plus sign), we use the same process to
model while-loops.

4.5 Java Threads

new{κ1} ([[P]].κ1.[[R]]) | (κ1.[[Q]]) (9)

Modeling a Java thread as in Fig. 7 using the π-calculus is triv-
ial since parallel computation is central to the π-calculus.

A different approach is used in Ref. [11]. That model al-
lows for methods to return before the termination of the process-
ing, which breaks the synchronization that exists between caller
and method. The synchronization break allows for the already
parallel processes to become independent. Again, the Java’s
java.util.concurrent package provides the Future interface that
can be used for methods to detach method return from method
execution.

4.6 Fork-join Blocks
Java does not provide support for fork-join blocks in its syntax,

but since here we are extending the syntax of the Java language,
we are free to add this feature, which is both a syntactic sugar
which compiles into standard Java source code, and a feature that
allows for refined verification. Figure 8 shows the syntax of fork-
join blocks. The word “fork” becomes a reserved word and marks
the beginning of a list of Java blocks. Each block is translated
into a new thread and all blocks execute in parallel. The end of
the list of blocks represent a synchronization point that waits for
all blocks to finish (a join point).

The π-calculus expression that represents the source code in
Fig. 8 is:

P

for (String a : collection) {

Q

}

R

Fig. 6 Loop block.

P

new Thread() { public void run() {

Q

}}.start();

R

Fig. 7 Java thread.
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P

fork {

Q

} {

R

}

S

Fig. 8 A fork-join example.

class X {

public synchronized(G1) void m1() { ... }

public synchronized(G1) void m2() { ... }

public synchronized(G2) void m3() { ... }

public synchronized(G2) void m4() { ... }

public void m5() { ... }

}

Fig. 9 Sets of synchronized methods.

new{κ f , κ j, κ1S , κ1E , κ2S , κ2E} ([[P]].κ f .κ j.[[S ]]) |
(κ f .κ1S .κ2S + κ f .κ2S .κ1S ) |
(κ1S .[[Q]].κ1E) | (κ2S .[[R]].κ2E) |
(κ1E .κ2E .κ j + κ2E .κ1E .κ j)

(10)

In this equation, κ f is the fork call and κ j is the synchronization
(the join point). Actions κnS and κnE are respectively the start and
the end of the n-th parallel block. Sums represent the uncertainty
of the order in which each thread starts and ends.

4.7 Monitor Object
The monitor object design pattern [25] aims at creating an ex-

clusion zone for concurrency. Arguably, this design pattern is
native in the Java programming language, in the form of syn-
chronized methods. Two synchronized methods in Java cannot
be called at the same time on the same object. We translate a
class c having synchronized methods m1,m2, . . . as:

[[c]] = ([[m1]] + [[m2]] + . . .).[[c]] (11)

Contracts may specify that a service has sets of methods that
cannot run simultaneously. For instance, if a service consists only
of m1, m2, m3, m4, and m5, the service contract may define that
the pairs m1 and m2, and m3 and m4 are mutually exclusive. The
expression of such class would be:

[[c]] = C(1) | C(2) | C(3)

C(1) = ([[m1]] + [[m2]]).C(1)

C(2) = ([[m3]] + [[m4]]).C(2)

C(3) = ([[m5]]).C(3)

(12)

Figure 9 outlines a class that translates into such expression.
G1 and G2 are names of two monitor objects that work indepen-
dently. The method m5 has no restriction, therefore it does not
need to be marked as synchronized.

4.8 Agent Creation
We also need a way then to represent channel creation and

channel passing along messages. Otherwise we would restrict
our model to static channel structures. Passing a channel in the
π-calculus means giving to the receiver the capability to interact
with that channel. Controlling which agent has access to which

R newAgent = new R();

client1.receive(newAgent);

Fig. 10 Channel creation and passing.

Fig. 11 Agent creation process. (a) Before the execution of the code in
Fig. 10. (b) After the execution, the agent R was created with its
own new private message topic. (c) A different result of execution
in which R is mobile and migrates to the client.

channel is done by means of the contract. A contract may specify
that a certain agent role A can receive a set of channels C. If the
same contract does not describe any operation in which A sends
C to another agent, then we can be sure that the access to C is
limited to the boundaries of A.

In contrast with the simple channel passing in the π-calculus,
we only allow object reference passing, which carries one or more
channels. The reason is because a single channel passing can be
easily modeled using an object with a single method, so restrict-
ing reference passing to objects is general enough. We decided to
equate channel creation with object creation, which provides for
a more consistent and concise programming model.

Figure 10 shows an example of agent creation and passing.
Channel creation is not different from object creation except from
the fact that such operation is present in the contract, so the in-
stantiation is not ignored during translation. The main difference
is that, behind the scenes, a new channel creates a new service
and a new JMS message topic to reach such a service. Figure 11
shows the actual agent creation and JMS topic creation that takes
place. Vertical bars are JMS topics. Initially, client1 has access
to the service S . The execution of the code in Fig. 10 creates a
new JMS topic x and a new agent R (Fig. 11 (b)). If the R class
is marked with the @Mobile annotation, then R will reside in the
client and no additional JMS topic is needed (Fig. 11 (c)).

