
Vol. 44 No. 3 IPSJ Journal Mar. 2003

Regular Paper

Rule-Based Interactive Web Forms for Supporting End Users

Yoshinori Aoki,† Masahide Shinozaki†,☆ and Amane Nakajima†,☆

This paper describes techniques for developing assistance functions for Web form input
operations. The techniques allow developers to define input-assistance functions as a set of
assistance rules. A software module called a rule compiler converts these rules into a program
that implements the assistance functions defined in them. The program is embedded into a
Web form to monitor a user’s input operations on a Web browser and to provide assistance
functions such as help-message displays, validation checks of input values, and automatic
inputs in accord with the user’s input operations. By defining assistance functions as a set
of assistance rules, developers can implement interactive Web forms without any complicated
script programming. Therefore, it is possible to rapidly prototype assistance functions and
reduce the development cost of the interactive Web forms. This paper explains the details
of the assistance rules, and describes the design and implementation of a prototype system
in detail. The prototype system includes a tool for defining assistance rules in a WYSIWYG
(What You See Is What You Get) environment, and a form generation module including a
rule compiler. The productivity of assistance function development and system performance
are evaluated and discussed with reference to the prototype system. The results show that
the prototype system can greatly reduce the cost of assistance function development, and that
helpful forms can be generated very quickly.

1. Introduction

With the rapid growth of the Internet, elec-
tronic commerce has spread widely, allowing
users to purchase many kinds of products and
apply for services on the World Wide Web.
Governments in many countries are actively
pursuing electronic government initiatives, and
it will be possible to submit application forms
to government offices via the Web in the near
future. When applying for such services on the
Web, the user usually has to input the required
information into a Web form, and then send it
to a Web server.

Web-based services have brought users great
convenience, since they can access the services
at any time and from anywhere via the Inter-
net. On the other hand, they often have to go
through awkward steps to fill out complicated
Web forms to apply for the services. As a result,
some of them stop their input operations mid-
way26), or even change service providers to find
more user-friendly services. USA Today wrote
that 67% of Web transactions are abandoned at
check-out, largely because top commerce sites
have made few provisions for real-time, on-line
customer service and support19).

The following are the major reasons for this

† IBM Research, Tokyo Research Laboratory
☆ Presently with IBM Global Services - Japan

phenomenon:
(1) With the widespread use of personal

computers, many novice users have be-
come Internet users.

(2) Some Web forms are very complicated for
end users. For example, there are too
many input fields, the content is difficult
because technical terms are used without
explanations, or there are constraints be-
tween several input fields. Insurance pol-
icy forms or income tax forms are typical
of these complicated forms.

(3) For many paper forms, there are other
papers that show examples and explain
matters that require special attention.
However, such information is usually not
integrated into Web forms because of the
limitations of screen space and develop-
ment costs.

To support end users on the Web, Web-
based remote support systems have been pro-
posed3),23). In those systems, an end user and
a call center agent are connected via the In-
ternet, and the call center agent supports the
user by using real-time Web browser synchro-
nization techniques. However, the operating
costs of the call center become very expensive
in such systems45). To solve the problem, it
is very important to provide input-assistance
functions that enable users to complete their
inputs by themselves. Such services, which

722

Vol. 44 No. 3 Rule-Based Interactive Web Forms for Supporting End Users 723

help users to solve problems by themselves on
the Web, are called Web-based self-services,
and have recently received considerable atten-
tion14). In our case, through provision of input-
assistance functions, the number of users who
connect to the call center could be reduced,
and thus the operating costs of the call cen-
ter could also be reduced, because fewer agents
would be needed. In addition, users who could
complete tasks by themselves with the help of
the input-assistance functions will be satisfied,
because they would not need to bother other
people on the Web. However, the development
would require a long time, making it expensive
to provide such input-assistance functions, be-
cause there is no mechanism to easily imple-
ment such functions and complicated program-
ming is needed. There is therefore a strong
need to develop a method for implementing rich
input-assistance functions in a short time at a
low cost.

This paper describes a mechanism for devel-
oping an assistance agent, a software module
for monitoring a user’s input operations and
for providing input-assistance functions. With
this mechanism, developers can implement as-
sistance agents without any programming by
defining assistance rules. In this way, (1) de-
velopment and maintenance costs will be re-
duced, (2) the assistance functions will satisfy
end users by supporting their input, and (3) op-
erating costs of the call center will be reduced,
because the assistance agents will reduce the
number of users who connect to the call center.
We have developed a language for describing
assistance rules, and a prototype system that
automatically generates a program for an assis-
tance agent including assistance functions de-
fined in the rules. In the prototype system, a
Web form in defined in three source files that
define the (1) logical data structure, (2) form
presentation, and (3) assistance rules. The pro-
totype system generates a Web form from the
three source files on the fly. The three source
files are formatted in XML (Extensible Markup
Language)8). The prototype system also in-
cludes a visual form design tool with which
developers can define (1) XSLT (XSL Trans-
formations)9) stylesheets that define form pre-
sentations, and (2) assistance rules, both in a
WYSIWYG environment. The tool also gener-
ates a rule file that automatically stores input
values into the XML document. Hence, devel-
opers need not write a program for storing in-

put values into the XML document. We have
evaluated the prototype system from two as-
pects: (1) productivity of the assistance func-
tion development, and (2) performance of the
form generation from the three source files.

The rest of the paper is organized as follows.
The next section discusses related work. In the
section after that, requirements are described.
We then describe assistance rules and a mech-
anism for generating programs from assistance
rules. The next section describes the design and
implementation of the prototype system in de-
tail. The last section presents our conclusions
and plans for future work.

2. Related Work

On the average, 48% of the code of today’s
applications is devoted to the user interface31).
Hence, many tools have been proposed to re-
duce the cost of user interface programming
for interactive applications. For example, In-
telligentPad41) allows developers to build inter-
active applications by placing and connecting
components called “Pads” on a screen. Peri-
dot30) is a PBD (Programming by Demonstra-
tion)12),25) system with which developers can
design a widget’s presentation and its behav-
ior by giving a demonstration. ITS46) auto-
matically generates interactive user interfaces
by providing the dialog content and style rules.
DEMO II15) and Marquise32) are PBD sys-
tems with which developers can create not only
user interfaces, but also whole interactive ap-
plications by using demonstrations. These sys-
tems provide functions for defining presenta-
tions and behaviors of GUI (Graphical User In-
terface) components, and hence they are useful
as general-purpose tools for building interactive
user interfaces. However, we focus on develop-
ing input-assistance functions on the Web, and
the functions provided by these general-purpose
tools are not powerful enough to reduce the cost
of assistance function development.

Mechanisms for help-system generation have
been proposed to support the development of
assistance functions. Mickey43) automatically
generates GUIs including help messages that
guide users’ GUI operations by means of help
scripts written by developers, and hence con-
ventional scripting work is needed. H329) gen-
erates default help systems from user interface
specifications, and developers can improve the
help systems by editing them. However, Web
forms are usually written with an HTML au-

724 IPSJ Journal Mar. 2003

thoring tool and developers do not write specifi-
cations for each Web form. Sukaviriya et al. has
been developing help systems (such as Cartoon-
ist) to help users navigate by showing animated
example operations38),39). Showing example
operations is useful and can also be done with
our system. The Web Operation Recorder2) is
useful for developing automatic presentations
of sample operations from for the Web. Other
functions such as input-value validation checks
and automatic input are also needed to imple-
ment input-assistance functions for Web forms.

The SurfIt! browser42) provides interactive
capabilities such as control of the visibility of
input fields according to a user’s input val-
ues. Such functions are implemented in Tcl/Tk
script35), and the SurfIt! browser executes the
script with its Tcl/Tk interpreter. Girgensohn
proposed a Java-applet-based interactive Web
form16). In those systems, developers have to
implement such interactive functions in conven-
tional programming languages such as Tcl/Tk
and Java. Consequently, the productivity of
form development is very low.

