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A Non-scan DFT Method at Register-Transfer Level

to Achieve 100% Fault Efficiency

Satoshi Ohtake,† Hiroki Wada,†† Toshimitsu Masuzawa†††

and Hideo Fujiwara†

This paper presents a non-scan design-for-testability (DFT) method for VLSIs designed
at register-transfer level (RTL) to achieve complete fault efficiency. In RTL design, a VLSI
generally consists of a controller and a data path. The proposed method mainly consists of
the following two steps. First, DFT methods are applied to the controller and the data path,
separately. Then, a test plan generator is appended to support at-speed testing. The test
plan generator generates a sequence of test control vectors for the modified data path. Our
experimental results show that the proposed method can significantly reduce both the test
generation time and the test application time in comparison with full-scan design, though the
hardware overhead of our method is slightly larger than that of full-scan design.

1. Introduction

With advances in semiconductor technology,
the complexity of VLSI designs is growing and
the cost of testing is increasing. Therefore, it
is necessary to reduce the test generation time
and test application time. To reduce the com-
plexity of test generation, design-for-testability
(DFT) techniques have been proposed. The
most commonly used DFT techniques for se-
quential circuits are scan-based approaches 5).
These techniques modify sequential circuits so
that automatic test pattern generation (ATPG)
tools can achieve high fault efficiency☆ in a rea-
sonable time. However, the techniques sacrifice
the possibility of at-speed testing 10) for fault
efficiency enhancement. To avoid this disad-
vantage of scan techniques, several non-scan
approaches have been investigated. Moreover,
since techniques of test generation and DFT at
gate level face problems arising from the huge
number of elements and the high complexities
of the circuits at gate level, several techniques
for test generation and DFT at register-transfer
level (RTL) have recently been proposed.

In RTL design, a VLSI circuit generally con-
sists of two separate parts: a controller part and
a data path part. The former is represented
by a state transition graph (STG) and the lat-
ter by hardware elements (e.g., registers, mul-
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tiplexers, and operational modules) and lines.
A controller and a data path are connected by
internal signals: control signals and status sig-
nals. Most DFT methods for RTL circuits are
concerned with only data paths or controllers,
under the assumption that the control signals
and the status signals are directly controllable
and observable from outside the VLSI.

For controllers, Chakradhar, et al. 3) pro-
posed a non-scan DFT method at RTL. This
method can achieve high fault efficiency but
cannot always guarantee complete (100%) fault
efficiency. Furthermore, it is applicable only to
PLA-based sequential circuits. References 14)
and 4) proposed non-scan DFT methods which
achieve 100% fault efficiency, respectively. In
these methods, given an STG, a sequential cir-
cuit is first synthesized from it. Then, for the
combinational part of the synthesized sequen-
tial circuit, test patterns are generated by us-
ing a combinational ATPG tool. Most of the
generated test patterns can be applied to the
sequential circuit by using state transitions of
the STG. However, there may exist test pat-
terns which cannot be applied using state tran-
sitions of the STG. In this case, an extra logic is
appended, which provides the extra transitions
required for testing. The above mentioned test
patterns are applied by using the extra logic.

For data paths, several non-scan DFT meth-
ods at RTL have been reported, e.g., orthogo-
nal scan 12),13) and H-SCAN 1), which use nor-

☆ Fault efficiency is the ratio of the number of faults
detected or proved redundant to the total number
of faults.
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mal data path flow as a scan path instead of
the traditional scan path flow. These methods
can reduce the hardware overhead and test ap-
plication time in comparison with full-scan de-
sign☆. However, the test generation time can-
not be reduced, because the test generation ap-
proach is the same as in full-scan design. To re-
duce the test generation time, a hierarchical test
generation approach was proposed by Murray
and Hayes 11). The hierarchical test generation
of a data path consists of the following two
steps: for individual combinational hardware
elements, generate test patterns at gate level
and generate test plans at RTL, where a test
plan is a control sequence to propagate test pat-
terns from the primary inputs to the inputs of
the respective hardware elements and to prop-
agate responses from the output of the respec-
tive hardware elements to the primary outputs.
Genesis 2),6)∼8) is an approach based on such hi-
erarchical test generation for data paths. How-
ever, it cannot always guarantee 100% fault ef-
ficiency, even if 100% fault efficiency is achieved
for combinational test generation of each indi-
vidual combinational hardware element, due to
the backtracking in the test plan generation for
large data paths. Reference 15) presented a
DFT method based on such hierarchical test
generation and strong testability. Strong testa-
bility is a property of data paths which guaran-
tees that test plans will be generated for all the
combinational hardware elements of the data
path. According to the method of Ref. 15), test
plans can be derived with complexity O(n2),
where n is the number of hardware elements in
an RTL data path.