New services need their own execution flow, independent from
the process that created it. So an agent creation is translated into
a new parallel process, similar to the creation of a new thread.
Let S be a service that exposes a method m1 unrelated to agent
creation and a method m2, as in Fig. 10, that creates a new agent.
If m1 and m2 are synchronized, by applying a pattern similar to
Eq. (11) we obtain the following translation of S :

[[S ]] = [[m1]].[[S ]]+
new{x, κ1} (κ1.client1!receive〈x, r〉.r.[[S ]] | κ1.[[R]]〈x〉) (13)

Where [[R]]〈x〉 is the translation of R in which x is used as the
reference to reach R. We pass x to client1 instead of passing
[[R]] itself, which would be the HOπ method. We do not need
the HOπ to represent mobility because we equate passing pro-
cesses to passing object references, and object references contain
all channels (all the free names of the process) necessary to in-
teract with the agent. Also, the agent does not directly provide
access to its fields, as we saw. So there is nothing in the object
that can be of interest to another process and that would justify
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using something more sophisticated than passing references.
So far, a new agent is a new object that shares a new chan-

nel with a client. An agent that exposes methods m1,m2, . . . will
have the format Eq. (11). But we also need to give meaning to
output channels (potential method calls that the agent makes) in
the newly created agent. The answer is that the agent will be able
to interact with (or informally, to see) the client that received x. In
terms of the DSL, there will be dependency injection of the client
in the agent. This mechanism is similar to a listener but without
the burden to have to define a listener. We will see an example
of such mechanism in the following section when a client asyn-
chronously receives messages from a channel subscription agent.

Agent mobility raises questions regarding security and context
transfer. Although we do not address those questions here, we ar-
gue that contracts can be used as a way to describe limitations im-
posed by the remote environment to address security. Authenti-
cation and authorization are implemented by JMS. What is miss-
ing in the JMS Service Provider Interface (SPI) specification *6 is
user identity in messages, but the ActiveMQ API provides such a
feature. Context can be modeled using contracts to specify what
each agent can access.

5. Example of Compatibility Checking

In order to illustrate our proposal, let us analyze an example of
an Internet Relay Chat (IRC) service [23], [35] implementation
using our proposed method. In this protocol, each client con-
nects to a single server. Each IRC network may have one or more
servers connected in a spanning tree. Messages are sent from a
client to an IRC chat room *7 and may pass through a series of
servers until it reaches its destination. At any given time, each
client may be connected to zero or more chat rooms.

The actual IRC protocol has more features such as chat room
operators, but here we will only implement joining chat rooms,
sending messages, and receiving messages for simplicity. Table 1
lists all functions provided by our partial implementation of the
protocol. Agents S erver, Conn, and Ch represent, respectively,
the server that provides login and connections, a connection to
the IRC system, and a chat room.

5.1 Service Contract
We define the initial server state using the following expres-

sion, with r and e having the usual semantics: return and error

Table 1 List of IRC agents and functions.

Agent Function name Short name Data arguments
S erver login login user/password
Conn join chat room jc chat room name

Ch
send message sm message
receive message rm message
disconnect d –

*6 JMS is a facade specification. It simply consists of a set of interfaces
that an Application Programming Interface (API) should implement, to-
gether with the specification on how those interface should behave. Each
API that implements the JMS SPI may offer its own message delivery
method as long as the facade behaves as expected.

*7 The IRC specification calls each space in which clients exchange mes-
sages a “channel”. We refrain from using this term in order to avoid
ambiguities with π-calculus channels. We will always refer to the IRC
abstraction as a “chat room”.

channels for the server to send messages back to the client.

S erver � new{x} (S erver′〈x〉)
S erver′ � login(r, e).
(r〈x〉.(Conn〈x〉 | S erver′〈x〉) + e.S erver′〈x〉)

(14)

The server agent is in charge of checking if clients are allowed
to join an IRC network and providing connections to authorized
clients. If a client is authorized, the server creates a connection
agent using Conn〈x〉 and passes the channel x to the client. This
channel x is used by clients to exchange messages with a connec-
tion agent. If the client is not authorized (for instance, because
the password provided does not match with the expected one) the
server will not create a new connection and executes e, which
informs the client about a failure. We define the Conn process
using:

Conn(re f ) � new{x} re f ! jc(r, e).(r〈x〉.(Ch〈x〉 |Conn〈re f 〉)
+ e.Conn〈re f 〉) (15)

If the client is not allowed to connect to the chat room, the
Conn agent will reply by interacting with the output channel e. If
joining the chat room is successful, the Conn agent will create a
new process Ch that handles the subscription and will send back
to the client a reference x to this new Ch. The contract of Ch is:

Ch(re f ) � (re f !sm(r).r + re f !rm〈r〉.r
+ re f !d(r).r).Ch〈re f 〉 (16)

Agents in this context are the expression of services from the
point of view of clients. For instance, a subscription to a chat
room is represented by a connection with a Ch agent. But several
clients should be simultaneously connected to the same IRC chat
room for them to communicate. Nevertheless, each client has its
own instance of Ch with which it interacts according to the con-
tract, in spite of all the complex processes that may be happening
on the server.