Some technologies for reducing users’ input
operations for their personal information have
also been proposed. P3P (The Platform for Pri-
vacy Preferences)11) is a standard that allows
Web sites to express their privacy policies in
machine-readable format. A P3P user agent,
usually built into a Web browser, compares the
privacy policy of a Web site with privacy pref-
erences set by the user. If the user permits it,
the P3P user agent can transfer the user’s per-
sonal information to the Web site, so the user
can skip over inputting that information. Mi-
crosoft Internet Explorer (IE) is a Web browser
that remembers the past input values for Web
forms. When a user tries to input data into a
Web form again, the previous input value will
be displayed. Internet Explorer for Macintosh
Version 4.5 (IE for Mac 4.5) provides a per-
sonal information database where a user can
register personal information such as a name,
address, and phone number, and it automat-
ically copies the information into Web forms.
IE for Mac 4.5 parses and analyzes the HTML
source of a Web form, and guesses which infor-
mation is needed for each input field by using
heuristics. For example, when the value of the
name attribute of an input field is “first-name”
or “FirstName,” or the text “First name” ap-
pears near the input field, IE for Mac 4.5 re-
gards the input field as requiring the user’s first

name and copies it from the personal infor-
mation database. The Web site amazon.com
(http://www.amazon.com) stores users’ per-
sonal information such as names, addresses, and
credit card numbers. When a user has previ-
ously bought something at amazon.com, he or
she can check out without entering personal in-
formation (the 1-Click patent21)). These tech-
nologies are complementary to ours, because
Web forms for personal information are not
very complicated and these auto-input tech-
nologies are practical enough for such uses.

Microsoft FrontPage is a commercial HTML
authoring tool, with which developers can add
validation capabilities for input fields. For ex-
ample, the range of a value can be set to be
from 20 to 100. However, the validation is per-
formed by using proprietary information writ-
ten in comment tags in the HTML source file.
Hence, the assistance function works only when
the Web site was developed by using Microsoft
products.

Several XML-based form languages have also
been proposed. XFDL7) and XForm24) were
created for defining Web forms in XML. XFDL
and XForm are XML-compliant languages that
include vocabulary for defining input fields.
XForm provides a mechanism for generating
Web forms from any XML document. How-
ever, an XFDL-aware or XForm-aware browser
is needed to use them. XForms 1.013) is an
XML-based form description language being ac-
tively discussed by the W3C (World Wide Web
Consortium). With such languages, the data
structure and presentation of Web forms can
be defined. These languages can be used with
our technology, because our assistance rules are
separated from the data structure and presen-
tation of the Web forms.

3. Requirements

This section describes the requirements for
designing and implementing Web forms with as-
sistance functions.
• Productivity: Web forms are formatted

in HTML36), and there are various com-
mercial HTML authoring tools for develop-
ing simple Web forms. However, the costs
of development and maintenance tend to
be large, because a lot of programming is
needed to implement assistance functions
for each Web form. Web applications are
generally required to be built in a very
short time10). Hence, methods for devel-

Vol. 44 No. 3 Rule-Based Interactive Web Forms for Supporting End Users 725

oping assistance functions in shorter times
are strongly needed.

• Defining assistance functions by busi-
ness managers: Developers have to be fa-
miliar with the details of all input fields on
Web forms, such as constraints between in-
put fields, ranges for input values, and in-
formation to be referred to for input fields.
However, in many cases, the people who
know the details are not developers, but
business managers. Hence, it is necessary
to provide functions for business managers
to define assistance rules by themselves (or
with developers). To provide such func-
tions, a visual tool is needed with which
business managers who have no program-
ming skills can visually define assistance
rules.

• No special installation: Assistance
functions should work with normal Web
browsers without any plug-ins. An orig-
inal proprietary Web browser has been
proposed to implement assistance func-
tions in a Web browser42). Plug-in-
based approaches have also been devel-
oped in some commercial form prod-
ucts such as Adobe Acrobat (http://
www.adobe.com) and Accelio FormFlow99
(http://www.accelio.com). In such sys-
tems, the proprietary Web browser or the
plug-in has to be installed in the client
PC in advance. However, such installa-
tions bother end users, especially novice
users. Assistance functions should be avail-
able without any installations whenever the
need arises.

• Easy integration with backend appli-
cations: Input values in Web forms are
usually processed by backend applications.
Hence, it is necessary to provide a mech-
anism for integrating a Web server with
backend applications.

4. Rule-Based Interactive Web Forms

This section explains mechanisms for devel-
oping assistance functions by defining assis-
tance rules. First, it discusses approaches
for implementing assistance agents, then de-
scribes the assistance rules, and finally explains
a mechanism for generating an assistance agent
from assistance rules.

4.1 Assistance Agent
An assistance agent monitors a user’s in-

put operations, and provides assistance func-

tions. For example, the agent shows informa-
tion such as a price table, advice or warning
messages, and examples, checks the validity of
input values, and automatically inputs specific
values into specific input fields. The behavior
of the assistance agents are defined by assis-
tance rules. However, the functionality of the
assistance agents partially depends on the im-
plementation, so this section discusses alterna-
tive implementations before the design of the
assistance rules.

4.1.1 Server-Side and Client-Side As-
sistance Agents

Assistance agents can be classified into two
types according to where they work: (1) server-
side assistance agents and (2) client-side assis-
tance agents. Their features are as follows:
• Server-side assistance agent: This type

of agent works as a server-side application.
The agent validates input values and dy-
namically generates the next Web form in-
cluding advice or warning messages after
the previous Web form has been submit-
ted by a Web browser. Hence, this type of
assistance can be called “post-submission
assistance.”

• Client-side assistance agent: This type
of agent works as a client-side application.
The agent monitors a user’s operations in a
Web browser, and validates an input value
when a user inputs it. The advice or warn-
ing messages are displayed depending on
the current focus. This type of assistance
can be called “pre-submission assistance,”
because the agent provides assistance func-
tions when a user is entering data.

The server-side and client-side assistance
agents are complementary, and neither of
them can cover all assistance requirements
by itself. When a backend database is
needed to provide assistance functions, only
the server-side assistance agents can offer
such capabilities. For example, amazon.com
(http://www.amazon.com) keeps each user’s
purchase history in their database, and allows
users to purchase books and CDs without enter-
ing their personal information again by retriev-
ing that personal information from the purchase
history database. Another advantage of server-
side assistance agents is that they can work per-
sistently at a server even when the client PC is
disconnected or turned off. Frameworks for de-
veloping such server-side agents have already
been proposed40),44), and server-side assistance

726 IPSJ Journal Mar. 2003

agents are implemented in many Web sites.
On the other hand, no framework for devel-

oping client-side assistance agents has been pro-
posed, and few Web sites provide client-side as-
sistance agents, although the client-side assis-
tance agents offer the following advantages:
(1) Client-side assistance agents monitor

users’ actions in a Web browser, and
hence they can grasp the users’ behav-
ior in detail and catch the triggers for
assistance.

(2) Server-side assistance agents provide as-
sistance functions after form submission,
and therefore usually give advice for all
input fields included in the previous sub-
mission at one time. In other words,
users cannot be assisted until they sub-
mit their forms. On the other hand, a
client-side assistance agent provides as-
sistance functions for each input field as
a user is inputting data into the field.
Hence, the user need not wait for the
form submission before receiving assis-
tance, and the total form-input time will
be shortened.

This paper explains mechanisms for imple-
menting client-side assistance agents. In the
rest of this paper, an “assistance agent” means
a client-side assistance agent.

4.1.2 Implementations of Assistance
Agents

There are several approaches for implement-
ing client-side assistance agents. This sec-
tion compares approaches for determining what
types of program should finally be generated
from the assistance rules.

The following are the four major approaches
for implementing assistance functions on Web
forms, and the features of each:
• Proprietary Web Browser: In this ap-

proach, a proprietary Web browser is de-
veloped, and the browser has capabilities
for interpreting and executing assistance
rules. The SurfIt! browser42) was de-
veloped in accordance with this approach,
and it contains a Tcl/Tk interpreter and
provides functions for dynamically insert-
ing and deleting input fields with Tcl/Tk
scripts.

