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Traditional asynchronous design methodologies basically create correct-by-design circuits
with almost no assumptions on delay values in the circuit. However, this over-pessimism usu-
ally creates slow circuits. Recently, asynchronous design methodologies which utilize delay
information and apply timing optimizations have been suggested. These timing optimizations
bring new timing constraints to be observed especially after the layout phase. The aim of this
work is to develop a timing verification methodology and an appropriate CAD framework for
gate-level asynchronous circuits using well-known static timing analysis method, which will be
a bridge between asynchronous logic synthesis tools and common layout tools. Verification of
timing constraints and correction of violations (if exist any) after layout are two main objec-
tives. First, basic concepts for verification methodology will be given. Then, an algorithm for
verification and violation correction of timing constraints for general asynchronous circuits
is proposed. Later, asynchronous data-path circuits are examined in more detail. Finally,
current status of the developed CAD framework is explained along some experimental results.

1. Introduction

With advances in device technology intercon-
nections are becoming responsible for most of
the signal delay and distribution of clock sig-
nal becomes more difficult to attain. Due to
its average-case behavior, timing reliability and
nonexistence of clock skew, asynchronous sys-
tems have been gaining interest for future high-
speed systems.

In the absence of a clock for synchroniza-
tion, asynchronous modules communicate us-
ing request-acknowledgment protocol 1). One
side issues request signal and necessary data for
an operation, and the other side processes data
and acknowledges the end of operation using ac-
knowledgment signal. Note that, acknowledg-
ment signal should be generated after process-
ing of data is finished.

For data-path circuits, since there is no clock,
successive arrival of data should be distin-
guished with some extra timing signal(s). One
way to achieve this to use one extra strobe sig-
nal for a bunch of bits. This kind of data-path
circuits are called single-rail data-path circuits.
Another possible way is to use M-out-of-N en-
coding, in which exactly M lines become 1 and
(N-M) lines become 0 for a valid data. One
example for this is dual-rail (1-out-of-2) encod-
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ing. In this encoding two wires are used for each
data bit, one of them indicating arrival of data
0 and the other one arrival of data 1. (0,0)
(no change in both lines) is called spacer and
used between successive data arrivals. (1,1) is
regarded as invalid data.

In asynchronous systems, delay model also
has a great impact on the design and anal-
ysis of the circuit 2). Delay-Insensitive (DI)
model assumes gate delays and wire delays are
unbounded. In Quasi-Delay-Insensitive (QDI)
model, “isochronic forks” are added to DI
model. Fork points for wires are assumed to
have same delay, i.e., isochronic. Another vari-
ety is Speed Independent (SI) model, in which
unbounded gate delays with zero wire delays are
assumed. But these delay models may some-
times impose over-pessimistic delay assump-
tions on the circuit, resulting in slow circuits.
Especially in local parts of the circuit, delay
values can be estimated before layout and these
estimated delay values could be utilized to en-
hance circuit performance.

Recently delay models and design method-
ologies, which utilize delay values and ap-
ply some timing optimizations, have been sug-
gested for asynchronous circuits. Scalable-
Delay-Insensitive (SDI) model is based on the
idea that once a system is laid out and fabri-
cated, elements in the design are affected al-
most similarly by the changes in the operat-
ing environment 3). For dual-rail asynchronous

1244



Vol. 44 No. 5 Verification and Violation Correction of Timing Constraints 1245

comp
ack

comp
ack

a) QDI model b) SDI model

data

inputs

data

outputs

data

inputs

data

outputs

data-
path

data-
path

(comp :  completion generation circuit )

Fig. 1 Data-path circuits based on QDI and SDI
model.

data-path circuits based on QDI model, ac-
knowledgment signal is generated by checking
that all the data bits have made the necessary
transition (Fig. 1a). However, in this way delay
of the completion generation circuit becomes
large and degrades the circuit performance. In
SDI model circuits, as far as completion sig-
nal is generated after all the data-path circuit
completes its transition, circuit operates cor-
rectly. Therefore, generation of the completion
signal could start on the way before data-path
circuit completes its transition (Fig. 1b). Con-
sequently, new timing constraints emerge which
are to be observed also during layout. These
kind of optimizations are utilized during the de-
sign of TITAC-2, an asynchronous microproces-
sor 4), however layout part was performed man-
ually.