This paper presents a DFT method for an
RTL circuit consisting of a controller part and
a data path part. Given an RTL controller-
data path circuit, we apply the DFT method of
Ref. 14) to the controller part and apply that
of Ref. 15) to the data path part. The exper-
imental results obtained by using the bench-
mark circuits listed in Refs. 14) and 15) show
that their hardware overheads were 3.5% and
4.0% on average, respectively. Their test appli-
cation times were reduced on average to 25.4%
and 17.6% of the times for the full-scan design,
respectively. Furthermore, both of these DFT

☆ In this paper, the hardware overhead and test appli-
cation time of a full-scan circuit are calculated under
the assumption that the scan flip-flop consists of a
multiplexer and a standard flip-flop and that all the
scan flip-flops are connected to one scan chain.

methods can achieve 100% fault efficiency and
allow at-speed testing. Notice that, in this pa-
per, we say “100% fault efficiency is achieved” if
test patterns for each combinational sub-circuit
in a given circuit are generated by using a com-
binational test generation algorithm and if it is
guaranteed that the sub-circuits can be tested
by applying all the generated patterns. Thus,
all the redundant faults are only in combina-
tional sub-circuits and they can be proved by a
combinational test generation algorithm.

In the above-mentioned DFT methods, we as-
sumed that both control signals and status sig-
nals between a controller and a data path are
directly controllable and observable from out-
side circuits. However, if we consider a DFT
method for a whole circuit consisting of both a
controller and a data path, we have to remove
this assumption by adding some extra logic to
provide both controllability and observability of
those control and status signals. In this paper,
we resolve this problem by (1) adding multi-
plexers on those control and status signals to
connect directly from primary inputs and to
primary outputs and (2) embedding an extra
circuit in the controller side, called a test plan
generator, which can generate test plans for the
data path of an RTL circuit.

The proposed DFT method for controller-
data path circuits has the following advantages:
• 100% fault efficiency can be achieved.
• At-speed testing can be performed.

Furthermore, according to our experimental re-
sults,
• The test application time can be reduced

significantly in comparison with that of
full-scan design.

• The test generation time can be reduced
significantly in comparison with that of
full-scan design.

• The hardware overhead is slightly large in
comparison with that of full-scan design,
but the difference between them is small.

This paper is organized as follows: Sec-
tion 2 gives a definition of controller-data
path circuits. In Section 3, we introduce the
DFT methods in Ref. 14) for controllers and
in Ref. 15) for data paths, and propose a new
DFT method for whole circuits consisting of
both controllers and data paths. Section 4 re-
ports experimental results obtained using the
proposed method.
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Fig. 1 An RTL controller-data path circuit.

2. Preliminaries

In RTL description, a VLSI circuit gener-
ally consists of a controller and a data path, as
shown in Fig. 1. The former is represented by
an STG and the latter is represented by hard-
ware elements (e.g., registers, multiplexers, and
operational modules) and lines. Both the con-
troller and the data path have primary inputs
from the outside of the VLSI and primary out-
puts to the outside of the VLSI. The controller
also has status inputs from the data path and
control outputs to the data path. Similarly, the
data path has control inputs from the controller
and status outputs to the controller. The sig-
nals from the control outputs to the control in-
puts are called control signals, and the signals
from the status outputs to the status inputs are
called status signals.

Data Path
A data path consists of hardware elements

and lines. A hardware element is a primary in-
put, a primary output, a control input, a status
output, a register, a multiplexor, or an opera-
tional module, and a line connects two hard-
ware elements with some bit width. Inputs of
a hardware element of a data path can be clas-
sified into data inputs and control inputs. Each
data input of a hardware element is connected
directly or indirectly from a primary input of
the data path. Control inputs of a hardware
element are connected directly from control in-
puts of the data path. Examples of the control
inputs are load enable signals of registers, selec-
tion signals of multiplexers, and function selec-
tion signals of operational modules. Similarly,
outputs of a hardware element of a data path
can be classified into data outputs and status
outputs. Each data output of a hardware ele-
ment is connected directly or indirectly to a pri-
mary output of the data path. Status outputs
of a hardware element are connected directly to
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Fig. 2 Test architecture of a controller-data path
circuit.

status outputs of the data path. An example of
hardware elements that have status outputs is
a comparator.