5.2 Client Contract
The client contract is given by the following:

C(s) � new{r, e} (login〈r, e〉.(r(c).C(c)〈c〉 + e.0))
C(c)(c) � c! jc〈r, e〉.(r(ch).(C(t)〈ch〉 | C(c)〈c〉)

+ e.C(c)〈c〉) + 0
C(t)(ch) � ch!sm〈r〉.r.C(t)〈ch〉 + ch!rm(r).r.C(t)〈ch〉

+ ch!d〈r〉.r.0

(17)

The superscripts (s), (c), and (t) stand for “start,” “connected,”
and “talking,” respectively. At the C(s) state, the client sends
channels r and e to the server together with a user name and a
password that are only present in the Java portion of the contract.
After receiving such a login request, the server is responsible for
checking the data provided by the client (user name and pass-
word) and call either r or e in case of a successful or failing login,
respectively. A call to the r channel will make the client go to the
C(c) state, in which the client is able to call c! jc or die, going to
the zero state. Calls to the e channel cause the client to simply
terminate, which here is represented by 0, a zero *8.

*8 Another way commonly found in the literature to represent termination
is using the word “stop” instead of 0 (zero).
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At the C(c) state, the client has a connection with the server and
can use such a connection to request to join a chat room. If join-
ing is successful, the server will respond by interacting with r and
passing x, a reference to the newly created chat room agent. The
client should then create a new process C(t) that will interact with
the chat room.

If, on the other hand, joining is not allowed *9, the connection
will respond by calling the e channel instead. When this happens,
the client remains at the connected state, in which it can try again
to join a chat room.

We did not model termination of any sort for simplicity. In an
IRC network the service is interactive and therefore dependent on
the end user wish to continue the service, in contrast with task ori-
ented services in which the termination of the task should mark
the end of the service, and in this case a more complex termina-
tion protocol, such as the WS-BA [34] should take place.

It is also important to emphasize that, after a successful con-
nection, a C(c) process is always available in the client. Therefore
there is no limit on the number of simultaneous chat room sub-
scriptions that a client may have at any given time. The conse-
quence is that it is impossible, by using finite states, to represent
such kind of system.

5.3 Client Implementation
We start by describing the client implementation because the

client, by force of the very IRC protocol, is simpler than the
server structure. Figure 12 shows the source code of an attempt
to implement the client. This client keeps a hash map containing
all subscribed chat rooms. When some business class calls the
sendMessage method, the procedure checks if the required chat
room is already in the hash map. If it is, then the method uses it,
if it is not, then the method attempts to retrieve a new chat room
object.

Figure 13 is the ChatRoomWrapper class, which has two main
roles. The first is to provide a callback method receive, which is
equivalent to an input channel in the client side, using π-calculus
terms. The second role is to provide a concretion of C(t). The
contract was designed such that C(t) becomes independent from
its creator C(c). The independence between processes is repre-
sented by a parallel block.

Note that the client never calls the disconnectmethod, which
is part of the contract. This would clearly violate a contract if
we apply a strict criterion of bisimulation or of necessary mutual
termination, but on this example we will instead apply a forgiv-
ing definition of compatibility. The π-calculus expression that is
equivalent to the source code in Fig. 12 is as follows:

A � login〈r, e〉.(r(conn).B〈conn〉 + e.Z)
B(c) � c! jc〈r, e〉.(r(ch).(CW〈ch〉 | B〈c〉) + e.B〈c〉)
CW(ch) � (ch!sm〈r〉.r + ch!rm(r).r).CW〈ch〉
Z � 0

(18)

The following relation R provides the proof of simulation:

*9 In the IRC protocol, a subscription request may be denied for private chat
rooms. Although we do not implement private chat rooms, we have de-
cided to include connection refusals here to illustrate situations in which
clients need to deal with the server rejecting a request.

import java.util.HashMap;

@InitialState(A)

public class IRCClient {

private IRCServer server;

private IRCConnection conn;

private HashMap<String, ChatRoomWrapper> rooms =

new HashMap<String, ChatRoomWrapper>();

@State(A)

public void login(String username, String password) {

try {

conn = server.login(username, password);

to(B);

} catch(RemoteException e) {

// Prevents any further calls to this object

to(Z);

}

}

@State(B)

public void sendMessage(String roomName,

String message) {

ChatRoomWrapper crw;

if (rooms.containsKey(roomName)) {

crw = new ChatRoomWrapper(rooms.get(roomName));

} else {

try {

crw = new ChatRoomWrapper(conn.join(roomName));

rooms.put(roomName, crw);

} catch(RemoteException e) { return; }

}

crw.send(message);

}}

Fig. 12 IRC client.

public class ChatRoomWrapper

implements IRCMessageListener {

private IRCChatRoom room;

public ChatRoomWrapper(IRCChatRoom room) {

this.room = room;

room.setListener(this);

}

public void send(String message) {

room.send(message);

}

@Scope(room)

public void receive(IRCMessage message) {

System.out.println(message);

}}

Fig. 13 The IRC chat room wrapper class.

