
Vol. 44 No. 5 IPSJ Journal May 2003

Technical Note

A Note on Homomorphic Representation of

Recursively Enumerable Languages with Insertion Grammars

Kaoru Onodera†

In this note we obtain some representation theorems for recursively enumerable languages
by using insertion systems and morphisms. Specifically, we show that for any recursively
enumerable language L, there effectively exist an insertion system γ and homomorphisms
h1, h2 such that L = h1h−1

2 (L(γ)), where γ is of weight (3, 3). This result remarkably
improves an existing one where the corresponding insertion system is of weight (4, 7).

1. Introduction

DNA computing theory involves the use of in-
sertion and deletion operations. Intuitively, for
a given string xuvy, an insertion operation with
context (u, w, v) produces a new string xuwvy.
Conversely, for a string xuwvy, a deletion op-
eration with context (u, w, v) produces a new
string xuvy.

In this paper, using only insertion operations,
we consider the generative power of insertion
systems. We focus on characterising recursively
enumerable languages by using insertion sys-
tems and some morphisms.

There have been a number of homomorphic
characterizations for classes of languages. As a
negative result, there exists no regular language
L0 such that for each regular language L, L =
h1(h−1

2 (L0)), where h1, h2 are morphisms 4).
For the class of context-free languages, there
exist fixed context-free language L0 and mor-
phisms h1, h2 such that L = h1(h−1

2 (L0)) 5).
A traditional topic in insertion systems has

been the representation of the class of recur-
sively enumerable languages by simple oper-
ations on a small subclass of it. Geffert 1)

has shown that each recursively enumerable
language L ⊂ Σ∗ can be expressed as L =
{h1(h−1

2 (x))| x ∈ Γ+}∩Σ∗, where Γ is an alpha-
bet and h1, h2 is a pair of morphisms. By using
insertion systems, the following representation
is known 2): for any recursively enumerable lan-
guage L, there exist an insertion system γ and
morphisms h1, h2 such that L = h1h

−1
2 (L(γ)),

where γ is of weight (4, 7). In this paper, we im-
prove the result in a remarkable way, and show
that in the representation L = h1h

−1
2 (L(γ)), γ

† Graduate Course of Mathematics Education, School
of Education, Waseda University

can be simplified to be of weight (3, 3).

2. Preliminaries

An insertion system (ins system, for short)
is a triple γ = (V, P, S), where V is an alpha-
bet, S is a finite set of strings over V called
axioms, and P is a finite set of insertion rules
of the form (u, x, v), where u, x, v ∈ V ∗. We
define a relation ⇒ on V ∗ by w ⇒ z iff w =
w1uvw2 and z = w1uxvw2 for some insertion
rule (u, x, v) ∈ P , w1, w2 ∈ V ∗. If there is a
danger of confusion, we write ⇒γ . As usual,
⇒∗ denotes the reflexive and transitive closure
of ⇒. A language generated by γ is denoted by
L(γ) = {w ∈ V ∗| s ⇒∗ w, s ∈ S}.

An insertion system γ = (V, P, S) is said to
be of weight(m, n) iff

m = max{lg(x)| (u, x, v) ∈ P},
n = max{lg(u)| (u, x, v) ∈ P or

(v, x, u) ∈ P},
where lg(x) denotes the length of x. By INSn

m,
we denote the family of all languages generated
by ins systems of weight (m′, n′), where m′ ≤
m and n′ ≤ n. When the parameter is not
bounded, we replace m or n with ∗.

The classes of finite, context-free, context-
sensitive, and recursively enumerable languages
are denoted by FIN, CF, CS, and RE, respec-
tively.

3. Main Result

The characterization of recursively enumer-
able languages is now sharpened into the fol-
lowing form originally established in Ref. 2).

Theorem 1 For each recursively enumer-
able language L, there exist a morphism h, a
weak coding g, and a language L′ ∈ INS3

3 such
that L = g(h−1(L′)).
Proof. Consider a recursively enumerable lan-

1424

Vol. 44 No. 5 A homomorphic representaiton of recursively enumerable languages 1425

guage L over T ∗, generated by a type-0 Chom-
sky grammar G = (N, T, P, S) in the Penttonen
normal form. In this normal form, the rules in
P are of the following types:
• type 1

X → x, where X ∈ N, x ∈ (N ∪
T)∗, lg(x) ≤ 2,

• type 2
XY → XZ, where X, Y, Z ∈ N .