• Plug-in and Development Kit: In this
approach, end users have to install a special
plug-in for their client PCs, and the plug-in
displays forms on a Web browser. Adobe
Acrobat and Accelio FormFlow99 are com-

mercial products developed in accordance
with this approach. They provide their own
development kit for designing forms, and
the forms are not formatted in HTML, but
in a proprietary format.

• Java Applet: In this approach, forms are
developed as Java applets and displayed by
Web browsers. It is possible to implement
complicated assistance functions in Java.
Girgensohn et al. proposed Java-applet-
based forms that can dynamically change
the structure of the forms16).

• JavaScript: In this approach, forms are
formatted in HTML and the assistance
functions are developed in JavaScript. This
makes it possible to control the values, col-
ors, sizes, and visibility of each input field
by using Dynamic HTML functions17), and
the interfaces are standardized in the DOM
(Document Object Model) specification4).

Many of the Web browsers developed at the
dawn of the Web era had only the capability of
displaying HTML pages, and did not include
application platforms such as Java runtimes
and JavaScript interpreters. Therefore, devel-
oping a proprietary Web browser was the most
popular approach until Web browsers come
to include application platforms such as Java
runtimes, JavaScript interpreters, and plug-in
interfaces . Today, however, it has become
very costly to develop proprietary browsers that
fully support recent standards such as HTML,
HTTP, XML, JavaScript, Java, and SSL. Re-
cent Web browsers have many functionalities
supported by Java runtimes, JavaScript inter-
preters, and plug-in interfaces with which we
can develop assistance functions. Another dis-
advantage of the proprietary-browser and plug-
in approaches is that end users have to install
the proprietary browser or the plug-in on their
client PCs in advance, while on the other hand
de-facto standard Web browsers are installed
on contemporary PCs. Therefore proprietary-
browser and plug-in approaches are not cur-
rently suitable for developing assistance func-
tions.

Java-applet-based forms have an advantage
in that they work on normal Web browsers
without any software or plug-in installations.
However, a disadvantage of this approach is
the difficulty of using Web servers to gener-
ate forms dynamically. In many Web sites,
Web forms are dynamically generated accord-
ing to the user’s purchase history or input val-

Vol. 44 No. 3 Rule-Based Interactive Web Forms for Supporting End Users 727

ues for the previous form. Many technolo-
gies are currently available for generating dy-
namic Web pages on the server side, such as
Java servlets22), CGI (Common Gateway Inter-
face)20), and JSPs (Java Server Pages)6). How-
ever, when forms are developed as Java applets,
such technologies are not suitable, because the
technologies do not provide capabilities for gen-
erating Java-applet-based forms dynamically.

Recent versions of HTML and JavaScript al-
low us to control input fields; as a result, it has
become possible to implement complicated as-
sistance functions. Assistance functions imple-
mented in JavaScript work on normal popular
Web browsers without any software or plug-in
installations, and they can be dynamically em-
bedded into a Web form generated by server-
side programs. Therefore, this approach is
the most suitable of these four approaches to
satisfy the requirements described in Section
3. The rest of this paper describes a mech-
anism for transforming assistance rules into a
JavaScript program and embedding it into an
HTML-based Web form.

4.2 Assistance Rules
This section describes the details of assistance

rules. First, the interaction between a user and
a Web form is modeled, and assistance rules are
then designed according to the model.

4.2.1 Model
Figure 1 shows a typical cycle of user in-

terface development. In our mechanism, proto-
typing is automatically done by generating an
assistance agent from assistance rules. Hence,
rapid definition becomes the key to rapid form
development. In addition, as described in Sec-
tion 3, the assistance rules must be simple
enough for business managers who have no pro-
gramming skills to define the rules.

Therefore, we adopted an event-action model,
which is a very simple model in which an assis-
tance rule can be defined as a pair of an event
and a set of one or more actions. When a user
performs an operation defined as an event in an
assistance rule, the corresponding actions will
be executed. Conditions are defined if the ac-
tions should be executed only when some con-
ditions are satisfied. Hence, an assistance rule
is described as a production rule5) including an
event, conditions, and actions. A production
rule forms an if-then clause, in which the condi-
tion part is called the left-hand-side (LHS) and
the execution part is called the right-hand-side
(RHS). In our assistance rule, an LHS includes

Fig. 1 Development cycle.

an event and conditions, and an RHS includes
actions.

4.2.2 Events, Conditions, and Actions
When a user performs specific operations on

an object in a Web form, the corresponding
event will be issued by the object. In this
context, an object can be an input field or a
Web form itself, and an object firing an event
is called an event source. In an assistance rule,
an event can be expressed as a set of an event
type, an event source, and parameters if needed.
The details of each event and its expression are
shown in Table 1.

In a condition part, conditions on input val-
ues can be described by using arithmetic and
logical operations. Actions can be customized
according to an input value by setting a condi-
tion on a input value. For example, the mes-
sage “Please input expiration date in the format
MM/YY” will be displayed when the value of
input field “Payment” becomes “Credit Card,”
and the input field “Expiration date” will be
disabled when the value of the input field “Pay-
ment” becomes “Money Order.”

A target object for an action is called an ac-
tion target. Figure 2 shows three examples
of input assistance functions with their action
targets: a balloon help display, a Web page
displayed for reference, and an enable/disable
control. In an assistance rule, an action part
can include a sequence of actions. For exam-
ple, an assistance agent can first input a default
value automatically, then disable the input field
to prevent the user from updating it, and then
show an alert message to let the user know the
input field is already set. In an action part,
each action can be expressed as a set of an ac-
tion type, an action target, and parameters if
needed. Table 2 shows the details of each ac-

728 IPSJ Journal Mar. 2003

Table 1 Events.

Event Description Expression
Load Page loading is completed. <load/>
Reset The form is reset. <reset/>

Submit The form is submitted. <submit/>

Displayed
The source object is scrolled into the visible
page area.

<displayed source=“object1”/>

Disappeared
The source object is scrolled out of the visible
page area.

<disappeared source=“object1”/>

Mouse-over The mouse pointer is over the source object. <mouse-over source=“object1”/>
Mouse-out The mouse pointer leaves the source object. <mouse-out source=“object1”/>

Focus The source object has the focus. <focus source=“object1”/>
Blur The source object loses the focus. <blur source=“object1”/>

Change The value of the source object is changed. <change source=“object1”/>
Input-string A text string is input into the source object. <input-string source=“object1”/>

Input-number
A numeric value is input into the source
object.

<input-number source=“object1”/>

No-change
The source object loses the focus without a
change of value.

<no-change source=“object1”/>

Stop-input
Stop input operations to the source object for
duration.

<stop-input source=“object1” dura-
tion =“100”/>

Repeated-focus Repeated focus on the source object.
<repeated-focus source=“object1”

times=“3”/>

Repeated-input Repeated input to the source object.
<repeated-input source=“object1”

times=“3”/>
<specified-input-order>

<order source=“object1”/>Specified-input-order Input into objects in the specified order.
<order source=“object2”/>
<order source=“object3”/>

</specified-input-order>
<specified-focus-order>

<order source=“object1”/>Specified-focus-order Focus on the objects in the specified order.
<order source=“object2”/>
<order source=“object3”/>

</specified-focus-order>

Table 2 Actions.

Action Description Expression

Balloon help Display the message in a balloon next to <balloon-help-on target=“object”

the target object. balloonId=“balloon1”>message</balloon-
help-on>
<balloon-help-off balloonId=“balloon1”/>

Alert window Display the message in an alert window. <alert-window>message</alert-window>

Web page Display a Web page in a floating frame next <web-page-on target=“object”

to the target object. pageId=“page1” href=“url”/>
<web-page-off pageId=“page1”/>

Auto-input
Input the value automatically into the target
object.

<auto-input target=“month”>value</auto-
input>

Click The target object received a mouse click. <click target=“object”/>

Enable/Disable Enable (disable) the target object to receive <enable target=“object”/>

(refuse) a user’s input. <disable target=“object”/>

Visible/Invisible Make the target object visible (invisible).
<visible target=“object”/>

<invisible target=“object”/>

Highlight Highlight (or remove highlighting from)
<highlight-on target=“object” color= 　
“color1”/>

the target object.
<highlight-off target= “object”/>

Scroll-in
Scroll the Web page to position the target ob-
ject within the visible page area.