3. A DFT Method for RTL Controller-
Data Path Circuits

3.1 Overview
In our DFT method, given a controller-data

path circuit described at RTL, we first apply
the DFT method of Ref. 14) to the controller
and that of Ref. 15) to the data path of the cir-
cuit. These DFT methods were designed by as-
suming that the control signals and the status
signals are directly controllable and observable
from outside the circuit. However, these are
internal signals between the controller and the
data path in the controller-data path circuit.
Thus, for testing of the controller, we have to
enhance the controllability of the status inputs
and the observability of the control outputs.
Similarly, for testing of the data path, we have
to enhance the controllability of the control in-
puts and the observability of the status outputs.
In the DFT method proposed in this paper, we
embed mechanisms to enhance controllability
and observability of the control signals and the
status signals so that the testing methods of
Refs. 14) and 15) can be applied. The test ar-
chitecture of the controller-data path circuit of
our method is shown in Fig. 2.
Before explaining the details of the test archi-
tecture, we briefly introduce the DFT methods
for controllers and data paths that from the ba-
sis of the test architecture.

3.2 DFT for Controllers 14)

In this section, we give an overview of the
DFT method 14) for a controller synthesized
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Fig. 3 A controller augmented with an extra logic
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from an STG. The method achieves 100% fault
efficiency with a short test generation time, and
allows at-speed testing. In order to generate
a test sequence that achieves 100% fault effi-
ciency with a short test generation time, test
patterns for the combinational part of the se-
quential circuit are generated by using a combi-
national ATPG tool. Each test pattern consists
of the values corresponding to primary inputs
(PIs), status inputs (SIs), and a state register
(SR) of the sequential circuit. In order to apply
a test pattern to the combinational part, it is
necessary to set the corresponding value to the
SR. If the value corresponds to a state reachable
from the reset state of the STG, the value can
be set to the SR using the original state transi-
tions of the STG. Otherwise, the value cannot
be set to the SR using the state transitions of
the STG. In order to set such a value to the
SR, we append an extra logic called an invalid
test state generator (ISG) to the controller, as
shown in Fig. 3. The ISG generates all the
values (called invalid test states) that appear
in the test patterns but that cannot be set to
the SR by using state transitions of the STG.
In Fig. 3, t3 is used to select the inputs of the
SR (the outputs of the original combinational
logic block or those of the ISG), and t4 is a
load/hold signal that is utilized to reduce the
test application time.

The complete fault efficiency is preserved be-
cause the combinational logic block remains un-
changed. The experimental results obtained us-
ing benchmark circuits showed that the average
hardware overhead of the ISG is only 3.5% and
that the average test application time of the

method is 25.4% of that of the full-scan design
given in Ref. 14).

3.3 DFT for Data Paths 15)

Strong Testability
Hierarchical test generation is an efficient

technique for generating test patterns of very
large data paths. In hierarchical test gener-
ation, test generation for each combinational
hardware element M proceeds as follows:
Step 1: Extract M from the data path and

generate test patterns of M at logic level,
using a combinational ATPG tool .

Step 2: Generate a test plan that is a se-
quence of control vectors of control inputs
of the data path for propagating the test
patterns obtained at the first step from pri-
mary inputs to the data inputs of M and for
propagating responses of M from the data
outputs of M to primary outputs. The test
patterns and the responses are propagated
by using the original data path flows of the
data path.

Strong testability is proposed as a character-
istic of data paths that guarantees the applica-
bility of hierarchical test generation.

Definition 1 (Strong Testability 15))
A data path is strongly testable iff there ex-

ists a test plan for each combinational hardware
element M that makes it possible to apply any
pattern to M and to observe any response of
M .

A strongly testable data path has the follow-
ing advantages:
• Fast test pattern generation:

The test pattern generation time is short,
since a combinational ATPG tool can be
applied to each combinational hardware el-
ement separately.