Consider new symbols #, c and construct an
insertion system γ = (N∪T∪{#, c}, P ′, {Scc}),
where P ′ contains the following insertion rules:
• Group 1

For each rule r : X → Y Z ∈ P of type
1, with X ∈ N, Y, Z ∈ N ∪ T ∪ {λ}, we
construct the following insertion rule:
(r1) (X, #Y Z, α1α2), where α1α2 ∈ (N ∪
T ∪ {c})2.

• Group 2
For each rule r : XY → XZ ∈ P of type 2,
with X, Y, Z ∈ N , we construct the follow-
ing insertion rule:
(r2) (XY, #Z,α1α2), where α1α2 ∈ (N ∪
T ∪ {c})2.

• Group 3 (Relocation task for X)
For each X, Y ∈ N ∪ T , we construct the
following insertion rules:
(r3) (XY #,#X, α), where α ∈ (N ∪ T ∪
{c}),
(r4) (X, #, Y ##),
(r5) (#Y #, Y, #X).

Consider the symbol ax for each string x ∈
V {#}, where V = N ∪ T . Let A be the set of
ax symbols.

We define a morphism h : (A ∪ T ∪ {c})∗ →
(N ∪ T ∪ {#, c})∗ by

h(ax) = x, x ∈ V {#},
h(b) = b, b ∈ T,

h(c) = c.

We also define a weak coding g : (A ∪ T ∪
{c})∗ → T ∗ by

g(ax) = λ, x ∈ V {#},
g(b) = b, b ∈ T,

g(c) = λ.

We then obtain L(G) = g(h−1(L(γ))), which
will be proved in the sequel.

We call the symbol # a marker. A symbol
in V (= N ∪ T) followed by # is said to be #-
marked (marked, for short). A symbol in V
which is not marked is said to be unmarked.
Since the symbols c and # are special sym-
bols, they are neither marked nor unmarked.

A string xcc, where x is in (V {#}∪N ∪T)∗, is
a legal string.

Intuitively, a marked symbol means that the
symbol has been used for some derivation. At
each step, an unmarked symbol of a legal string
corresponds to a sentential form of G. Marked
symbols and the markers are considered wrecks
for some derivations. From the definitions of
h and g, we get legal strings; if we erase the
wrecks and the symbol c, then we get unmarked
symbols of the legal strings.

By using the rules of groups 1 and 2, we can
simulate rules of types 1 and 2 respectively. By
using the rules of group 3, we move an un-
marked symbol to the right across a block M#,
where M ∈ N ∪ T . Thus we can create non-
terminal pairs, which are needed for simulating
rules of type 2. When we use the rules of group
3 repeatedly, we can relocate all the blocks M#
in the left of the string.

In order to prove the equality L(G) =
g(h−1(L(γ))), we first prove the inclusion
L(G) ⊆ g(h−1(L(γ))).

Fact 1 For the rule r1 : (X, #Y Z, α1α2),
the symbol X is unmarked before the derivation
but marked after the derivation. The symbols
Y, Z are unmarked after the derivation.

Fact 2 For the rule r2 : (XY, #Z,α1α2),
the symbol X is unmarked before and after the
derivation. The symbol Y is unmarked before
the derivation, but marked after the derivation.
The symbol Z is unmarked after the derivation.

Lemma 1 The rules in group 3 can replace
a substring XY #α (α ∈ N ∪ T ∪ {c}) by a
substring consisting of the strings in V {#} and
ending with Xα, where V = N ∪T . The symbol
X is unmarked before and after the derivations.
Proof. Rule r3 can be applied to a string
XY #α, where X, Y ∈ N ∪ T , α ∈ N ∪ T ∪ {c}.
After applying rule r3, we have XY ##Xα.
Then rule r4 can be applied for the substring
XY ##, and we have X#Y ##Xα. Now we
apply rule r5 for the substring #Y ##X, and
the substring is replaced by #Y #Y #X.
Therefore, the substring XY # is replaced by
X#Y #Y #X, which has the unmarked symbol
X in the rightmost position. (q.e.d.)