<scroll-in target=“object”/>

JavaScript Execute the JavaScript code. <javascript>JavaScript code</javascript>

Vol. 44 No. 3 Rule-Based Interactive Web Forms for Supporting End Users 729

Fig. 2 Examples of assistance functions.

Fig. 3 Architectures of assistance agents.

tion and some sample expressions.
4.3 Assistance Agent Generation from

Assistance Rules
This section explains a mechanism for gener-

ating an assistance agent from assistance rules.
As explained in Section 4.2, an assistance agent
is generated as a JavaScript program.

4.3.1 Architecture ofAssistance Agents
There are two alternative architectures for

implementing assistance agents: rule-engine-
based and rule-compiler-based.
(1) Rule Engine: Assistance rules are in-

terpreted at run time by an assistance
agent in a Web browser.

(2) Rule Compiler: Assistance rules are
interpreted and converted into a program
at form-generation time by a Web server.

Figure 3 (a) shows the architecture of a rule-

engine-based assistance agent. As shown in
Fig. 3 (a), the assistance agent includes a moni-
toring engine that monitors a user’s input oper-
ations on a Web form and an assistance engine
that provides assistance functions for the user.
In addition, the assistance agent also includes a
production memory and a rule engine. The pro-
duction memory holds the assistance rules, and
the rule engine receives events from the mon-
itoring engine, searches for related assistance
rules in the production memory, and controls
the assistance engine. In this architecture, the
system need not dynamically generate an assis-
tance agent, because the same assistance agent
serves for all Web forms by receiving assistance
rules for each Web form. In addition, the rule-
engine-based assistance agents are extensible,
because developers can add new functions by

730 IPSJ Journal Mar. 2003

extending the rule engine. For example, by ex-
tending the rule engine it is possible for the as-
sistance agent to learn a user’s habits by ana-
lyzing operation histories and dynamically add
or modify assistance rules at run time. On the
other hand, since the JavaScript programs are
executed by an interpreter, a rule-engine-based
assistance agent may cause a performance prob-
lem, especially in searching for assistance rules.
Another disadvantage is the program size. A
rule-engine-based assistance agent is extensible,
but when a rule engine is too complicated, the
assistance agent program becomes large, which
results in a long download time. agent.

Figure 3 (b) shows the architecture of a rule-
compiler-based assistance agent. The agent
includes glue code that binds each action to
an appropriate event and conditions. In the
rule-compiler-based assistance agent, relation-
ships between events, conditions, and actions
are hard-coded into the glue code, and there-
fore the extensibility of rule-compiler-based as-
sistance agents is inferior to that of rule-engine-
based assistance agents. On the other hand,
rule-compiler-based assistance agents are supe-
rior to the rule-engine-based ones in regard to
system performance and compact program size.
Since we attached greater importance to sys-
tem performance than to extensibility, we have
implemented a rule-compiler-based assistance
agent in our prototype system.

4.3.2 Rule Compiler
This section explains the mechanism of our

rule compiler, which automatically generates an
assistance agent as a JavaScript program from
assistance rules.

The rule compiler receives a set of assistance
rules as its input, and generates a JavaScript
program that implements the assistance func-
tions defined in the assistance rules as its out-
put. The behaviors of the rule compiler are as
follows:
(1) Syntax Check: Reads assistance rules

and checks their syntax before generating
programs.

(2) Conflict Check: After reading an as-
sistance rule, the rule compiler checks
whether there are other assistance rules
that include exactly the same event and
conditions. If the rule compiler finds
such rules, it shows a warning message
for the developers to confirm whether the
rules should be executed sequentially or
whether they are merely conflicting.

(3) Object Check: This check is op-
tional. When the rule compiler receives
an HTML document into which an as-
sistance agent is embedded as its input,
the rule compiler confirms whether the
HTML document includes all the event
sources and action targets. This check is
useful when Web forms are dynamically
generated, because if a generated Web
form does not include event sources or
action targets, the assistance agent will
show error messages to the end users.
Since Web servers cannot detect and
avoid such client-side errors, the users
will be confused rather than helped by
seeing them.

(4) Assistance-agent Generation: After
passing checks (2) and (3) above, the rule
compiler generates an assistance agent as
a JavaScript program.

The rule compiler performs the above steps
by constructing a DRR-Tree (Dependency Re-
lationship Resolution Tree) as shown in Fig. 4.

The DRR-Tree contains a tree structure that
defines the relationships between input-field ob-
jects and the flow of the assistance functions de-
fined in the assistance rules. The rule compiler
generates the input-field objects only when the
rule compiler receives an HTML document as
its input, and the input-field objects are gen-
erated in accord with the DOM4). After the
rule compiler reads one assistance rule, it gen-
erates a subtree that expresses the flow of an
assistance function including an event, condi-
tions, and actions. The rule compiler attaches
the subtree to an input-field object in the DRR-
Tree. In Fig. 4, the subtrees are shown as event
handlers, and the colored subtree represents one
assistance rule and means that when a numeric
value is input into input field A (the corre-
sponding input-number event is fired) and the
input value is smaller than 20 (condition), a
value is automatically input into another in-
put field and the input field disabled so that
it cannot be modified by the user (actions).
In Fig. 4 the actions for input values of more
than 20 are omitted, and the conditions and ac-
tions for the input-string event are also omitted.
As Fig. 4 shows, an assistance agent detects
the events defined in Section 4.3.2 by hooking
into HTML events17),34). For example, when a
user changes an input value on a Web form, an
HTML event, change, will be fired. An assis-
tance agent hooks the change event, and if the

Vol. 44 No. 3 Rule-Based Interactive Web Forms for Supporting End Users 731

Fig. 4 Dependency relationship resolution tree generated by rule compiler.

new value is a text string, the assistance agent
fires an input-string event. If the value is a nu-
meric value, the assistance agent fires an input-
number event in the same way. These event
detections are executed by calling an event-
detection method in the change event handler.
The rule compiler contains a set of such event-
detection methods as an event library, and each
event-detection method is statically bound with
an HTML event. When the rule compiler fin-
ishes reading all of the assistance rules, a com-
plete DRR-Tree has been constructed. In the
process of the construction of the DRR-Tree,
the conflict and object checks are completed.

When a complete DRR-Tree has been
constructed, the rule compiler generates a
JavaScript program. To generate the program,
the rule compiler gathers the required event-
detection methods from the event library and
assembles them as a monitoring engine. The
rule compiler also contains an action library
that includes methods for all kinds of actions,
and it gathers all action methods used in the
DRR-Tree and assembles them as an assis-
tance engine. After transforming conditions
into JavaScript if clauses, the rule compiler fi-
nally packs all related event-detection-method
calls, if clauses, action-method calls, and their
parameters into an event handler and adds it
to the event handler for the input-field. These

packing operations are executed for each HTML
event of each input field, and the generated code
is the glue code of the assistance agent.

5. Implementation

This section explains the design and imple-
mentation of our prototype system.

5.1 Form Definition in XML
In the prototype system, Web forms are de-

fined in XML. This section describes problems
with current form definitions in HTML, and ex-
plains how to define forms in XML.

5.1.1 Problems with Form Definitions
in HTML

HTML is a language for describing Web
pages, and it also allows us to put input fields
on the Web page36). Another option embeds
script programs by using the <SCRIPT> tag.
When we define a Web form in HTML, the
data structure of the form, the presentation,
and programs are all mixed in the HTML file.
Therefore the HTML file tends to have high de-
pendency among data structures, presentation,
and programs. This increases the cost of form
development and maintenance.

5.1.2 Form Definition in XML and Its
Features

In the prototype system, a Web form is de-
fined with three separate XML files, which sep-
arately define data structures, the presentation,

732 IPSJ Journal Mar. 2003

Fig. 5 System overview.

and assistance rules. The concrete, logical data
structure of the form is defined as an XML doc-
ument, and the form presentation is defined as
an XSLT stylesheet that transforms the XML
document into an HTML form. Assistance rules
are defined as an ARML rule file. ARML (As-
sistance Rule Markup Language)1) is an XML-
compliant language that we have developed to
describe assistance rules for Web form input.
By defining ARML rule files, we can develop
Web forms with rich input assistance capabili-
ties more quickly than in conventional develop-
ment with script programming.

