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Improved fixed parameter algorithm for two-layer crossing
minimization

Yasuaki Kobayashi1,a) Hisao Tamaki2,b)

Abstract: We give an algorithm that decides whether the bipartite crossing number of a given graph is at most k. The
running time of the algorithm is 2O(k)nO(1), where n is the number of vertices of the input graph, which improves the
previous algorithm due to Kobayashi et al. (TCS 2014) that runs in 2O(k log k)nO(1) time. This result is based on a com-
binarotial upper bound on the number of two-layer drawings of a connected bipartite graph with a bounded crossing
number.

1. Introduction
A two-layer drawing of a bipartite graph is a drawing in which

the vertices in one color class are placed on a straight line, the
vertices in another color class are placed on another straight line
parallel to the first line, and each edge is drawn as a straight line
segment. The two parallel lines are called layers. A crossing in
a two-layer drawing is a pair of edges that intersect each other at
a point distinct from the two straight lines placing vertices. The
problem of finding a two-layer drawing with the minimum num-
ber of crossings, called two-layer crossing minimization (or sim-
ply TLCM), is dealt with as a combinatorial problem: the number
of crossings in a two-layer drawing is determined by the order of
vertices on each layer.

TLCM is shown to be NP-hard [2] and is solvable in polyno-
mial time for trees [6] and bipartite permutation graphs [7]. The
original proof in [2] shows, in fact, the hardness of TLCM for
multigraphs, however, recently [5] shows the hardness of TLCM
for simple graphs. TLCM has been studied from a parameterized
perspective. In this context, we are asked if there is a two-layer
drawing of a given bipartite graph with at most k crossings, where
k is the parameter for the paramerized problem. Dujimović et
al. [1] first show that this parameteried problem is fixed parame-
ter tractable. More precisely, they give an algorithm that decides
whether a given graph (not necessary bipartite) with n vertices has
an h-layer drawing with at most k crossings in 2O((h+k)3)n time (see
[1], for details). The current and two other authors [4] improve
the running time for the restricted case h = 2, namely TLCM,
to 2O(k log k) + nO(1). Moreover they, for the first time, show that
TLCM admits a polynomial kernelization. In this paper, we give
a faster fixed parameter algorithm for TLCM.
Theorem 1. There is an algorithm that decides whether a given
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bipartite graph has a two-layer drawing with at most k crossings
whose running time is 2O(k) + nO(1), where n is the number of ver-
tices of the input graph.

To establish Theorem 1, we analyze the number of two-layer
drawings whose crossing number is at most k and enumerate all
such drawings in the claimed running time. This strategy is in-
spired by the work of Gutin et al. [3]. They consider a parame-
terzed version of the linear arrangement problem and give a fixed
paramter algorithm for the problem. To this end, they analyze the
number of feasible solutions of the problem for a spanning tree
of the input graph. However, this analysis can not be applied to
TLCM. See Lemma 1.

2. Preliminaries
Let G be a bipartite graph with a prescribed bipartition, de-

noted by (X(G), Y(G)), of the vertex set. We denote by E(G) ⊆
X(G)×Y(G) the set of edges of G. We call a vertex of degree one
a leaf and the edge incident to the leaf a leaf edge. An edge that
is not leaf edge is called a non-leaf edge.

For a set S , a layout on S is a bijection f from S to
{1, 2, . . . , |S |}. A two-layer drawing D of G is a triple (G, fX , fY ),
where fX and fY are layouts on X(G) and Y(G), respectively. The
bipartite crossing number of D, denoted by bcr(D), is∑

(x,y)∈E(G)

|{(x′, y′) ∈ E(G) : fX(x) < fX(x′), fY (y′) < fY (y)}|.

The bipartite crossing number bcr(G) of G is the minimum k such
that there is a two-layer drawing D of G with bcr(D) = k.

3. Combinatorial upper bound
In this section, fix a connected bipartite graph G and an integer

k, we give an upper bound on the number of two-layer drawings
of G with at most k crossings. Let n = |X(G) ∪ Y(G)|. One may
notice that a trivial upper bound (n − 1)! is essentially tight since
K1,n−1 has (n−1)! different two-layer drawings without any cross-
ings. One would, however, also notice that all of those drawings
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are equivalent in a natural sense. More generally, it is straight-
forard to verify that, for every bipartite graph G, there is an op-
timal two-layer drawing of G in which all the leaves adajacent
to v appear consecutively in their layer for each non-leaf vertex
v. Therfore, we may treat such sibling leaves as a single leaf,
weighting the corresponding leaf edge by the number of repre-
sented leaves [4]. We call a pair of leaves a sibling pair, if they
have a common neighbor.
Lemma 1. Suppose G has no sibling pairs. Then, the number of
two-layer drawings of G with at most k crossings is 2O(n+k).