Thus the insertion rules in γ simulate the
rules in G, and generate legal strings from the
legal string Scc.

Denote by umk(x) a string consisting of un-
marked symbols in a legal string x generated
by γ. Note that since c is a special symbol, nei-
ther marked nor unmarked, umk(x) does not

1426 IPSJ Journal May 2003

contain a suffix cc. We thus we have the next
lemma:

Lemma 2 If S derives x in G, then there
exists a derivation Scc ⇒∗

γ x′ in γ such that
umk(x′) = x.
Proof. We prove the lemma by induction on
the derivation steps in G. Consider a derivation
S ⇒n

G x in G.
If n = 0, then for the axiom Scc in γ,
umk(Scc) = S, and thus the claim holds.
We suppose that the claim holds for any n ≤ k.
Now consider a derivation S ⇒k

G x ⇒G y.
From the induction hypothesis, there exists a
derivation in γ such that Scc ⇒∗

γ x′, where
umk(x′) = x. If the rule applied for x is of type
1 or 2, then we use the corresponding insertion
rule in group 1 or 2 respectively for the string
x′. However, in the latter case, if the insertion
rule in group 2 cannot be applied for x′, we need
to apply some rules in group 3. From Lemma
1, after application of the rules in group 3, no
unmarked string of a legal string changes. We
denote this derivation by x′ ⇒∗ x′′ ⇒ y′, where
x′′ is derived by using rules r3, r4, r5 in group
3 and y′ is derived by using a rule in group 1
or 2. Note that umk(x′) = umk(x′′). Then, in
either case, from Facts 1 and 2 we eventually
have umk(y′) = y.
Therefore the claim holds for k + 1. (q.e.d)

In view of the manner of constructing the
morphisms g, h, we have the following fact:

Fact 3 For some y ∈ L(γ), if an equation
x = g(h−1(y)) holds, then y is legal and x =
umk(y), where x ∈ T ∗, y ∈ ({N#} ∪ T)∗{cc}.
And if y ∈ L(γ) and umk(y) ∈ T ∗, then
umk(y) = g(h−1(y)).

From Lemmas 1 and 2 and Fact 3, we obtain
the inclusion L(G) ⊆ g(h−1(L(γ))).

Next we prove the inverse inclusion.
Fact 4 From the constructions, the rules in

groups 1 and 2 can only simulate rules of types
1 and 2 respectively in G on unmarked symbols.

We will give separate consideration to the
case of using the rules in group 3.

Lemma 3 Once we apply the rule r3 to ob-
tain a substring of a legal string, we have to use
the rules r4 and r5 in this order.
Proof. Let us consider a substring XY #α,
where X, Y ∈ N ∪ T and α ∈ N ∪ T ∪ {c}.
After using rule r3, we obtain XY ##Xα. Be-
cause of the symbols ##, rules r1, r2, r3 cannot
be applied for the symbols X or Y that are fol-
lowed by ##. In view of the form of rule r5, we
cannot apply r5 for XY ##. Hence, the only

applicable rule for XY ## is r4.
For the symbol X following ##, we have a
chance to apply one of the rules r1, r2, r3, and
r4. If we apply r1 or r2, we may take it as the
first step of simulation for type 1 or 2 respec-
tively. Note that, during these simulations, X
remains immediately to the right of ##. If we
apply r3 or r4, we may take it independently as
a new relocation task. Note that, after applica-
tion of r3 or r4, X remains immediately to the
right of ##. Therefore, in all cases the symbol
is followed by X. Further, since the sym-
bol X was originally unmarked in XY #α, X
provides the possibility of applying one of the
rules r1, r2, r3, r4. Hence this application causes
no trouble with the current relocation task.
After using rule r4 for XY ##, we obtain
X#Y ##. From the above notation, since X
always follows the symbols ##, after apply-
ing r4, we obtain X#Y ##X. In the substring
X#Y ##, both of the symbols X and Y are
already marked and, in view of the form of the
rules, none of r1, r2, r3, r4 can be used for this
substring. Hence, the only applicable rule for
X#Y ##X is r5. After applying this rule, we
have X#Y #X#X, which is the substring of a
legal string.
Hence, to obtain a substring of a legal string,
whenever we use rule r3, we have to use r4 and
r5 in this order. (q.e.d)

From Fact 4, Lemma 3, and a similar argu-
ment in the proof of Lemma 2, every string of
a form umk(xcc) is generated by the grammar
G, where xcc is a legal string generated by γ.