The following are the major advantages of
form definition in XML:
• Connectivity: XML does not depend on

any operating system or programming lan-
guage, and is supported by many of the re-
cent commercial middleware systems. It is
therefore very suitable for exchanging form
data with backend applications, including
databases.

• Syntax Check: By defining a DTD (Doc-
ument Type Definition)8) for ARML, an
XML parser can validate the syntax of
ARML rule files. Therefore a proprietary
syntax checker need not be developed.

• Multiple form Layout Development:
When multiple Web forms have to be pro-
vided for various devices such as PCs,
PDAs, and cellular phones, an XML docu-

ment that defines the data structures and
any application that handles the XML doc-
ument can be shared. By defining multiple
XSLT stylesheets, form presentations and
formats can be flexibly switched. By defin-
ing multiple ARML rule files, assistance
functions can potentially be generated ac-
cording to the device. However, the cur-
rent prototype system supports only Web
browsers for PCs.

5.2 System Overview
Figure 5 shows an overview of the prototype

system. The system provides the colored com-
ponents. The two main ones are:
• XML Form Designer
• XML Form Engine
With the XML Form Designer, develop-

ers can visually create an XSLT stylesheet,
an ARML rule file, and an input-value-
transformation rule file. The XSLT stylesheet
transforms an XML document into an HTML
form, and the input-value-transformation rules
store input values in the XML document. The
ARML rule file defines assistance rules for the
users’ Web form input.

The XML Form Engine is a class library
that provides common functions to process Web
forms with XML documents, and provides the
following functions:
(1) Form generation from XML, XSLT, and

ARML files.

Vol. 44 No. 3 Rule-Based Interactive Web Forms for Supporting End Users 733

Fig. 6 Example ARML rule file.

(2) Storing input values in an XML docu-
ment.

A Web form, generated in the XML Form
Engine, is formatted in HTML, and includes
JavaScript programs that implement the input
assistance capabilities. The JavaScript pro-
grams work in a Web browser, and detect a
user’s input operations and then provide input
assistance for the user. The main class of the
XML Form Engine is implemented as a Java
class that extends the servlet class22).

Application developers can efficiently create
complicated Web forms by using the XML
Form Designer and the XML Form Engine.
The following subsections explain the details of
ARML, the XML Form Designer, and the XML
Form Engine.

5.3 Assistance Rule Markup Language
ARML is a language developed for defining

assistance rules for Web form input. The syntax
of ARML is based on XML. In XML, when a
DTD is defined and declared at the top of an
XML document, an XML parser can validate
the XML document to check whether the XML
document conforms to the DTD27). Therefore,
by defining the DTD for ARML, an XML parser
can check the syntax of any ARML rule files.

Figure 6 shows a very simple example of an
ARML rule file. The ARML rule file includes
only two assistance rules, which are defined by
using the <assistance> tags. The first rule in
Figure 6 says that the text string, “Please input
your name ...,” will appear next to the input
field “ap-name” in a balloon when the mouse
pointer is over the input field “ap-name” and
the value of “ap-name” is null. The second rule
says that the balloon will disappear when the
mouse pointer moves away from the input field
“ap-name.”

5.4 XML Form Designer
The XML Form Designer is a standalone ap-

plication with which developers can create
(1) an XSLT stylesheet for transforming an

XML document into an HTML form,
(2) input-value-transformation rules for stor-

ing input values in the XML document,
and

(3) an ARML rule file for defining assistance
rules.

5.4.1 Presentation Definition
By using the XML Form Designer, developers

can visually bind XML elements or attributes
to input fields, such as text fields, radio but-
tons, or combo boxes, in a WYSIWYG (What
You See Is What You Get) environment. They
can define the presentation of the Web form
by changing the attributes of the bound input
fields, such as position, size, and colors. In ad-
dition to that, the XML Form Designer allows
us to use a scanned image of a paper form as a
background image for a Web form. By locating
the input fields on the image, developers can
build a Web form that provides a paper-form-
like view, as shown in Figure 7. In this case,
the XML Form Designer generates CSS (Cas-
cading Style Sheet)18),28) attributes for each in-
put field to define position, size, and so on.

After the form presentation has been defined,
the XML Form Designer generates the following
two XSLT files:
(1) An XSLT stylesheet that transforms the

XML document into an HTML form.
This file also includes the CSS format at-
tributes for the input fields, such as po-
sition, size, and color.

(2) An XSLT file of transformation rules for
formatting and storing input values in
the XML document.

Figure 8 shows a screen shot of our imple-
mentation of the XML Form Designer as im-
plemented with JDK 1.2.2. In the top right

734 IPSJ Journal Mar. 2003

Fig. 7 Paper-like form view.

Fig. 8 Screen shot of the XML form designer.

area, called the Tree Viewer, we can see an
XML document with its tree structure. In the
left area, called the Layout Panel, we can posi-
tion the input fields. In the bottom right area,
called the Presentation Editor, we can change
the attributes such as location, color, and font.
The location and size attributes can also be
changed directly by using the mouse in the Lay-
out Panel.

The steps in creating a form are as follows:
First, an XML document has to be loaded
into the Tree Viewer. Next, we have to se-
lect an XML element or attribute from the Tree
Viewer, and we can create an input field on the
Layout Panel. We can change the input field

type and the attributes for each input field.
After that, we generate the two XSLT files as
described above, the XSLT stylesheet and the
input value transformation rules. In the XML
Form Designer, we select an XML element or
attribute, and then create an input field. In
this way, the XML Form Designer establishes
the relationships between XML elements and
input fields, and the XML Form Designer gen-
erates XSLT files from these relationships.

Figure 9 shows a very simple example of an
XML document, and Fig. 10 and Fig. 11 show
examples of XSL templates included in a corre-
sponding XSLT stylesheet generated from the
XML Form Designer. In this example, the user

Vol. 44 No. 3 Rule-Based Interactive Web Forms for Supporting End Users 735

Fig. 9 Example of an XML document.

Fig. 10 Example of an XSL template for
transforming a tree structure.

designed a form that includes one text field and
two radio buttons. The stylesheet transforms
the “Name” element into a text field, and the
“Gender” element into “Male” and “Female”
radio buttons. Though the focus of this paper
is on the steps involved in handling assistance
rules, the XML Form Designer actually plays an
important role in linking the abstract labels of
the XML to the concrete values the XML docu-
ments will receive. In this example, XML Form
Designer is used to specify that the “Gender”
element will have two options named “Male”
and “Female”, and that the “Name” element
will be a text field.

To generate the XSLT stylesheet, the XML
Form Designer first generates an XSL tem-
plate that transforms the tree structure of the
XML document shown in Fig. 9 into the tree
structure of an HTML document, as shown in
Fig. 10. The XML Form Designer then gener-
ates XSL templates that transform XML ele-
ments (or attributes) into input fields, as shown
in Fig. 11. The templates include not only
input-field types but also default values and
CSS attributes such as positions, sizes, and col-
ors. The default value of an input field de-
pends on the value of the related XML ele-
ment (or attribute). For example, the second
template shown in Fig. 11 determines which of
the “Male” and “Female” radio buttons should
initially be checked, according to the value of
the “Gender” element of the XML document in
Fig. 9. In this example, neither button is ini-
tially checked, because the “Gender” element
includes no value.

Fig. 11 Example of an XSL template for generating
input fields.

It is not easy for developers to create an
XSLT stylesheet with a general text editor or
XSLT editor, because the syntax of XSLT is
complicated, as is shown by Fig. 10 and Fig. 11.
By using the XML Form Designer, a developer
can create both XSLT files, an XSLT stylesheet
and the input value transformation rules, even
if he or she is not familiar with XSLT syntax. In
addition, the developer does not have to write
any code for storing input values in the XML
document, because the XML Form Designer au-
tomatically generates input value transforma-
tion rules. In these ways, this tool greatly re-
duces the cost of form-based application devel-
opment.