• Fast test plan generation:
The test plan generation time is short, since
test plans are generated at RTL (not at
gate level).

• 100% fault efficiency:
100% fault efficiency can be achieved for
the whole data path, since each hardware
element M is a combinational circuit of
small size, and strong testability guaran-
tees the complete controllability and com-
plete observability of M .

The DFT Method
In the DFT method, we add no special path

for propagating test patterns and responses. In-
stead, test patterns and responses are propa-
gated along existing data path flows. To prop-
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agate test patterns and responses along exist-
ing data path flows, the DFT method appends
thru functions to operational modules and hold
functions to registers. Below we provide a brief
explanation of the DFT method.

Consider the testing of a combinational hard-
ware element M with two data inputs, x and y,
in the data path. To test M , a value specified
by a test pattern should be fed into x. We prop-
agate the value along a path p from a primary
input to x. If an operational module C appears
on p, the output value of C will depend on the
function and the input value(s) of C.

In order to propagate the value of the test
pattern along p, a thru function is added to C.
Most of the popular operational modules (e.g.,
an adder) can realize the thru function by using
a mask element. The mask element generates
a constant that is required to realize the thru
function. Figure 4 (a) illustrates an example
of such a mask element. If we cannot realize
the thru function by using the mask element,
we can realize it by using a multiplexer as in
Fig. 4 (b).

However, we cannot achieve strong testabil-
ity by adding only the thru functions. The thru
functions guarantee the controllability of a sin-
gle path. In the case of a hardware element
which has two data inputs, a test pattern must
be applied to both the inputs simultaneously.
The presence of reconvergent paths in a data
path can prevent such application of a test pat-
tern to a hardware element which has two data
inputs. In particular, this can happen if the
propagation paths to the two data inputs of a
hardware element start from the same primary
input and have the same sequential depth. Such
reconvergent paths will cause a timing conflict;
that is, two different values will be required on
a primary input at the same time. To resolve
such conflicts, in the DFT method, some regis-
ters are augmented with the hold function.

In this DFT, to control the thru functions and
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Fig. 5 Example of a strongly testable data path.

the hold functions, additional control inputs are
appended, as shown in Fig. 2.

An example of the application of the DFT
method is shown in Fig. 5. In this example,
a mask element is added to an data input of
the subtracter “SUB”, and an additional con-
trol input is “mask”. The time complexities of
the DFT algorithm and the test plan generation
algorithms are O(n) and O(n2), respectively 9),
where n is the number of hardware elements in
the data path. These algorithms were designed
for a data path such that all the wires in the
data path have the same bit width. Experi-
ments using benchmark circuits show that the
average hardware overhead is only 4.0% and the
average test application time is 17.6% of that
of the full-scan design given in Ref. 15).

Test Plans
For every combinational hardware element of

a data path, a test plan can be generated by the
algorithm of Ref. 15). Consider a combinational
hardware element M that has data inputs, con-
trol inputs, data outputs, and status outputs in
the data path. Each test pattern of M consists
of a value corresponding to the data inputs and
a value corresponding to the control inputs. We
call the former a data input value and the latter
a control input value. Notice that, for testing
such a hardware element, we must apply test
patterns to both the data inputs and the con-
trol inputs. The test plan propagates the data
input value to the data inputs of M from the
primary inputs. It also applies a control input
value to the control inputs when the data input
value is justified to the data inputs. The test
plan also propagates the responses that appear
in the data outputs of M from the data outputs
to the primary outputs. The response appear-
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Table 1 Example of a test plan.

Time PIX PIY m1 m2 m3 m4 lx ly lo mask c9 c10 c15 PO
1 C X 0 0 X X 1 X X X - - - - Justification
2 X C X X T X X 1 X X - - - -
3 X X 1 0 X X 1 X X 1 - - - - Propagation
4 X X X X X 0 X X 1 X - - - -
5 X X X X X X X X X X - - - O

C: apply test pattern to PI X: don’t care
O: observe PO and/or status output - : need not observe
T: apply test pattern to control input

ing in the status outputs of M is observable
from status outputs of the data path. For ex-
ample, a test plan of the multiplexer marked
MUT in Fig. 5 is shown in Table 1.