R = {(A,C(s)),
(r(conn).B〈conn〉 + e.Z, r(c).C(c)〈c〉 + e.0),
(B〈conn〉,C(c)〈c〉), (Z, 0),
(r(ch).(CW〈ch〉 | B〈c〉) + e.B〈c〉,
r(ch).(C(t)〈ch〉 | C(c)〈c〉) + e.C(t)〈c〉),
(CW〈ch〉 | B〈c〉,C(t)〈ch〉 | C(c)〈c〉),
(r.CW〈ch〉, r.C(t)〈ch〉), (r.CW〈ch〉, r.C(t)〈ch〉)}

(19)

R does not present all reachable states since each call to c! jc

adds an extra process C(t)〈ch〉 to the system. Therefore, for-
mally the number of states can grow indefinitely. Let R∗ be a
pattern of relations obtained from R in which each CW〈ch〉 is re-
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placed by n copies in parallel (CW〈ch1〉 | . . . | CW〈chn〉) and
in which each C(t)〈c〉 is also replaced by n copies in parallel
(C(t)〈c1〉 | . . . | C(t)〈cn〉). It can be shown that such R∗ is a sim-
ulation, since it proves that the client implementation in Eq. (18)
simulates any state that can be reached by the client contract.

Note that the inverse relation R−1 is not a simulation. Take the
pair (X,Y) = (CW〈ch〉 | B〈c〉,C(t)〈ch〉 | C(c)〈c〉). It is easy to see
that the inverse, (Y, X), cannot be in a simulation relation since

Y
ch!d−−−→ r.C(t)〈ch〉, but no transition is possible from X by means

of ch!d. Therefore no relation that contains (Y, X) is a simulation.
We already expected that R−1 would not be a simulation since the
client does not use the disconnect method.

5.4 First Service Implementation: Agents as Servers
We show two possible implementations of the service to il-

lustrate the usage of our DSL. We will not discuss compatibility
verification on these implementations since this topic was already
covered on the previous subsection. Our first service implementa-
tion, depicted in Fig. 14 (a), is one in which agent topology mim-
ics the topology of the IRC network. Each rectangle (t1, t2, t3,
t4, t5, and IRCBus) represents one JMS message topic. Each
client connection with a server process requires a specific mes-
sage topic. Also, all service processes are connected to a sin-
gle message topic IRCBus that represents the message domain in
which services share information regarding client topology and
propagates messages. For instance, a message from C2 to an IRC
chat room to which C5 is connected would pass through t1, S1,
IRCBus, S3, and t5 until reaching C5. In this solution, IRC chat
rooms are logical entities that have no parallel with JMS topics.

While Fig. 14 depicts the logical way in which agents are inter-
connected, Fig. 15 is an example of an actual JMS deployment,
which can be used to implement both solutions (a) and (b). Nodes
M1, M2, and M3 are JMS messaging processes. All other agents
are directly connected to M1, M2, or M3 through sockets. The
protocol used for agents and messaging processes to communi-
cate depends on the JMS implementation in use, as the JMS spec-

Fig. 14 The two implementations of a chat system. (a) A solution in which
services reproduce IRC servers. (b) A solution in which communi-
cation channels reproduce IRC chat rooms.

Fig. 15 Example of actual topology of process connections.

ifies an SPI rather than a message exchange protocol.
Figure 16 shows the outline of the source code for the S erver

agent, which is a trivial implementation. Figure 17 is the con-
nection class, which uses a local database of chat rooms called
roomDB. The most important piece of this implementation is the
IRCChatRoom class, depicted in Fig. 18. All objects from this
class use the same JMS message topic IRCBus, as depicted in

public class IRCServer {

public IRCConnection login(String username,

String password) throws LoginException {

if ( /* check access */) {

return new IRCConnection(username);

} else {

throw LoginException();

}}}

Fig. 16 IRC login server.

public class IRCConnection {

// (...) Logic related to roomDB, etc.

public IRCChatRoom join(String name) {

if (roomDB.contains(name)) {

IRCChatRoom room = roomDB.get(name);

return room;

} else {

IRCChatRoom room = new IRCChatRoom(name);

roomDB.put(name, room);

return room;

}}}

Fig. 17 IRC connection class.

@InitialState(A)

@Service

class IRCChatRoom {

private Listener listener;

private String name;

private MessageBus bus;

public IRCChatRoom(String name) {

this.name = name;

this.bus = MessageBus.getInstance("IRCBus");

}

@State(A)

public void registerListener(Listener listener) {

this.listener = listener; to(B);

}

@State(B)

public void sendMessage(String text) {

bus.send(new IRCMessage(name, text));

}

@State(B)

@Scope(bus)

public void receive(IRCMessage message) {

if (message.roomName().equals(name)) {

listener.deliver(message.getText());

}

}

@State(B)

public void disconnect() {

to(Z);

}}

Fig. 18 IRC chat room class.
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@InitialState(A)

@Service

@Mobile

class ImprovedChatRoom extends IRCChatRoom {

public ImprovedChatRoom(String name) {

super(name);

this.bus = MessageBus.getInstance(name);

}

@State(B)

@Scope(bus)

public void receive(IRCMessage message) {

listener.deliver(ircMessage.getText());

}

}

Fig. 19 An improved IRC chat room class.

