
IPSJ SIG Technical Report

航空乗務員スケジューリング問題に対する

列生成アプローチ

呉　偉1,a) 胡　艶楠1,b) 橋本　英樹1,c) 安藤　友人2,d) 白木　孝2,e) 柳浦　睦憲1,f)

Abstract:
In this paper, we consider the airline crew scheduling problem that calls for assigning the crew members in order to
cover all the flights with the minimum total workdays under the constraints that the schedule of each crew member
does not violate given constraints on the total working time, flying time, and the number of landings. In the real-world
applications, it is difficult to create an efficient schedule satisfying all the constraints. We formulate the problem as a
set covering problem and apply an LP-based column generation approach to generate a candidate set of schedules. We
propose a branch-and-cut method based upon a resource constrained dynamic programing for the column generation
procedure. Computational results are given for a number of large-scale instances with up to 10,000 flights.

1. Introduction

The crew scheduling problem frequently appears in real-world
applications, such as those in bus and rail transit industry. In this
paper, we consider an airline crew scheduling problem with a se-
ries of constraints and conditions particular to this industry. The
crew costs constitute a high proportion (up to 20%) of total airline
operation costs, and the number of airline flights increases with
globalization. For this reason, a small percentage saving amounts
to substantial reduction in expenses [1,3].

For example, a Japanese airline company developed a
knowledge-base system for crew scheduling in 1990, which cost
about $4 million to build. However, it got paid for itself in direct
cost savings only in about 18 months [8].

Several approaches for the airline crew scheduling problem
have been proposed in the literature, including exact algorithms
such as tree search [2], branch-and-cut [6], as well as heuris-
tic methods such as simulated annealing [4] and genetic algo-
rithms [7].

In this paper, we model the problem as a set covering problem
with costs of columns defined by the number of workdays, and
present an efficient method to find promising columns through a
graph representation that describes connections between flights,
where the size of the graphs are kept small by using the cost struc-
ture. To solve this problem, we propose a branch-and-cut method
based upon a resource constrained dynamic programming, which

1 Department ofComputer Science and Mathematical Informatics, Grad-
uate School of Information Science, Nagoya University, Nagoya, Japan

2 NEC Corporation
a) goi@co.cm.is.nagoya-u.ac.jp
b) yannanhu@nagoya-u.jp
c) hasimoto@nagoya-u.jp
d) t-andou@cq.jp.nec.com
e) t-shiraki@bu.jp.nec.com
f) yagiura@nagoya-u.jp

enables the algorithm to solve large-scale instances. Moreover,
regularity is exploited to quickly generate many columns just by
repeating itineraries. Such repeated itineraries are preferable so
that crew members will have a low risk of making mistakes in
duty time.

The rest of this paper is organized as follows: In Section 2,
we describe the crew scheduling problem in general, and we fur-
ther present some requirements and constraints that are particular
to current airline situation. In Section 3, we discuss a set cover-
ing model for this problem. In Section 4, a column generation
approach is given, which utilizes the branch-and-cut framework
and dynamic programing. Section 4 also proposes some ideas for
solving this set covering problem (SCP) efficiently. We provide
computational results and conclusion in Section 6.

2. Problem Description

First we give a few definitions for later description. Aflight

leg (sometimes also calledsegment) i is a single nonstop flight.
A pairing k is a sequence of flight legs that begins and ends at a
crew-base city, where the arrival airport of every flight leg in the
sequence coincides with the departure airport of the next flight
leg. A deadhead(DH) is a special flight leg such that the crew
member assigned to it flies as a passenger to transport to an air-
port in order to cover a flight leg or to return to the departure city
(crew base) at the end of a pairing.

Airline scheduling usually consists of five planning stages [5].
The last two stages, crew pairing and rostering, are usually re-
ferred to as crew scheduling problem.

As the input data of crew scheduling problem, a schedule con-
sisting of all flight legs or segments is provided before the crew
pairing stage. A number of constraints also have to be satisfied
for each pairing according to requirements from industrial appli-
cations. Each pairing has a cost associated with it. In our prob-

c⃝ 2015 Information Processing Society of Japan 1

Vol.2015-AL-151 No.3
2015/1/13

IPSJ SIG Technical Report

lem, we define the number of workdays as the cost of a pairing.
The objective of the crew pairing stage is to find a subset of all
feasible pairings with the minimum total cost such that the subset
contains every non-DH flight leg at least once (sometimes exactly
once depending on the model definition).