We now return to the proof of Theorem 1.
If h−1 is defined for some y′ ∈ L(γ) and
y′ ∈ ({V #} ∪ T)∗{cc}, where V = N ∪ T ,
then there exists a string y = h−1(y′) such
that S ⇒∗

G g(y). This means that the inclusion
g(h−1(L(γ))) ⊆ L(G) holds, which completes
the proof of Theorem 1. (q.e.d)

Consider the following regular language R =
{(α#)∗β| α ∈ (N ∪ T), β ∈ T ∗}{cc}. On the
basis of the above theorem, we obtain

Corollary 1 Each recursively enumerable
language L can be written as follows: L = g(R∩
L′), where g is a weak coding, R is a regular
language, and L′ ∈ INSn

m, for m ≥ 3, n ≥ 3.

4. Conclusions

This paper is motivated by Ref. 2), in which
it is proved that for each language L ∈ RE,
there are a morphism h, a weak coding g, and a
language L′ ∈ INS7

4 such that L = g(h−1(L′)).

Vol. 44 No. 5 A homomorphic representaiton of recursively enumerable languages 1427

In Ref. 2), an insertion system simulates the
Kuroda normal form, and introduces two dif-
ferent marker symbols # and $, while in our
paper we started with the Penttonen normal
form, which enables us to simulate rules of type
2 (i.e, context-sensitive rules), and reduce the
number of insertion rules, as well as the length
of context checking. By introducing a single
new marker symbol # with suffix cc, we were
able to remarkably improve the parameters of
the weight from (4, 7) to (3, 3).

The following results exist for families of in-
sertion languages 3):
• FIN ⊂ INS0

∗ ⊂ INS1
∗ · · · ⊂ INS∗

∗ ⊂ CS.
• INS1

∗ ⊂ CF .
CF is incomparable with all INSn

∗ (n ≥ 2),
and INS∗

∗ .
INS2

2 contains non-semilinear languages.
Further, there exists a fact that CF is closed

under inverse morphisms and any morphisms.
On the basis of these facts, for the insertion
language L′ in the representation of RE, the
weight of an insertion system γ cannot be (n, 0)
or (n, 1) for any n ≥ 1. It is an open problem
whether the insertion system of weight (n, 2),
for some n ≥ 1, can express RE in such a form.

Acknowledgments I would like to express
my thanks to T. Yokomori for discussions and
suggestions.

References

1) Geffert, V.: A representation of recursively
enumerable languages by two homomorphisms
and a quotient, Theoretical Computer Science,
Vol.62, pp.235–249 (1988).

2) Martin-Vide, C., Păun, G. and Salomaa,
A.: Characterizations of recursively enumer-
able languages by means of insertion gram-
mars, Theoretical Computer Science, Vol.205,
pp.195–205 (1998).

3) Păun, Gh., Rozenberg, G. and Salomaa, A.:
DNA Computing, Springer-Verlag (1998).

4) Salomaa, A.: Jewels of Formal Language The-
ory, Computer Science Press, Inc. (1981).

5) Yokomori, T.: On purely morphic character-
izations of context-free languages, Theoretical
Computer Science, Vol.51, pp.301–308 (1987).

(Received November 5, 2002)
(Accepted February 4, 2003)

Kaoru Onodera was born
in Tokyo. She graduated from
Department of Mathematics,
School of Education, Waseda
University in 2000 and received
her M.S. degree in 2002. Since
then, she has been in the doc-

toral program at Graduate School of Education,
Waseda University. Her current research inter-
ests include the theory of DNA computing and
formal language theory. She is a member of
IPSJ.