Fig. 14 (a). The MessageBus class is part of the API available
for the DSL and allows for nodes to get access to message topics.
The receive method needs to check each message received to
filter only those that are sent to its chat room.

5.5 Second Service Implementation: Message Domains as
Chat Rooms

On this second service implementation, depicted in Fig. 14 (b),
each IRC chat room should be implemented by a JMS topic. This
implementation uses the messaging exchange mechanism in a
way that fits better to the JMS model, which means that it surely
takes better advantage of optimizations and the routing mecha-
nisms available in the JMS network in use. In Fig. 14 (b), ch1
and ch2 are chat rooms and we need service the process S1 only
to provide connections that creates and delivers IRC chat room
objects as mobile agents. After mobile agent creation, the agents
are autonomous and can exchange messages without server inter-
vention.

Figure 19 shows a subclass of IRCChatRoom. Note the
@Mobile annotation, which allows objects of this class to be
hosted on the client, as illustrated in Fig. 11 (c). The IRCServer
and IRCConnection classes are the same of Fig. 16 and Fig. 17.

6. Discussion

Related research, as Refs. [28] and [29], propose the use of
AOP as a means to create a pre-processor that can make a grid
version of a local software. The idea is based on the assumption
that programmers find it more natural to program local systems,
which is also our assumption here. The main difference between
our approach and approaches based on AOP is that we have cho-
sen to concentrate interactions between service and client in a sin-
gle class on the client side. This allows us to isolate compatibility
analysis from possible complexities arising from a multi-threaded
client.

Applying AOP makes sense in cases in which a concern is
spread across several classes, orthogonally to responsibilities or
roles, which are usually mapped into classes. Although it can
be argued that adherence to a contract–especially one that is
based on parallelism constraints, as in our model–may be a cross-
cutting concern, we cannot expect, in the general case, to be able
to extract a behavioral pattern from client class structure. For in-

stance, consider a client contract having the form C = (m1.m2).C.
Let us assume that the client layer in Fig. 1 does not exist and that
business objects access the object proxy layer directly. In this new
architecture, interaction with proxy objects can be done by more
than one object. Let’s say that there are two such business objects
B1 and B2 that can call m1 or m2 according to data from sensors
or any external factor. There is no way to determine if such a sys-
tem complies with C since there is no guarantee over the order
in which m1 and m2 are called. That is the reason why we need
the client layer illustrated in Fig. 1, in which each proxy object
is accessed by a single client object (therefore the one-to-many
cardinality).

To the best of our knowledge, this research is the first to pro-
pose a DSL specifically to enable formal verification of contracts
expressed using the π-calculus. This allows for our contracts to
represent channel mobility, which we equated to object reference
mobility. Also, basing the contract on π-calculus enables us, by
means of a weak simulation, to define partial compatibility for
clients while preserving behavior checking. We preserve the class
as a first citizen principle of the Java language, but passing a sin-
gle channel can be accomplished by passing a class with a single
method.

We have demonstrated that our method is capable of providing
guidelines for programmers to create clients that can be checked
to correctly interact with a family of services, grouped by their
service contracts. Also, we provided details about our DSL,
which was build on top of Java, but could have been implemented
based on other similar programming languages. In fact, the limi-
tations we imposed on the references that can be accessed by the
client layer make it possible to use one programming language on
this layer while choosing other programming languages for other
layers.

Although our method is specific to service contracts that are
specified in terms of a process calculus equivalent to the π-
calculus, our results can be easily used in other contexts. With
the help of the formalization we developed, it is possible to cre-
ate prototypes of complex clients and services and validate them
formally before actually implementing a distributed system.

Another contribution we made was on the π-calculus-Java
model translation. The π-calculus uses the idea of observation.
Interaction between complementary channels a and a, together
with invisible actions τ are the way in which process execution
advances. Here we use an imperative programming model, in
which interaction happens not because an opportunity of inter-
action presented itself, but as a result of active execution of a
coordinator. Therefore, we need an imperative way for active
processes to evaluate the possibility of interaction. The Θ context
offers such a feature.

The π-ADL [36] allows for the declaration of components, con-
nections between components, and composites. It is possible to
define portions of the system that are subject of dynamic changes
during execution. Such changes are represented as π-calculus
processes that can be introduced in a certain environment. π-
ADL has many tools to formally check described architectures,
generate Java code from models, among other features. π-ADL
defines a complex type system with primitives such as architec-
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ture, port, connection, and protocol. Besides, it uses HOπ mean-
ing expressions passed can be incomplete processes to be filled by
the receiver. The aim is that π-ADL is used to describe boundary
conditions in which elements of a connector type are responsible
for data exchange.