In the rostering stage, a monthly (or weekly) schedule that can
be operated by the crew is created by using the set of pairings
generated at the crew pairing stage. Such a monthly (or weekly)
schedule for the crew is called aroster. Although the exact num-
ber of crew members for the month (or week) becomes clear after
crew rostering, this number is roughly determined after the pair-
ing stage, and hence it is important to find a good solution in the
pairing stage.

In this paper, we concentrate on the approach for the crew pair-
ing stage.

2.1 Constraints for Pairing
Each airline company may have several basic and specific con-

straints for defining feasible pairings. The basic constraints are
listed as follows:

Basic Condition 1: The first departure city in a pairing has
to be the same as the last arrival city. In our problem, we define
such a city as Tokyo. It signifies that only the flight legs departing
from NRT or HND airport can be the first flight leg in a pairing.
Similarly, only the flight legs arriving at NRT or HND airport are
allowed to be the last flight leg.

Basic Condition 2: A specified time is required for a crew
member to transfer from a flight leg to the next one. In our for-
mulation, for any flight leg, its departure time has to be at least
30 minutes later than the arrival time of its previous flight.

Basic Condition 3: The duration of a pairing must not exceed
a specified limit on the number of workdays, usually 4-6 days. In
our model, we assume that each crew member is unable to work
more than 5 days, which means that the maximum number of
workdays in a pairing is 5. Note that in our formulation, the cost
of a pairing is defined to be the number of workdays, and hence
each pairing has a cost of at most 5. As in many papers in the lit-
erature, we also have constraints regarding the aircraft types; we
restrict our attention to a single aircraft type in our scheduling.

Before explaining specific constraints, we give several defini-
tions. Aninterval time tis defined as the time between the arrival
and departure of two adjacent flight legs in a pairing, andt has
to be at least 30 minutes as discussed above. Abreak period tis
defined as a short interval time satisfying 30≤ t < 870. If an
interval timet is above or equals to 870 minutes, it is regarded as
asleep period. A duty periodconsists of a sequence of flight legs
without sleep periods between them, i.e., sleep periods divide a
pairing into duty periods. The flying time of a duty period is the
sum of actual flying times of the flights in the duty period except
for the flying times in deadhead flights. The maximum flying
time fk of a pairingk is the maximum flying time among all the
flying times of the duty periods in pairingk. The working time
of a duty period is the total working hours in the duty period. A
break period also contributes to the working time by the duration
of the break period when it is less than 330 minutes; otherwise,
it is counted as a constant working time of 90 minutes. The time

for a crew member to board a deadhead flight is also counted as a
part of working time. The maximum working timewk of a pairing
k is the maximum working time among all the working times of
the duty periods in pairingk. A landing number of a duty period
is the total number of landings in the duty period. The maximum
landing numberlk of a pairingk is the maximum landing number
among all the landing numbers of the duty periods in a pairing
k. For convenience, we definePall to be the set of all feasible
pairings.

We define three additional constraints as follows:
Specific Constraint 1: fk ≤ Nfmax for all k ∈ Pall;
Specific Constraint 2: wk ≤ Nwmax for all k ∈ Pall;
Specific Constraint 3: lk ≤ Nlmax for all k ∈ Pall,
where Nfmax, Nwmax and Nlmax are given upper bounds on the

maximum flying time, the maximum working time and the max-
imum number of landing, respectively, which are set toNfmax =

720,Nwmax = 810 andNlmax = 5 in this paper.
A solution to the the crew scheduling problem is considered

feasible only when all the pairings selected by the solution sat-
isfy all the above mentioned constraints, and all the non-deadhead
flight legs are covered by the selected pairings. Note that even
though the model in this section was formulated based on real-
world data from a company and is quite complicated, some of
the constraints are simplified from real ones and the parameter
values are not necessarily the same as those in the real-world ap-
plications.

2.2 Instances
All the computational experiments in this paper are conducted

on four instances, named I, II, III and IV, that were generated
based on real-world flight data. For I, II and IV, we aim to solve
a half-month airline crew scheduling problem. For convenience,
we assume that the time horizon of every instance from I, II and
IV consists of 21 days with all the flight legs in the first and the
last 3 days specified as deadhead. These deadheads in the begin-
ning and ending help to cover the target flights in the middle core
days. Instance III is a monthly flight data that is also sandwiched
by 3 days with only deadheads before and after the core period.
The information of the instances is shown in Table 1.