5.4.2 Assistance Rule Definition
Figure 12 shows the ARML Editor imple-

mented in the XML Form Designer. Developers
can switch from the Presentation Editor in Fig-
ure 8 to the ARML Editor by selecting a tab.
The ARML Editor consists of two parts: (1)
Assistance Rule Editor and (2) Assistance Rule
List. With the Assistance Rule Editor, a user
can define a new assistance rule, which corre-
sponds to adding a new <assistance> element

736 IPSJ Journal Mar. 2003

Fig. 12 ARML editor in the XML form designer.

in an ARML rule file. The user defines a new
assistance rule in accordance with:
(1) Select an appropriate event type and its

source object from the Tree Viewer or
the Layout Panel, using direct manipu-
lation37), and input any required param-
eters.

(2) Edit the condition if necessary.
(3) Select an appropriate action type and its

target object from the Tree Viewer or the
Layout Panel using direct manipulation,
and input any required parameters.

Using the Assistance Rule List, the developer
can change the priorities of the rules, delete
rules, or modify parameters. On the Assistance
Rule List, each assistance rule is displayed on
one line, and an assistance rule with higher pri-
ority is displayed higher in the list. When sev-
eral actions are bound to one event, all of the
actions are executed in order of their priority.

Since the ARML Editor generates the rules in
the ARML format, developers need not become
familiar with the detailed syntax of ARML to
define assistance rules.

5.5 XML Form Engine
This section describes the details of the func-

tions of the XML Form Engine.
5.5.1 Web Form Generation
When a Web browser requests a form, the

XML Form Engine generates a Web form from
the XML, XSLT, and ARML files. The form
is generated in accordance with the following
steps:
(1) Load the XML document and XSLT

stylesheet, and generate an HTML-
formatted Web form from these files.

(2) Load the ARML rule file and generate
a JavaScript-based assistance agent that
implements the assistance functions de-
fined in the ARM rule file.

(3) Embed the assistance agent generated in
Step (2) into the Web form generated in
Step (1).

The XML Form Engine includes a Presenta-
tion Engine that performs Step (1), and an As-
sistance Engine Generator that performs Steps
(2) and (3), as shown in Fig. 5.

The Presentation Engine includes a software
module called an XSLT processor that gener-
ates an output XML document (in this case,
an HTML form) from an input XML document
and an input XSLT stylesheet. The Assistance
Engine Generator includes a software module
called the ARML compiler that generates script
programs from an ARML rule file. The ARML
compiler parses an ARML rule file and gener-
ates a Monitoring Engine that includes func-
tions for detecting the events used in the ARML
rule file. It also generates an Assistance En-
gine that implements the actions used in the
ARML rule file. In addition to those engines, it
also generates glue code that binds each action
to an appropriate event. The Assistance En-
gine Generator generates the above programs
in JavaScript by using the techniques described
in Section 4.3.2.

5.5.2 Input Value Handling
When a user submits a Web form, the Web

browser sends the pairs of input field names and
values as a text string. An input field name is
defined in an HTML file as a NAME attribute
of an input field tag, such as an <INPUT>
or <SELECT> tag36). The Web application
needs to know all input field names and the
locations in the XML document where the in-
put values should be stored. Such information
is usually given to a server-side program, such
as CGI scripts or servlets, as program logic.
Therefore, developers have to write many lines
of code to store the input values in an XML
document. Even a minor change in the form
may require substantial programming effort to
deal with the new or changed information.

We solve this problem by separating such in-
formation from the application logic. In the
prototype system, such information is given to
an application as an input value transformation
rule file, as shown in Fig. 5. When a Web form is

Vol. 44 No. 3 Rule-Based Interactive Web Forms for Supporting End Users 737

submitted from a Web browser, the XML Form
Engine refers to the input value transformation
rules and automatically stores appropriate in-
put values into an XML document according
to the rules. The application then processes
the XML document that already includes the
input values. This automatic transformation
is done in a software module called the Input
Value Handler which is a part of the XML Form
Engine. In the prototype system, input value
transformation rules are also written in XSLT
format.

5.5.3 Processing Flow of the XML
Form Engine

Figure 13 shows an example of the flow of
an application developed on top of the XML
Form Engine. The application generates two
Web forms from an XML document to gather
data from a user. In Fig. 13, XML-0 represents
an XML document that contains only initial
values. When a user requests the first form,
the XML Form Engine generates the first form
(HTML-0) from XML-0, XSL-0, and ARML-0.
When the user submits the first form, the XML
Form Engine stores input values in XML-0 ac-
cording to an input value transformation rule
(TransRule-0). The application gets the XML
document (XML-1) including input values from
the first form from the XML Form Engine, and
processes it as required. After that, the XML
Form Engine generates the second form from
XML-1, XSL-1, and ARML-1. In this way,
all the application has to do is indicate which
XML, XSL, and ARML files are to be used, and
then process the returned XML document that
includes the input values.

6. Evaluation

By using the prototype system, this rule-
based method for developing assistance func-
tions for Web form input has been evaluated
from two aspects: (1) productivity of the as-
sistance function development, and (2) perfor-
mance of the prototype system.

6.1 Productivity
This section describes qualitative evaluations

of productivity by comparing our system and
existing systems.

First, we compare our system and existing
rule-based interface builders. PBD systems,
such as Peridot30), Marquise32), and DEMO
II15), are typical rule-based systems for build-
ing interactive user interfaces. In these systems,
developers define the behaviors of user inter-

Fig. 13 Processing flow of the XML form engine.

faces by demonstrating example behaviors. The
systems contain rules about layout constraints
and domain specific knowledge. When devel-
opers demonstrate using the systems, the sys-
tems infer the developers’ intentions to general-
ize the demonstrations and automatically gen-
erate programs. However, the systems often
make mistakes in the inferences. Developers
have to correct the mistakes manually, and they
are usually time-consuming and sometimes im-
possible to correct33). On the other hand, our
system focuses on a specific domain, developing
input-assistance functions for Web forms, and
it is possible for our system to provide vocabu-
laries of events and actions that are frequently
used to develop assistance functions for Web
forms. Consequently developers are able to de-
fine the behaviors of assistance agents as sets of
assistance rules, and our system never performs
complicated inferences. Therefore it does not
require modifications for incorrect inferences,
and developers do not have to demonstrate
many times to define one behavior. Mickey’s
approach43) is similar to ours. However, de-
velopers have to write actual help scripts in
Mickey. To reduce the cost of defining assis-
tance rules, our system provides a visual tool,
XML Form Designer, and the model of the as-
sistance rules is very simple. In addition, our
system is extensible in terms of vocabulary for
events and actions. When new terms for events
and actions are needed, it is easy to add them
into our system. Such enrichment of the vocab-

738 IPSJ Journal Mar. 2003

ulary will enhance the value of our system.
We now present a rough comparison of the

productivity of our method and a conventional
Web programming style. It is not easy to pre-
cisely evaluate the productivity of assistance
function development, because the productiv-
ity heavily depends on the developers’ program-
ming skills.

A total of 26 assistance rules are included in
the source ARML rule file for the Web form
shown in Fig. 2, and approximately 1,000 lines
of JavaScript code, implementing the assistance
functions, are embedded in the HTML docu-
ment for the Web form. The program size for
the assistance engine depends on what types of
action are used in the rule set, and the program
size for the monitoring engine depends on what
types of event are used in the rule set. The
amount of glue code is proportional to the num-
ber of assistance rules in the rule set, and only
a few lines of glue code are needed for one assis-
tance rule. In our experience, the ARML com-
piler generally outputs from several hundred to
fifteen hundred lines of JavaScript code. A pro-
gram of such a size generally takes a few weeks
to develop in conventional script programming
style, though, as just mentioned, it heavily de-
pends on the programmer’s skill. Even when a
developer uses a commercial product for Web
page design, such as Microsoft FrontPage or
IBM Homepage Builder, the development cost
of assistance functions will not be greatly re-
duced. This is because such products provide
environments for script programming, but the
environment cannot greatly reduce the amount
of actual programming.