Our proposal and the π-ADL are competing in that they both
allow for π-calculus expressions to describe a distributed system
architecture, but there are important differences. Our model of a
system is much more abstract. We do not define connectors or
boundaries but only π-calculus expressions that represent an out-
line for OOP object behaviors. All interactions are translated into
method calls. Using our approach it is possible to invent classes
that play the role of connectors or value objects [16] that can be
transferred as messages from node to node, among other design
patterns. But our language does not provide such primitives, or
a vocabulary that delivers ready to use building blocks for a dis-
tributed application. What we propose is that we should take a
contract in π-calculus and compare it with a concrete implemen-
tation written by a programmer in a variation of Java. The envi-
ronment that we envisage is one in which the programmer should
think in terms of an OOP, not in terms of a new paradigm in which
he or she needs to explicitly deal with messages or channels.

We aim at creating a model to make it easier to check con-
tract adherence so that we can have a large number of agents that
can communicate. For instance, in a cloud computing environ-
ment, there could exist several client implementations C1,C2, . . .

of the same client contract C and several server implementations
S 1, S 2, . . . of the same service contract S . We want to ensure that
any combination of client and service will be able to interact suc-
cessfully.

Finally, perhaps the most important difference with ADLs is
that we do not define a concrete architecture. As we focus on
interactions (which is the emphasis given by the π-calculus to
communication), agents may have any internal structure as long
as the perceived behavior is the one expressed in the contract.
For instance, Fig. 14 shows two implementations of server con-
tracts behaving the same way from the perspective of clients even
though their internal organizations are very different.

Our contracts aim at describing behavior rather than providing
legal conditions of data to avoid defensive programming, as in
the DbC paradigm. For example, our contracts are able to specify
that a certain agent is able to spawn more agents and pass a ref-
erence to such newly-created agents over the network, as the IRC
connection in our example does. After those references are made
available to remote nodes, they allow for new interactions to take
place.

Our proposal also differs from DbC in that our contracts define
interactions between agents, which is a popular approach in dis-
tributed computing. In Java, those interaction events are mapped
to method calls. In web services, interaction events could be web
service calls. Our approach is that, once interfaces have been
defined for distributed agents to interact in a particular program-
ming language such as Java, it is possible to describe behavior of
interactions using π-calculus not as a means to ensure data valid-
ity but rather to judge if the possible multiple implementations of
the contract can simulate the contract. A “simulation” can also

be deemed as a relation that ensures that the behavior of a pro-
cess P′ remains confined within the limits imposed by another
process P. In our case, P is the contract, while P′ is one of the
implementations of agents that are subject to the contract.

Although our proposal is one in which verification is per-
formed in a way that is similar to DbC, in our case we do not
check constraints that are imposed by the programmer. On the
other hand, DbC languages such as JML have the potential to be
used with success to improve our model.

It was proposed that the π-calculus could be extended to rep-
resent objects [11], [44], but in our model we treat objects as
a set of channels that move together and that are related to the
same process. An object for us is then a process with input and
output channels. There are no fields or algorithms in contracts
since behavior is only expressed in the interactions between pro-
cesses. We purposely wanted to restrict expressiveness of ob-
jects by allowing only methods to be declared. Not only this
makes it possible for objects to be moved without the special
treatment necessary that is given by HOπ and objects as defined
in Refs. [8], [11], [41], but it also gives developers some freedom
over contract implementation. Such flexibility is at the core of
our proposal, as we already justified.

A point we still did not discuss was how to represent our con-
tracts. Instead of presenting a possible actual representation, we
rather discuss the points that make such representation difficult.
The problem we face is that the π-calculus represents process-
ing by means of matching channels. Whenever there is a pair
of matching input and output channels, they have the chance to
interact and such interaction is what provides change to the pro-
cesses which is what processing means in the π-calculus. Actual
process locations is a concept purposefully made abstract in the
π-calculus definition, so it is the interaction, not the distribution
that is primarily modeled.

OOP processing, on the other hand, is all based on methods.
Those two ways to define computation do not perfectly match.
The main difference is that for the π-calculus there are two kinds
of channels: an output one, through which data is sent, and an in-
put one that receives data. But Java has only one kind of method:
one that is called, which we equate to an input channel since
methods receive arguments.

Usually, such inversion of processing initiative is modeled in
OOP using listeners. An object A becomes ready to have its meth-
ods called by a remote object B when A complies with a listener
interface. But such an interface is in fact a new type that we want
to avoid having. Our solution is to use the @Scope annotation.

A fair point can be made that the π-calculus presents itself as
a contrived programming language for developers who are ac-
customed to writing imperative code. Our idea is that developers
should not write π-calculus expressions but see the results of auto-
mated checking of their codes against the π-calculus expressions
that a service designer wrote.