The computation time of the test plan gen-
eration algorithm is O(n2) 9), where n is the
number of hardware elements in the data path.
Experimental results showed that the average
test application time of the method is 17.6% of
that of the full-scan design in Ref. 15).

3.4 Test Architecture
3.4.1 Mechanisms for Testing of Con-

trollers
The DFT method for a controller 14) was de-

signed by assuming that the status inputs and
the control outputs of the controller are directly
controllable and observable from outside the
circuit, respectively. However, these are inter-
nal signals in the controller-data path circuit.
Thus, in the DFT proposed in this paper, the
controller-data path circuit is modified so that
the status signals and the control signals can
be directly controlled and observed from out-
side the circuit. A straightforward solution is
to introduce additional test pins and to con-
nect them directly to the status inputs and the
control outputs. However, this solution intro-
duces an unacceptable pin overhead for practi-
cal design. Instead, in the proposed DFT, the
pin overhead is avoided as follows: the status
inputs of the controller are directly controlled
from the primary inputs of the data path by
adding a multiplexer “MUX1” as Fig. 2, and the
control outputs of the controller are directly ob-
served from primary outputs of the data path
by adding a multiplexer “MUX3”. This ap-
proach is acceptable because it is generally con-
ceivable that the status inputs (resp. the con-
trol outputs) of the controller have smaller bit-
width than the primary inputs (resp. the pri-
mary outputs) of the data path, and we need
not use the function of the data path to test the
controller. In testing of the controller, the mul-
tiplexers “MUX1” and “MUX3” are configured

Table 2 Configurations of test architecture.

Test Pins
t0 t1 t2 t3 t4 Operation
0 0 0 0 0 Normal operation
1 0 1 ∗ ∗ Testing controller
0 1 ∗ ∗ ∗ Testing data path

∗: Depend on test patterns or test plans

as shown in Table 2.
3.4.2 Mechanisms for Testing of Data

Paths
Test plans and control input values of hard-

ware elements in a data path must be applied
to the control inputs (including control inputs
appended by the DFT) of the data path. Sim-
ilarly, the responses to the status outputs of
the data path must be observed from the status
outputs. If we use additional test pins to make
these control inputs and status outputs directly
controllable and observable, respectively, from
outside controller-data path circuits, the pin
overhead is unacceptable for practical designs.
The problem of the pin overhead can be avoided
in the following way. Here, we first consider the
observability of the status outputs. In general,
since the bit-width of the primary outputs of
the controller is smaller than that of the sta-
tus outputs, we cannot use the primary output
for observing the status outputs. However, the
bit-width of the primary outputs of the data
path is larger than that of the status outputs.
Since observation of a response of a test pat-
tern only from either the status outputs or the
primary inputs is sufficient, the status outputs
and the primary outputs do not need to be ob-
served simultaneously in testing the data path.
Therefore, we can observe the status outputs
by using the primary outputs of the data path.
In our test architecture, this is achieved by a
multiplexer “MUX3” (see Fig. 2).

We next consider the controllability of the
control inputs. In general, since the number
of primary inputs of the controller is smaller
than that of control inputs of the data path, we
cannot use the primary inputs for applying test
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Table 3 Circuit characteristics.

Controller Data path
Circuit Area (gate) #PI #PO #State #Status #Control Area (gate) #PI #PO |bit| #Reg. #Mod. Area (gate)

GCD 1524.50 0 1 4 3 7 169.40 32 16 16 3 1 1350.90
JWF 6875.40 0 0 8 0 38 199.50 80 80 16 14 3 6671.70
LWF 1986.20 0 0 4 0 8 57.70 32 32 16 5 3 1924.30
PAULIN 24965.60 0 0 6 0 16 123.50 64 64 32 7 4 24833.70
RISC 62287.60 0 2 11 54 62 3986.90 32 96 32 40 4 58157.90
MPEG 79788.60 6 0 129 × 34 0 271 10303.60 56 148 8 241 161 69245.50

plans and control input values of hardware ele-
ments to the control inputs. Moreover, in test-
ing of the data path, since the primary inputs
of the data path are used to apply the data in-
put values of hardware elements, we cannot use
them to apply the test plans and the control
input values to the control inputs of the data
path simultaneously. Therefore, we append an
extra circuit called a test controller to generate
control input values, as shown in Fig. 2.