Table 1 Instance Information
Instance #Days #DummyDays #AllFlights #DeadHead
I 21 6 918 324
II 21 6 2203 651
III 36 6 2214 324
IV 21 6 11560 3400

3. Set Covering Model

Our algorithm solves the crew pairing problem in two steps:
the first stage generates feasible pairings, and the second stage
selects a good subset of these pairings to cover all the flight legs.
In most cases, it is impractical to generate all the feasible pair-
ings in the first stage, since the number of such pairings grows
exponentially with the number of flight legs. To deal with this,
we propose a column generation approach that will be discussed
in Section 4. The second stage can be modeled as a set covering

c⃝ 2015 Information Processing Society of Japan 2

Vol.2015-AL-151 No.3
2015/1/13

IPSJ SIG Technical Report

or set partitioning problem. Since deadheads are allowed in our
crew scheduling problem, our objective is to find a set of pairings
with minimum cost such that each flight leg is covered by at least
one pairing. This problem can be formulated as a set covering
problem SCP(P) as follows:

min
∑
k∈P

ckxk

s.t.
∑
k∈P

aikxk ≥ 1, ∀i ∈ Fall

xk ∈ {0,1}, ∀k ∈ P,

whereP is a subset ofPall andFall is the set of all non-deadhead
flight legs. The binary decision variablexk is a 0-1 variable as-
sociated with thekth pairing. If the pairingk is selected, then
xk = 1, and otherwisexk = 0. The binary valueaik equals 1
when pairingk covers flight legi, otherwise,aik = 0. The cost
c j is the number of workdays in pairingj. WhenP = Pall holds,
the problem SCP(Pall) becomes the original problem of finding
an optimal set of pairings.

4. Column Generation Approach

Compared with the straightforward method of enumerating all
the feasible pairings, a column generation approach has an ad-
vantage that it provides an optimal solution to the LP (linear pro-
gramming) relaxation SCP∗(Pall) of SCP(Pall) by iteratively solv-
ing SCP∗(P) to optimality for subsetsP whose sizes are relatively
small. We call an SCP∗(P) amaster problem. For any subsetP,
the cost of an optimal solution to SCP∗(P) can be reduced fur-
ther by adding good feasible pairings toP. Such pairings can be
found by solving a problem called thepricing problemthat is de-
fined based on an optimal solution to the dual of SCP∗(P) for the
current subsetP. The approach stops when no good pairing can
be found to improve the current solution. At this moment, the
current solution is proved to be optimal to SCP∗(Pall). In this sec-
tion, we propose an efficient algorithm for finding good pairings.
We also focus on the initial pairing generation and regularity.

4.1 Graph Description
The problem of finding a sequence of flight legs can be formu-

lated as a routing problem in digraphs, where the flight legs are
associated to nodes. We link two nodes (i, j) with an edge if the
following two conditions are satisfied.

Condition 1: The arrival airport of flight legi coincides with
the departure airport ofj.

Condition 2: The departure time of flight legj is at least 30
minutes later than the arrival time ofi.

For verifying the maximum workday and reducing the compu-
tation time in column generation, we generate several subgraphs
for one instance. We defineG(p,q) as the subgraph correspond-
ing to the period from thepth day to the (p+ q− 1)st day for all
p ∈ {1,2, . . . ,Nd−q+1} andq ∈ {1,2, . . . ,5}, whereNd is the to-
tal days of the instance. Therefore, each instance has (Nd − 2)× 5
subgraphs. For example, for instance I whose number of days is
21, we first create 21 subgraphs for each day involving only those
flight legs whose departure and arrival times are both in this day.
Then, for every pair of consecutive two days, we apply a similar

rule to generate 20 graphs. Similar rules are applied to the cases
of three, four and five consecutive days. As a result, we obtain 95
subgraphs in total.

For each subgraph, we connect a source nodes to the flight
legs whose departure city is Tokyo. A sink nodet is linked from
the flight legs whose arrival city is Tokyo.

Note that all the subgraphs are directed acyclic graphs (DAG)
and any path starting froms to t represents a pairing. Although
such ans-t path is not necessarily feasible, every such path gen-
erated from these subgraphs satisfies all the basic constraints.

4.2 Initial Pairing Set Generation
The set covering problem SCP(P) is available only when the

initial pairing setP can cover all the non-DH flight legs. A warm
start is very important to a column generation approach. Our ini-
tial pairing set generation starts fromP = ∅ and consists of two
steps.