7. Conclusions

On this paper we presented an outline for service contracts that
aims at allowing formal verification of service and client interac-
tion. We also propose a DSL specifically designed to provide a
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concise programming model for clients and services. At the same
time, features of the DSL (more specifically, the limitations it im-
poses to programmers and special syntax that refers to service
state) make it possible to translate source code into π-calculus
expressions for formal verification. A source code that has no re-
flection over the structure of the contract could not be analyzed
the same way. Our main contribution is an architecture to make
these analyses possible, and a middleware model based on the
JMS as a proof of concept. With little adaptation, our contribu-
tion can be directly applied to the general case of distributed ser-
vices, by allowing developers to reason their distributed systems
in terms of the layers we propose on this paper.
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Appendix

A.1 A Formalization of the Equivalent Ex-
pression to Verify Simulations: Θ

In this appendix we formally define Θ. We had to define such
environment to extend the semantics of π-calculus and add re-
flection over channel availability, which can be used in algo-
rithms. Without Θ, our definitions of compatibility would have
been much more verbose. Also, Θ specifically models a charac-
teristic of our proposed middleware, which allows for querying
agent states.

This appendix also aims at supporting the claim that Θ is an
application of π-calculus, rather than a proper extension of it. To
keep track of available methods, we need counters, which we
will implement using lists. The π-calculus defines very primi-
tive building blocks, so describing an algorithm using it requires
a long expression, which we will define by parts.

First we define the linking operator that connects two processes
P and Q, which is based on the one defined in Ref. [41], Sec-
tion 4.4. Let fn(P) be the set of free names in P. Given two
processes P and Q in which le f t, right ∈ fn(P), fn(Q), we define
the linking operator� as:

P� Q � new{x} ({x/right}P | {x/le f t}Q) (A.1)

Channels right and le f t in P and Q respectively are “con-
nected” by making them point to the same concrete channel, and
made private to these two processes. We now define a linked list
that represents the number of copies of a certain channel avail-
able to be called. This list is also based on a construct defined in
Ref. [41], Section 7.5.

Empty(c, i, d) � i.(Cell(c, i, d)� Empty)
+c(ϑT , ϑF).ϑF .Empty(c, i, d)
Empty � le f t(c, i, d).Empty(c, i, d)
Cell(c, i, d) � i.(Cell(c, i, d)� Cell)
+d.right〈c, i, d〉.0 + c(ϑT , ϑF).ϑT .Cell(c, i, d)
Cell � le f t(c, i, d).Cell(c, i, d)

(A.2)

Empty(c, i, d) is a list that stores the value zero. Calling the
channel i causes the list to increase one Cell. Calling d removes
one Cell until the list is only the Empty element.

The channel c is used to query if the list has any element or
not. The list reacts by calling either ϑT or ϑF to respond with a
true or false, respectively. For a short notation, we use:

ϕ(0)
x = Emptyx(ϑx, σx,INC , σx,DEC)

ϕ(n)
x = Cell(ϑx, σx,INC , σx,DEC)� Cellx � . . .

︸����������������������������������������������︷︷����������������������������������������������︸

n times

� Emptyx

(A.3)

Now we can define a context for a contract implementation,
which differs from a contract in that an implementation may in-
teract with a reflection of the current service state. An implemen-
tation may use the current state of a service to control its execu-
tion flow. We need to model this behavior using the π-calculus.
A context Θ(Ci,CC) for a contract implementation Ci, based on a
client contract CC is given by:

Fig. A·1 Communications between each part of Θ.

Θ(Ci,CC) � new{�m, �m′′} Ci | U(CC) | Trans(Ci) | Φ(CC)

Trans(Ci) � m1.m1′.m1′′ | . . . | mn.mn′.mn′′

Φ(CC) � ϕ(0)
m1 | . . . | ϕ(0)

mn

�m � m1, . . . ,mn

�m′ � m1′, . . . ,mn′

�m′′ � m1′′, . . . ,mn′′ (A.4)

Where �m are the channels in Ci or CC . U(CC) is a process that
controls the counters ϕ for each channel availability at any time,
according to the changes in Ci. On U(CC), each channel instance
x in CC is represented by x′′. Whenever x′′ becomes available
a counter increase ϑx,INC should be called, and each channel in-
stance that becomes unavailable should result in a call to ϑx,DEC .
Each sum of sequences x1,1.x1,2 . . . + . . . + xn,1.xn,2 . . . is replaced
by:

(σx1,INC . . . . .σxn,INC).
(x′′1,1.σX,DEC .σx12,INC .x′′1,2.σx12,DEC . . . |

...

| x′′n,1.σX,DEC .σxn2,INC .x′′n,2.σxn2,DEC . . .)

(A.5)

where σX,DEC = σx11,DEC .σx21,DEC . . . σxn1,DEC , which de-
creases the counters of all channels that are the first of each se-
quence in the sum.
�m′ are fresh channels that are observable from anything in par-

allel with Θ, and �m′′ are fresh channels to provide interaction be-
tween Ci and U(CC). Trans(Ci) provides a translation between
actions in Ci, CC , and the external world. Finally, Φ is a set of
counters to store the visibility of each channel in �m.

Figure A·1 shows how each part of Θ communicate. Ci is free
to call whatever channel in Trans through �m. Whenever a chan-
nel mx is called by Ci, Trans calls the equivalent channel m′′x on
U(CC) and m′x becomes externally observable. When m′′x is called
on U(CC), this call Ci can also call any of ϑx in Φ to check if a
certain channel x is available to be called. Trans communicates
with the outside world through �m′.