Proof. The lemma is trivial when |X(G)| = 1 or |Y(G)| = 1.
Hence we assume otherwise. Choose r ∈ X(G) arbitrarily and de-
fine a function T : X(G) \ {r} → X(G) that satisfies the following
conditions:
( 1 ) for each x ∈ X(G) \ {r}, there is a path Px of length two

between x and T (x) in G,
( 2 ) for each e ∈ E(G), |{x ∈ X(G) \ {r} : e ∈ E(Px)}| ≤ 2, and
( 3 ) (X(G), {{x,T (x)} : x ∈ X(G) \ {r}}) forms a tree.
The function T is defined as follows. Let H be a bipartite multi-
graph obtained from G by replacing each edge by two parallel
edges. Since every vertex in H has even degree and H is con-
nected, H has an eulerian tour. Then, we fix an eulerien tour
starting at r. For x ∈ X(G) \ {r}, we let T (x) be the vertex in X(G)
that is visited immediately after the last visiting of x in the tour.
It is easy to see that the function T satisfies condition 1 and 2.
Since (X(G), {{x,T (x)} : x ∈ X(G) \ {r}}) has |X(G)| − 1 edges
and, by the construction of T , has no cycles, condition 3 holds.
Fix a two-layer drawing D = (G, fX , fY ). For x ∈ X(G) \ {r}, we
define g(x) = | fX(x) − fX(T (x))| − 1. In words, g(x) is the number
of vertices of X(G) that lie between x and T (x) in D. Since G
has no sibling pairs, there is at most one leaf in X(G) adjacent to
y ∈ V(Px) ∩ Y(G). Observe that each edge incident to a vertex
counted by g(x) except for such a leaf (if it exists) makes a cross-
ing with an edge of Px. Considering double counts and the fact
that each edge belongs to at most two paths Px, x ∈ X(G), we
have

1
4

∑
x∈X(G)\{r}

(g(x) − 1) ≤ k.

Therefore, the number of possible functions g is at most 4k + 2n − 3
4k + n − 1

 ≤ 24k+2n−3.

By condition 3, fX is determined by the values of g(x) and the
signs of | fX(x) − fX(T (x))| for each x ∈ X(G) \ {r} and the value
of fX(r). Hence the number of possible layouts fX is bounded by
24k+2n−3 ·2n−1 ·n. Applying the same argument to Y(G) proves the
lemma. □

Fig. 1 An example of paths Px, Px′ , and Px′′ . The crossing is counted by
g(x), g(x′), and g(x′′).

The above proof immediately gives an algorithm that enumer-
ates all two-layer drawings of G with at most k crossings in 2O(n+k)

time provided G is connected and has no sibling pairs.

4. FPT algorithm
In this section, we will design a fixed parameter algorithm for

TLCM using the enumeration algorithm in the previous section.
Our fixed parameter algorithm uses a kernelization result due to
[4]. First, we define a slightly general problem of TLCM as fol-
lows. Consider a two-layer drawing of an edge weighted bipar-
tite graph. We assume that, in this paper, each edge has weight at
least one. The weight of a crossing is the product of the weights
of the crossing edges. The crossing number of the drawing is the
sum of the weights of all crossings in the drawing. The bipartite
crossing number of an edge weighted bipartite graph is defined
analogously. A leaf edge weighted graph is an edge weighted
graph where each non-leaf edge has weight exactly one. [4] gives
in fact a kernel for TLCM for leaf edge weighted bipartite graphs.
Theorem 2 ([4]). There is a polynomial time algorithm that,
given a connected bipartite graph G and an integer k, computes a
leaf edge weighted connected bipartite graph H such that H has
no sibling pairs, |E(H)| = O(k), and bcr(G) ≤ k if and only if
bcr(H) ≤ k.

Given a bipartite graph G and an integer k, we apply the algo-
rithm in Theorem 2 to each connected component of G. For each
output, by Lemma 1, the number of two-layer drawings with at
most k crossings is 2O(k). If one of the outputs has no such draw-
ings, the answer is negative. The bipartite crossing number of
each output can be computed in 2O(k) time by using the enumera-
tion algorithm in the previous section and hence Theorem 1 holds.
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