The first step is that, for each subgraph, we defineQ as the set
of all the nodes directly connected from source nodes and exe-
cute a depth first search (DFS) from each node inQ. In choosing
the next candidate node in DFS, we divide the unvisited nodes
that are connected from the current node into two sets: currently
uncovered nodes and covered nodes, where a node is covered if
there is a pairing inP containing the flight lege corresponding to
the node and uncovered otherwise. If the set of uncovered nodes
is not empty, we choose from this set the node whose departure
time is closest to the arrival time of the current node; otherwise,
we choose such a node from the set of covered nodes. Whenever
the DFS reaches a node that is connected to the sinkt, it checks
if the current path froms to t satisfies the pairing constraints ex-
plained in Section 2.1, and if it does, we add the obtaineds-t path
into P, terminate the current DFS, and start a new DFS from an-
other node inQ that has not been used as the starting node of
DFS. Whenever we start a DFS from a node inQ, all the nodes
are labeled unvisited, i.e., the new DFS can visit those nodes that
have been visited by a former DFS. The first step comes to an
end when we a DFS has been executed from every node inQ.
The time complexity for one graph isO(|Q|EG(p,q)), whereEG(p,q)

denotes the the number of edges in graphG(p,q).
Even this simple approach works effectively for instances as

shown in Table 2. The first line represents the coverage (i.e., the
ratio of nodes that are covered by the obtained setP) for each
instance and each value in the second line shows the number of
non-DH nodes that remain uncovered after the first step.

Table 2 Node Coverage by the Path Generation with DFS

Instance I II III IV
Node Coverage 94.95% 99.48% 97.20% 96.14%
#Uncovered Nodes 30 18 53 315

For those non-DH nodes that remain uncovered, the second
step follows. Assume that nodei is uncovered after the first step.
For every graphG(·, ·), we generate a subgraphK(i) induced by
the set of all nodes reachable to or from nodei. (Here we assume
that every node in the graph is reachable froms and tot, because
otherwise such a node is not necessary.) This ensures that anys-t
path inK(i) must cross nodei. Furthermore, it is also clear that

c⃝ 2015 Information Processing Society of Japan 3

Vol.2015-AL-151 No.3
2015/1/13

IPSJ SIG Technical Report

any s-t path inK(i) satisfies the basic constraints in Section 2.1.
Hence, our problem reduces to the problem of finding ans-t path
that satisfies all the specific pairing constraints.

We consider a dynamic programming (DP) for solving this
problem. For each nodeh in graphK(i), we maintain a matrix
(wl f) where the valuewl f of the (l, f)-element represents the mini-
mum working time in a path among all feasible paths from source
nodes to h such that (after the latest sleep period if such a period
exists) the number of landings is at mostl and the total flying
time is at mostf . Note that the matrix size isNlmax × Nfmax be-
cause of Constraint 1 and 3. All the cells can be computed by a
forward programming, and the value of the (Nlmax,Nfmax)-element
at the sink nodet indicates if a feasible path exists in the current
subgraph. If its value is lower than or equals to the maximum
working time, a feasible path exists, and we can conclude that the
target uncovered nodei will be covered by such a path. This fea-
sible path can be obtained by tracking back the DP cells through
the path starting from the (Nlmax,Nfmax)-element at the sink node.
The path generated with this procedure must be feasible, since
this DP approach respects all the constraints.

The time complexity of this DP isO(NlmaxNfmaxNK(i)EK(i)),
whereNK(i) andEK(i) denote the number of nodes and edges in
graphK(i).

Since all the time-related input, including flying time, are di-
visible by 5,Nfmax can be shortened from the original value 720 to
144, which reduces leads also the computational cost to one fifth.

We apply this scheme to every subgraphG(·, ·) until a valid
path is found. The instance is proved to be infeasible, if no feasi-
ble path is found for a target nodei.

4.3 Column Generation
The SCP is known to be NP-hard. However, in a column gen-

eration approach, the SCP(P) associated with a pairing setP has
to be solved in each iteration. We consider solving these master
problems as their LP relaxation SCP∗(P):

min
∑
k∈P

ckxk

s.t.
∑
k∈P

aikxk ≥ 1, ∀i ∈ Fall

0 ≤ xk ≤ 1, ∀k ∈ P.

Its dual problem DSCP(P) is formulated as follows:

max
∑
i∈Fall

ui

s.t.
∑
i∈Fall

aikui ≤ ck, ∀k ∈ P

ui ≥ 0, ∀i ∈ Fall.