A.2 Concise Grammar of the DSL

Another topic not to be in the body of this text is relative to the
formal specification of the DSL. In the appendix we will briefly
introduce the grammar of the DSL we propose, which is based on
the standard Java 7 grammar. We refer the reader to Ref. [19] for
the Java specification and to Ref. [14] for the grammar rules that
we reference in this appendix. Both the grammar in this appendix
and the one in Ref. [14] are based on the Antlr tool. For more de-
tails on Antlr, we refer the reader to Refs. [37], [38]. The basic
EBNF syntax is: pipe characters mean an option, question marks
mean zero or one occurrences, and asterisks mean zero or more
occurrences. We also used such syntax in Eq. (1). For simplicity,
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statement

: block | ’fork’ block block* | assertion ’;’

| ’if’ conditionTestExpression statement

(’else’ statement)?

| // contract-based if-block

’if’ ’(’ methodId ’callable’ ’)’ statement

(’else’ statement)?

| forStatement

| ’while’ conditionTestExpression statement

| ’do’ statement ’while’ conditionTestExpression ’;’

| trystatement | switchStatement

| ’synchronized’ conditionTestExpression block

| ’return’ (expression )? ’;’ | ’throw’ expression ’;’

| ’break’ (IDENTIFIER)? ’;’ | ’continue’(IDENTIFIER)? ’;’

| action ’;’ | IDENTIFIER ’:’ statement | ’;’

;

// method id for contract-based if-blocks

methodId : identifier ’.’ identifier;

Fig. A·2 Grammar rule for statements.

action

: assignment | incrementDecrement | call

| // state transition

’to’ ’(’ identifier ’)’

;

Fig. A·3 Grammar rule for actions.

we omit most of the Abstract Syntax Tree (AST) tree rewriting
rules from the grammar fragments we present in this appendix,
but we will need to discuss some of them.

In Antlr, AST trees are represented using the form ˆ(X a b)
where X is the tree root node and a and b are the children nodes.
An example of tree rewriting rule for a parser rule a could be
a : ’x’ Identifier -> ˆ(’x’ Identifier). This exam-
ple means a syntax in which a string starts with ’x’ (usually fol-
lowed by a number of space characters thrown away) followed by
a lexer rule called Identifier becomes a tree whose root is x
containing one child whose value is the identifier. Lexer rules
are identified by having its first character in upper case, as in
Identifier.

The four annotations that we introduce in this paper
(@InitialState, @State, @Scope, and @Mobile) are
translated into standard Java annotations but are also treated as
class and method modifiers (equivalent to reserved words) in
that they figure in the grammar rules and that they do not need
to be explicitly imported but are a language feature. We also
decided to include them as grammar reserved words in order to
have those annotations as roots of enclosing AST trees, as the
rewriting rules show.

The grammar in Ref. [14] is a work in process given the
complexity of Java. By the time we downloaded such gram-
mar, it was too lenient with modifiers, allowing modifiers that
are exclusive to methods to be applied to classes and vice-
versa. In order to solve this issue we use methodModifier
and typeModifier grammar rules instead of simply the
original modifier parser rule. This separation also al-
lowed us to specifically pinpoint where each annotation is
to be placed. In the generated Java code, annotations are

methodModifier

: annotation

| ’public’ | ’protected’ | ’private’ | ’static’

| ’abstract’ | ’final’ | ’native’

// Additional annotations

| ’@State’ ’(’ identifier ’)’ -> ˆ(STATE_ identifier)

| ’@Scope’ ’(’ identifier ’)’ -> ˆ(SCOPE_ identifier)

| ’synchronized’ ( ’(’ identifier ’)’ )?

| ’strictfp’

;

Fig. A·4 Grammar rule for method modifiers.

typeModifier

: annotation | ’public’ | ’protected’ | ’private’

| ’static’ | ’abstract’ | ’final’ | ’strictfp’

// Additional annotations

| ’@State’ ’(’ identifier ’)’ -> ˆ(STATE_ identifier)

| ’@Scope’ ’(’ identifier ’)’ -> ˆ(SCOPE_ identifier)

| ’synchronized’ ( ’(’ identifier ’)’ )?

;

Fig. A·5 Grammar rule for type modifiers.

themselves annotated with @Target(ElementType.TYPE) or
@Target(ElementType.METHOD) in order to specify that they
should be applied to types or methods respectively. Keeping an-
notations in the generated code allows for the middleware to per-
form reflection at run time.

Figure A·2 shows the grammar rule for statements. The
change from the standard Java grammar is identified by the com-
ment. This new rule adds the contract-based if blocks we saw on
Section 4.3. We need the methodId rule for method references.

Figure A·3 is the grammar for imperative invocations. Besides
imperative calls to methods or assignments, we also add the state
change action.

Figures A·4 and A·5 show the new method and type modi-
fiers respectively. Finally, we added the clientclass reserved
word, which is simply another way to express a class, but with
a more specific semantic. We omitted the grammar rule for
clientclass because it can be easily inferred.
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