By defining assistance rules visually with
the XML Form Designer, the assistance func-
tions are automatically generated from the rules
without any programming. In our experience,
one assistance rule can be defined in several
minutes. Therefore, only a few hours are
needed to define the assistance rule set for one
Web form. In fact, only 90 minutes were needed
to develop the Web form shown in Fig. 2.

XML Form Designer is designed to work col-
laboratively with XML Form Engine. When
developers use XML Form Engine, Web-form
generation is performed automatically by using
the XSLT stylesheets and ARML rule files gen-
erated from the XML Form Designer. Hence
the developers do not need to write many lines
of codes to generate the Web forms. In addi-
tion, XML Form Engine automatically stores

input values into XML documents and sends
them to applications by giving input-value-
transformation rules generated by XML Form
Designer. Therefore, developers do not have to
write many lines of code to store input values in
XML documents. For example, the Web form
shown in Fig. 2 contains 41 input fields, and
approximately 1,000 lines of code are needed
if our tool is not used (many lines of code are
usually needed for DOM tree traversal in XML
programming).

Therefore the prototype system allows devel-
opers to greatly reduce the cost of assistance
function development.

6.2 Performance
We evaluated the performance of both a gen-

erated assistance agent on a client PC and
server-side Web form generation.

For the evaluation we used five Web forms,
including the Web form in Fig. 2, as generated
by the prototype system on a PC with a Pen-
tium II 450 MHz CPU. In the results, we could
not detect the overhead of the assistance agents
working in the Web browsers. This is because
the rule compiler in our system generates assis-
tance agents as JavaScript programs that im-
plement behaviors defined by assistance rules.
Therefore, the behavior of the assistance agents
are is hard-coded as JavaScript, and run-time
rule evaluations are not performed on the client
PCs.

Web forms can be generated from the XML,
XSLT, and ARML files at design time when the
Web forms are static. However, Web applica-
tions may have to generate a Web form on the
fly at run time when the Web form depends on
users’ choices or on a previous form’s input val-
ues. If Web forms are generated on the fly and
the generation times are long, then users will
have to wait for a long time before their Web
browsers can display the forms. For this reason,
we were concerned to evaluate the performance
of our implementation of the XML Form En-
gine.

A form’s generation time depends on the con-
tents of the three source files: the XML doc-
ument, the XSLT stylesheet, and the ARML
rule file. For initial testing, we used the Web
form shown in Fig. 2. The source XML docu-
ment for this form includes 41 elements, and
the source XSLT stylesheet includes 32 tem-
plate rules. The Web form generated from those
files includes 34 input fields. The source ARML
rule file includes 26 assistance rules, and gen-

Vol. 44 No. 3 Rule-Based Interactive Web Forms for Supporting End Users 739

Table 3 System configuration.

HW and SW Product Name, Spec.
CPU Intel Pentium II 450 MHz

Memory 384 MB
OS Windows 2000 Professional

Web Server IBM HTTP Server Ver.1.3.6
(Customized Apache 1.3)

Servlet Engine WebSphere Application Server
Ver.2.03.1

Java runtime IBM JDK 1.1.7

Table 4 Form generation time.

Item Time (msec.)
XSLT Processor 70.4

(Lotus XSL Ver.0.18.2)
ARML Compiler 40.5

Other 57.9
Total 168.8

erated approximately 1,000 lines of JavaScript
code. We generated the Web form 10 times on
the system described in Table 3, and Table 4
shows the average times for form generation.
In this evaluation, only one client was access-
ing the Web server.

Table 4 shows that the average form-
generation time is 168.8 milliseconds, includ-
ing 70.4 milliseconds for HTML generation in
the XSLT processor and 40.5 milliseconds for
JavaScript generation in the ARML compiler.
Therefore, the performance of our prototype
XML Form Engine is fast enough to generate
Web forms on the fly.

7. Conclusions and Future Work

This paper has explained mechanisms for de-
veloping Web forms with input assistance func-
tions. The assistance functions are defined as
a set of assistance rules, and each assistance
rule includes an event, conditions, and actions.
The assistance rules are transformed into a
JavaScript program by a software module called
a rule compiler, and the JavaScript program is
embedded into a Web form. The program mon-
itors a user’s operations on Web forms, and pro-
vides assistance functions according to events
and conditions defined in the assistance rules.

This paper also summarizes our prototype
system including a visual tool for defining as-
sistance rules and the presentation of a Web
form and a server-side software module for
generating a JavaScript program from the as-
sistance rules, producing an HTML-formatted
Web form from an XML document and an
XSLT stylesheet, and embedding the program

into the Web form.
The evaluation of the prototype system shows

that the productivity of Web form development
using the prototype system is much higher than
that of conventional Web form development us-
ing script programming. The system perfor-
mance of the prototype system was also evalu-
ated, and the results show that the prototype
system can generate Web forms fast enough for
practical use on a Web server.

There are two major future directions. One is
extension of the vocabulary used in the current
assistance rules. An assistance rule is based on
an event-action model, and words for the events
and actions are already defined. However, we
have not evaluated the vocabulary by using gen-
erated Web forms with real users. When the
system is evaluated with actual users, some of
the current events and actions will be removed
or updated, and the vocabulary of assistance
rules will become more sophisticated. In addi-
tion, by collecting logs of many users’ behavior,
statistical analysis can be performed to find out
how users behave when they encounter prob-
lems. The other direction of future work is ab-
straction of the assistance rules to support mul-
tiple devices such as PDAs and cellular phones.
Some vocabulary items of the current assistance
rule are designed on the assumption that end
users use JavaScript-enabled Web browsers on
PCs. However, devices other than PCs, such as
PDAs and cellular phones should also be sup-
ported. To support such devices, abstractions
of the assistance rules are needed to remove lan-
guage and device dependencies. In addition,
multiple rule compilers will also be needed. For
example, a rule compiler for Web browsers on
PCs generates a JavaScript program, but an-
other rule compiler for Web browsers on cellu-
lar phones will generate a server-side program
to provide the same assistance. These compo-
nents will ultimately be provided as a frame-
work for developing user supportive Web sites
for multiple devices.

Acknowledgments The authors would
like to thank Ryo Yoshida for his support for
this project.

References

1) Aoki, Y., Shinozaki, M. and Nakajima, A.:
Creating Interactive Web Forms from XML
Documents, Proc. XML 2000, pp.54–68 (2000).

2) Aoki, Y., Ando, F. and Nakajima, A.: Cre-
ating Web-based Presentations by Demonstra-

740 IPSJ Journal Mar. 2003

tion, IPSJ Journal, Vol.42, No.2, pp.155–165
(2001).

3) Aoki, Y.: Building a Collaborative Web Envi-
ronment for Supporting End Users, IPSJ Jour-
nal, Vol.43, No.2, pp.530–542 (2002).

4) Apparao, V., Byrne, S., Champion, M., Isaacs,
S., Jacobs, I., Hors, A.L., Nicol, G., Robie, J.,
Sutor, R., Wilson, C. and Wood, L.: Document
Object Model (DOM) Level 1 Specification Ver-
sion 1.0, W3C Recommendation (1998). Avail-
able at http://www.w3.org/TR/REC-DOM-
Level-1/.

5) Barr, A. and Feigenbaum, E.: The Handbook
of Artificial Intelligence, Volume I, Addison-
Wesley, MA (1986).

6) Bergsten, H.: Java Server Pages, O’Reilly &
Associates, MA (2000).

7) Boyer, J., Bray, T. and Gordon, M.: Extensi-
ble Forms Description Language (XFDL) 4.0,
W3C Note (1998). Available at
http://www.w3.org/TR/NOTE-XFDL/.

8) Bray, T., Paoli, J. and Sperberg-McQueen,
C.M. (Ed.): Extensible Markup Language
(XML) 1.0, W3C Recommendation (1998).
Available at http://www.w3.org/TR/REC-
xml/.