Test Controller
Test plans are generated for the all combina-

tional hardware elements in the data path of
a controller-data path circuit. In our test ar-
chitecture, all the test plans of the data path
are generated by a test controller (Fig. 2). The
test controller consists of a test plan generator
(T PG), a test pattern register (TPR), and a tar-
get module register (TMR) as shown in Fig. 2.
Consider the testing of a combinational hard-
ware element M , which has data inputs and
control inputs, in the data path. The TMR is
used to store the index of M . The bit width
of the TMR is log m where m is the number of
combinational hardware elements in the data
path. The T PG generates the test plan of M
from the index stored in the TMR. In other
words, if the index of M is stored in the TMR,
the T PG generates control vectors of the test
plan of M sequentially and supplies the data
path with them. When the data input value
of a test pattern of M is justified to the data
inputs, if some primary inputs of the data path
are not used, the control input value is applied
from such primary inputs by way of T PG. Oth-
erwise, the control input value is pre-stored in
the TPR and is applied to the control inputs
by way of T PG. The load enable signal for
TPR and TMR is directly connected from the
reset signal of the controller. That is, if re-
set is applied, TPR and TMR load values from
some primary inputs of the data path; other-
wise, they hold their values. The mode switch-
ing signal t1 is used to disable DFT elements of
the data path in normal operation mode.

In testing of the data path, the advantage of
using the T PG is that the test patterns of each
combinational hardware element of the data
path can be applied to the combinational hard-
ware element at the operational speed of the
circuit, because we can run the T PG using the
system clock of the circuit. Notice that, since
the combinational part of the T PG can be de-
signed as a two-level circuit and the output of
the T PG does not depend on the status of the
data path, the delay of the T PG can be smaller
than that of the original controller. Thus, it is
conceivable that the largest delay of paths in
the T PG is much less than that of the critical
path in the data path.

We estimate the hardware overhead of a T PG
of a controller-data path circuit. According to
our experiments, the area of the T PG is almost
the same as the area of the original controller
of the circuit. For controller-data path circuits
dominated by data flow, it is conceivable that
the hardware overhead of the T PG is low.

We also consider the testing of a T PG. Since
the T PG is not used in normal operation, we
test the T PG only to confirm that the test plans
are generated correctly. This is done by ob-
serving the primary outputs of a data path (see
Fig. 2).

4. Experimental Results

In this section, we evaluate the effective-
ness of our method experimentally. The cir-
cuit characteristics of the RTL benchmark cir-
cuits used in the experiments are shown in Ta-
ble 3. GCD, JWF, LWF, and PAULIN are
widely used circuits. RISC and MPEG are
more practical, larger circuits designed by a
semiconductor company. In our experiments,
we used the logic synthesis tool AutoLogicII
(MentorGraphics) with its sample libraries to
synthesize these benchmark circuits. In this
table, the “Area” column lists the total areas
after synthesis. Here, areas are estimated by
using the number of gates equivalent to the li-
brary cell area. The “Controller” and “Data
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Table 4 Test generation results.

Test generation time (sec.) Test application time (cyc.) Fault efficiency (%)
Circuit Original Full-scan Our method Original Full-scan Our method Original Full-scan Our method

GCD 18055.53 171.51 0.69 9 6629 504 4.92 100.00 100.00
JWF 2348.24 2.88 0.98 488 20519 1497 98.14 100.00 100.00
LWF 171.68 0.47 0.81 322 4066 517 99.64 100.00 100.00
PAULIN 20362.55 4.68 2.11 283 16187 2193 97.01 100.00 100.00
RISC 288102.05 51740.92 72.55 4298 1006154 9674 62.31 99.97 99.99
MPEG N/A 224.47 17.64 N/A 423573 150019 N/A 100.00 100.00

path” columns list the characteristics of the
controller parts and data path parts, respec-
tively; the “#PI”, “#PO”, and “Area” columns
list the numbers of primary inputs and pri-
mary outputs and the circuit area of respective
parts. The “#State”, “#Status”, and “#Con-
trol” columns in the “Controller” part of Ta-
ble 3 list the numbers of states, status inputs,
and control outputs. The “|bit|”, “#Reg.”, and
“#Mod”. columns in the “Data path” part of
the table list the bit widths of data paths and
the numbers of registers and operational mod-
ules they contain. In the row labeled “RISC”,
the number of status signals is larger than that
of the primary inputs of the data path. In
our DFT, twenty-two primary output pins are
changed into primary input and output pins by
appending tri-state buffers. However, the hard-
ware overhead of this modification is negligible.