We iteratively solve this LP problem with its dual problem. De-
noting an optimal solution to DSCP(P) asu∗, the pricing problem
PRICE(u∗) to construct a pairing becomes a constrained shortest
path problem in acyclic digraphsG(·, ·):

max
k∈Pall

∑
i∈F(k)

u∗i ,

whereF(k) is defied as the set of flight legs included in pairingk.

We solve this problem using a DP based branch-and-bound al-
gorithm. We can use the DP similar to the one discussed in Sec-
tion 4.2 by extending the matrix to a 3-dimensional table. How-
ever, we need to add one dimension and this can cause a great
increase in computation time. If we add working time as a new
dimension, the computation time will be increased by 162 times
for each pricing problem. For this reason, and from preliminary
experimental results, we decided to adopt a branch-and-bound
framework using a relaxation of the above DP. Our method con-
sists of two phases and can be outlined as follows.

In the first phase, it creates three independent DP lists for each
node corresponding to the three constraints regarding working
time, flying time and landings. In the DP list of nodej with
respect to working time, the valueuwj (r) of therth cell represents
the maximum obtainable price along a path among all paths from
node j to the sink node such that the total working time (before
the first sleep period if such a period exists) is at mostr. Simi-
larly, we prepare the DP listsuf

j (·), ul
j(·) for both flying time and

landings, respectively. Note that by reducing the 3-dimensional
table into three independent lists, each value in the DP list only in-
dicates an upper bound, since only the constraint associated with
the list is guaranteed, and the path realizing the value in the list
may violate one of the other two constraints. These kind of DP
list cannot provide us with a feasible pairing, but with an upper
bound on the price value, which is important for bounding oper-
ations.

In the second phase, we use a branch-and-bound framework.
The algorithm generates partial paths froms by expanding the
current path along an edge from the last node of the current path
or by backtracking whenever the current path becomes infeasi-
ble or is concluded that it does not lead to a desirable path (i.e.,
a bounding operation). Suppose that the current pathk̂ is from
source nodes to a nodei in a graphG(·, α). For the next nodej,
we examine the following three conditions:


∑

i∈F(k̂) u∗i + uf
j (Nfmax) < α if edge (i, j) is a sleep period∑

i∈k̂ u∗i + uf
j (Nfmax − fk̂) < α otherwise;

∑
i∈k̂ u∗i + uwj (Nwmax) < α if edge (i, j) is a sleep period∑
i∈k̂ u∗i + uwj (Nwmax − wk̂ − w(i j)) < α otherwise;
∑

i∈k̂ u∗i + ul
j(Nlmax) < α if edge (i, j) is a sleep period∑

i∈k̂ u∗i + ul
j(Nlmax − l k̂) < α otherwise,

wherew(i j) is defined as the working time during the period be-
tween flight legi and j, and fk̂, wk̂ and l k̂ denote the maximum
flying time, working time and landing number of a pairingk̂ as
the definition in Section 2.1, and the only difference is that the
pairing k̂ is still under generation. If one of the above three con-
ditions is satisfied, a bounding operation is applied to nodej and
a backtracking follows.

The computation times of a simple tree search (that backtracks
only if the current path becomes infeasible) and the proposed DP-
based branch-and-bound method are shown in Table 4. We set the
time limit to 7200 seconds for both algorithms. The branch-and-
bound with DP has better performance for all instances.

c⃝ 2015 Information Processing Society of Japan 4

Vol.2015-AL-151 No.3
2015/1/13

IPSJ SIG Technical Report

Table 3 Comparison between simple tree search and DP-based branch-and-
bound

Instance I II III IV
simple treesearch 313 >7200 >7200 >7200
B&B with DP 181 6062 2496 >7200

4.4 Regularity
Most flight legs are regularly scheduled, e.g., a flight from an

airport to another is scheduled with the same departure and ar-
rival times for every weekday. This section considers a method
to exploit such regularity. We call two pairings twins if for every
corresponding pair of flight legs, the departure and arrival airports
are the same, and the departure and arrive times are the same but
not on the same day, where the intervals between the two corre-
sponding flight legs are the same for all pairs. When the column
generation obtains a valid good pairing to be added toP, all of its
twin pairings are also added toP.

We compared the computation times of the cases where the
method of adding twins is adopted or not. The results are shown
in Table 4 in seconds. The first line shows the time for the case
without this idea, and the second line shows the results when the
idea is incorporated in the column generation.