9) Clark, J.: XSL Transformations (XSLT) Ver-
sion 1.0, W3C Recommendation (1999). Avail-
able at http://www.w3.org/TR/xslt/.

10) Cloyd, M.H.: Designing User-Centered Web
Applications in Web Time, IEEE Software,
pp.62–69 (2001).

11) Cranor, L., Langheinrich, M., Marchiori, M.,
Presler-Marshall, M. and Reagle, J.: The Plat-
form for Privacy Preferences 1.0 (P3P1.0)
Specification, W3C Recommendation (2002).
Available at http://www.w3.org/TR/P3P/.

12) Cypher, A. (Ed.): Watch What I Do: Pro-
gramming by Demonstration, The MIT Press,
MA (1993).

13) Dubinko, M., Dietl, J., Klotz, L.L., Jr., Mer-
rick, R. and Raman, T.V.: XForms 1.0, W3C
Candidate Recommendation (2002). Available
at http://www.w3.org/TR/xforms/.

14) Dyche, J.: The CRM Handbook: A Business
Guide to Customer Relationship Management,
Addison-Wesley, MA (2001).

15) Fisher, G.L., Busse, D.E. and Wolber, D.A.:
Adding Rule-Based Reasoning to a Demon-
strational Interface Builder, Proc. UIST ’92,
pp.89–97 (1992).

16) Girgensohn, A. and Lee, A.: Seamless Integra-
tion of Interactive Forms into the Web, Proc.
6th Intl. World Wide Web Conf., pp.1531–1542
(1997).

17) Goodman, D.: Dynamic HTML: The Defini-
tive Reference, O’Reilly & Associates, MA

(1998).
18) Graham, I.S.: HTML Stylesheet Sourcebook,

John Wiley & Sons, NY (1997).
19) Grant, L.: Customer Service Shortfall Hits

Net Sales, USA Today (June 1, 1999).
20) Gundavaram, S.: CGI Programming on the

World Wide Web, O’Reilly & Associates, MA
(1996).

21) Hartman, P., Bezos, J., Kaphan, S. and
Spiegel, J.: Method and System for Placing a
Purchase Order via a Communication Network,
United States Patent 5,960,411 (1999).

22) Hunter, J. and Crawford, W.: Java Servlet
Programming, 2nd Edition, O’Reilly & Asso-
ciates, MA (2001).

23) Kobayashi, M., Shinozaki, M., Sakairi, T.,
Touma, M., Daijavad, S. and Wolf, C.: Collab-
orative Customer Services Using Synchronous
Web Browser Sharing, Proc. CSCW ’98, pp.99–
108 (1998).

24) Kristensen, A.: Formsheets and the XML
Forms Language, Proc. 8th Intl. World Wide
Web Conf., pp.111–123 (1999).

25) Lieberman, H. (Ed.): Your Wish is My
Command: Programming by Example, Morgan
Kaufmann, CA (2001).

26) Lohse, G.L. and Spiller, P.: Electronic Shop-
ping, Comm.ACM, Vol.41, No.7, pp.81–88
(1998).

27) Maruyama, H., Tamura, K. and Uramoto, N.:
XML and Java: Developing Web Applications,
Addison-Wesley, MA (1999).

28) Meyer, E.: Cascading Style Sheets: The Defini-
tive Guide, O’Reilly & Associates, MA (2000).

29) Moriyon, R., Szekely, P. and Neches, R.: Auto-
matic Generation of Help from Interface Design
Model, Proc. CHI ’94, pp.225–231 (1994).

30) Myers, B.A.: Creating User Interfaces Using
Programming by Example, Visual Program-
ming and Constraints, ACM Trans.Prog.Lang.
Syst., Vol.12, No.2, pp.143–177 (1990).

31) Myers, B.A. and Rosson, M.B.: Survey on
User Interface Programming, Proc. CHI ’92,
pp.195–202 (1992).

32) Myers, B.A., McDaniel, R.G. and Kosbie,
D.S.: Marquise: Creating Complete User Inter-
faces by Demonstration, Proc. INTERCHI ’93,
pp.293–300 (1993).

33) Nardi, B.A.: A Small Matter of Programming,
The MIT Press, MA (1993).

34) Pixley, T.: Document Object Model (DOM)
Level 2 Events Specification Version 1.0,
W3C Recommendation (2000). Available at
http://www.w3.org/TR/DOM-Level-2-Events/.

35) Ousterhout, J.K.: Tcl and the Tk Toolkit,
Addison-Wesley, MA (1994).

36) Raggett, D., Hors, A.L. and Jacobs, I. (Ed.):

Vol. 44 No. 3 Rule-Based Interactive Web Forms for Supporting End Users 741

HTML 4.01 Specification, W3C Recommenda-
tion (1999). Available at
http://www.w3.org/TR/html4/.

37) Shneiderman, B.: Direct Manipulation: A
Step Beyond Programming Languages, IEEE
Computer, Vol.16, No.8, pp.57–69 (1983).

38) Sukaviriya, P.: Dynamic Construction of An-
imated Help for Application Context, Proc.
ACM SIGGRAPH Symposium on User Inter-
face Software, pp.190–202 (1988).

39) Sukaviriya, P. and Foley, J.D.: Coupling a
UI Framework with Automatic Generation of
Context-Sensitive Animated Help, Proc. UIST
’90, pp.152–166 (1990).

40) Tai, H. and Yamamoto, G.: An Agent Server
for the Next Generation of Web Applications,
Proc. 11th Intl. Workshop on Database and Ex-
pert Systems Applications (DEXA’00), pp.717–
721 (2000).

41) Tanaka, Y.: IntelligentPad as Meme Media
and Its Application to Multimedia Database,
Information and Software Technology, Elsevier
Science, Netherlands, Vol.38, No.3, pp.201–211
(1996).

42) Thistlewaite, P. and Ball, S.: Active FORMs,
Proc. the 5th Intl. World Wide Web Conf.,
pp.355–1364 (1996).

43) Tuck, R. and Olsen, D.R.: Help by Guided
Tasks: Utilizing UIMS Knowledge, Proc. CHI
’90, pp.71–78 (1990).

44) Yamamoto, G. and Nakamura, Y.: Architec-
ture and Performance Evaluation of a Massive
Multi-agent System, Proc. Autonomous Agents
’99, pp.319–325 (1999).

45) Wells, N. and Wolfers, J.: Finance with a Per-
sonalized Touch, Comm. ACM, Vol.43, No.8,
pp.31–34 (2000).

46) Wiecha, C., Bennett, W., Boise, S. and Gould,
J.: Generating Highly Interactive User Inter-
faces, Proc. CHI ’89, pp.277–282 (1989).

(Received April 30, 2002)
(Accepted November 5, 2002)

Yoshinori Aoki received the
B.E., M.E., and Ph.D. degrees in
Computer Science from Kyushu
University, Fukuoka, Japan, in
1995, 1997, and 2003. In 1997,
he joined Tokyo Research Lab-
oratory, IBM Japan, Ltd. He

has worked on Web-based interactive system
designs in the laboratory. His research in-
terests include human-computer interaction,
XML, and distributed systems. He is a member
of the ACM and the IEEE CS.

Masahide Shinozaki re-
ceived the B.E. degree in in-
formation science in 1988 and
the M.E. degree in information
science and electronics in 1990
from the University of Tsukuba.
He joined IBM Japan in 1990.

He worked in IBM Research, Tokyo Research
Laboratory from 1990 to 2000. He moved to
IBM Global Services from March, 2000. His re-
search interests include human-computer inter-
action and synchronous collaboration systems.

Amane Nakajima received
the B.E. degree in electronic en-
gineering in 1983 and the M.E.
degree in electrical engineering
in 1985 from the University of
Tokyo. He joined IBM Japan in
1985. He has worked in IBM

Research, Tokyo Research Laboratory for 15
years. Currently, he is the Managing Consul-
tant in IBM Global Services. His research inter-
ests include human interaction systems and dis-
tributed systems. He received the Best Paper
Award from the Institute of Electronics, Infor-
mation and Communication Engineers of Japan
in 1987. He is a member of the IEEE and the
Association for Computing Machinery.