The test generation results are shown in
Table 4. The sequential and combinational
ATPG tool TestGen (Synopsys) was used in
this experiment on an Ultra60 model 2360 (Sun-
Microsystems). The “Test generation time”,
“Test application time”, and “Fault efficiency”
columns list the test generation time in second,
test application time in clock cycles, and the
fault efficiency. In each of these columns, the
subcolumns labeled “Original”, “Full-scan”,
and “Our method” list the results for the orig-
inal circuits (without DFT), for the circuits
modified by full-scan design, and for the circuits
modified by our method. The time required to
make a data path strongly testable and gener-
ate test plans for combinational hardware ele-
ments is included in the test generation time
of our method. For the original MPEG circuit,
TestGen did not finish within a week. The test
generation time of our method is shorter than
that of full-scan design except in the case of
LWF. In particular, for the RISC circuit, our
method can reduce the time to 1/700 of that for
full-scan design, and can achieve higher fault ef-
ficiency. For this circuit, the fault efficiency is
99.99%, because the combinational ATPG tool

Table 5 Hardware overheads.

Area overhead (%) Pin overhead (#)
Circuit Full-scan Our method Full-scan Our method

GCD 26.6 39.7 3 4
JWF 26.7 28.4 3 3
LWF 33.4 42.3 3 3
PAULIN 7.4 6.3 3 4
RISC 16.7 21.4 3 6
MPEG 19.7 24.9 3 7

cannot generate a test pattern for a fault in a
multiplier of the circuit. The test application
time of our method is drastically lower than
that of full-scan design.

The area and pin overheads of full-scan de-
sign and our method are shown in Table 5. In
these results, for all circuits except PAULIN,
the area overhead of our method is larger than
that of full-scan design, but the difference be-
tween the hardware overhead of our method
and that of full-scan design is not large. The
pin overhead of our method is larger than or
equal to that of the full-scan design. In the re-
sults for our method with the RISC and MPEG
circuits, the pin overheads are larger than the
standard number 5 (t0 to t4 in Fig. 2) because
more than two select signals of concatenation of
several multiplexers are needed on the primary
outputs of the data paths to observe the control
signals and the status signals from the primary
outputs. In a trade-off for this disadvantage,
our method allows at-speed testing.

In our method, hardware for thru and hold
functions and for multiplexers is appended to
a controller-data path circuit. First let us con-
sider the performance degradation of the circuit
caused by these appended multiplexers. Multi-
plexers are appended in front of the state regis-
ter of the controller in the circuit, on control sig-
nals between the controller and the data path in
the circuit, and in front of the primary outputs
of the data path. The multiplexer in front of
the state register is the same as in the full-scan
design. The multiplexer on the control signals
does not affect the performance of the circuit
because the control signals are not generally in-
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cluded in the critical path of the circuit 6). The
multiplexer in front of the primary outputs of
the data path also does not affect the perfor-
mance of the circuit because, in general, there
exist registers in front of the primary outputs
of the data path and delays caused by multi-
plexers are less than in operational modules.

For the data path, the performance might be
degraded by the hardware appended for thru
and hold functions. In the full-scan design,
multiplexers are added to all registers to make
each register scannable. On the other hand,
in our method, thru and hold functions are
added to some (not all) operational modules
and registers, respectively. Furthermore, delays
caused by the hardware for thru and hold func-
tions are less than those caused by multiplexers.
Therefore, the performance degradation of our
method is smaller than that of full-scan design.

5. Conclusion

This paper has presented a novel non-scan
DFT method for controller-data path circuits
designed at RTL. The proposed method can
achieve 100% fault efficiency and allows at-
speed testing. The hardware overhead of the
proposed method is slightly larger than that of
the full-scan design, but the difference between
the overheads is small. To compensate for the
small increase in the hardware overhead, the
test generation time of the proposed method is
shorter than that of the full-scan design, since
the hierarchical test generation can be applied
to the data path part of the circuits. Further-
more, since the proposed method uses no tra-
ditional scan path, the test application time is
very short. Our future work is to reduce the
hardware overhead of the test controllers.
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