Table 4 The result of adding twins

Instance I II III IV
Without the addition of twins 181 6062 2496 >7200
With the addition of twins 85 8341 2608 >7200

From thecomputational point of view, this idea improves the
speed of column generation for the smallest instance. This might
be because the bottleneck of our approach for this instance is the
time to find a good pairing, and it is advantageous to add more
than one pairing at each iteration. On the other hand, it increases
the computation time when it is applied to large instances. The
reason might be that the additional twin pairings increase the size
of SCP∗(P), and the time to solve the resulting LP problems be-
comes the bottleneck.

5. SCP Heuristic approach

The column generation approach stops the iteration if no good
pairing can be generated to improve the SCP∗(P), and if this stop-
ping criterion is satisfied, the LP relaxation of the original SCP,
SCP∗(Pall), has been solved to optimality. However, the obtained
solution to SCP∗(P) can have fractional elements.

As the last step, we solve the SCP in its integer programming
(IP) formulation described in Section 3. The SCP is known to
be NP-hard, and many good heuristic algorithms have been pro-
posed. In this paper, we solve this integer programming problem
by using a 3-flip neighborhood local search algorithm [9].

6. Computational Results and Conclusion

We now present computational results. The heuristic algo-
rithms proposed for SCP in [9] were coded in C, and the other
algorithms proposed in this paper were all coded in C++. All
of them were built and compiled under Microsoft Visual Studio
2010. We used IBM ILOG CPLEX, version 12.4 for solving the
LP relaxation of SCP. All experiments were carried out on a PC

with two Core i5-2450M at 2.50 GHz and 4 GB RAM mem-
ory under Windows 7 operating system, where the computation
was executed on a single core. For the 3-flip neighborhood local
search, we set a time limit of 3600 seconds.

The result for all the instances are presented in Table 5. Com-
putation times in Table 5 are expressed in seconds. As discussed
in Section 4, the objective function value of LP relaxation, when
the column generation stops normally with the stopping criterion,
gives a lower bound on the optimal value of SCP(Pall). We can
observe that the gap between the objective value of SCP (as IP)
and its lower bound is within 10% for all the instances.

Table 5 The Results of our Set Covering Approach

Instance #FlightLeg #Pairing Time(LP) Value(LP) Value(IP)
I 918 29406 85 142.54 147
II 2203 137039 8341 405.65 424
III 2214 65465 2608 432.51 449
IV 11560 30009 >7200 3348.71 3670

Wealso tested a software module designed for solving (almost)
the same problem. We applied it to an experiment on the same
instances and analyzed the two approaches from various aspects,
including some criteria that are not explicitly considered in our
formulation. It was observed that solutions obtained by our ap-
proach have less number of total workdays and lower hotel ex-
penses for crew members. On the other hand, the software ob-
tained solutions with smaller number of deadheads and with more
regularity.

References

[1] R. Anbil, E.L. Johnson and R. Tanga, “A Gobal Approach to Crew Pair-
ing Optimization,” IBM Systems Journal 31 (1991) 62–74.

[2] J.E. Beasley and B. Cao, “A Tree Search Algorithm for the Crew
Scheduling Problem,” European Journal of Operational Research 94
(1996) 517–526.

[3] J. Barutt and T. Hull, “Airline Crew Scheduling: Supercomputers and
Algorithms,” SIAM News 23 (1990) 20–22.

[4] T. Emden-Weinert and M. Proksch, “Best Practice Simulated Anneal-
ing for the Airline Crew Scheduling Problem,” Journal of Heuristics 4
(1999) 419–436.

[5] B. Gopalakrishnan and E.L. Johnson, “Airline Crew Scheduling: State-
of-the-Art,” Annals of Operations Research 140 (2005) 305-―337.

[6] K. Hoffman and M. W. Padberg, “Solving Airline Crew Scheduling
Problems by Branch-and-Cut,” Management Science 39 (1993) 657-
―682.

[7] D. Levine, “Application of a Hybrid Genetic Algorithm to Airline Crew
Scheduling,” Computers & Operations Research 23 (1996) 547–558.

[8] X. Onodera and A. Mori “Cockpit Crew Scheduling and Supporting,”
Proceedings of the World Congress on Expert Systems, 1–10, New
York: Pergamon, 1991.

[9] M. Yagiura, M. Kishida and T. Ibaraki “A 3-flip Neighborhood Local
Search for the Set Covering Problem,” European Journal of Operational
Research 172 (2006) 472–499.

c⃝ 2015 Information Processing Society of Japan 5

Vol.2015-AL-151 No.3
2015/1/13