Another recently suggested methodology is
Relative Timing (RT) circuits 5),6). Instead of
using absolute delay values in the circuit, this
method utilizes relation between two signals,
i.e., one signal is earlier than the other one or
two signals are equivalent in time, and applies
timing optimizations based on the relative tim-
ing of two signals. For this purpose, they first
synthesize circuit based on SI model and ob-
tain initial timing values for signals. Later they
generate RT assumptions between signals and
utilize these relations for timing optimizations.
Again, like SDI circuits, these constraints are
to be observed during the layout phase.

Although optimizations are applied in syn-
thesis level and some constraints are emerging
as a result, there is not much work on how to
perform layout of optimized circuits using ex-
isting layout tools. The aim of this work is to
develop a verification methodology and a CAD
framework to fill the gap between currently
available (synchronous) layout tools and asyn-
chronous synthesis methodologies which utilize
timing optimizations. Furthermore, after the

verification of the circuit, any violation of the
timing constraints should be corrected without
the expensive back-tracing to synthesis phase.

Organization of the paper is as follows. In
Section 2 format of timing constraints, which
will be the interface between synthesis and
layout phases, and whether they can be in-
deed generated by synthesis tools are ex-
plained. Later basic principles of the verifica-
tion methodology is given in Section 3. Sec-
tion 4 gives challenges for constraint verifica-
tion and violation correction for general asyn-
chronous circuits and a new algorithm for this
purpose. In Section 5, timing constraints for
asynchronous data-path circuits and their veri-
fication are discussed in detail. Section 6 gives
the current situation of developed CAD frame-
work along some experimental results. Finally
conclusion and further work are given in Sec-
tion 7.

2. Constraint Format Determination

Absolute delay values are variant within sys-
tem’s lifetime, so they are relatively difficult
to estimate in the early stages of the design.
For example, both SDI and RT circuits uti-
lize the relation between the delays of signals
within the circuit. From this observation, we
propose to express the timing relations and con-
straints within the circuit as fast path–slow
path pairs. Like the relation between data-
path signal and completion signal, there are or-
der relations between signals in asynchronous
circuits. A signal transition path starts from
a circuit node or nodes and ends with a circuit
node or nodes, possibly including some interme-
diate nodes between them. As definition, max-
imum fast path delay should be always smaller
than minimum slow path delay. For perfor-
mance figures, both paths are desired to be as
fast as possible and slow paths are required to
be slower than fast paths for some margin to
guarantee correct operation. As long as this
fast-slow relation is obeyed, slow paths could
be made close to fast paths.

To designate a path in the circuit, we need
start point(s) and end point(s). To designate
a path more specifically, optionally some in-
termediate points and inhibit points (through
which a path is not allowed to pass) can be
used, which are useful for cutting cycles for non-
combinational circuits or false path elimination.

Timing constraints are identified at logic de-
sign level and this information is conveyed for
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the constraint verification. To calculate the de-
lay value of a path, maximum delay analysis
is performed for a fast path and minimum de-
lay analysis is performed for a slow path using
Static Timing Analysis (STA) method.

An important issue is whether timing con-
straints could be expressed as fast path–slow
path pairs and could be indeed generated by
logic synthesis tools.

First observation is that two signals, e.g., a
and b, in a circuit can be related in one of the
four ways; a occurs before b, b occurs before a
or a and b occur simultaneously with respect
to a minimum delay value δ or a different sig-
nal c. For the simultaneity, two signals may be
used instead of each other for logic realization.
In the last case, signals a and b regarded as
the same signal from the timing point of view
to realize signal c, unless there are special de-
pendencies between signals other than timing
issues. In each case another reference point in
the circuit, signal s, should be designated in or-
der to be able to have some delay value for a, b
and c. Then, relation between two signals can
be expressed as follows;
• a occurs before b → delaya < delayb

• b occurs before a → delayb < delaya

• a and b occur simultaneously w.r.t. δ →
delaya < delayb+δ & delayb < delaya+δ

• a and b occur simultaneously w.r.t. c →
delaya < delayc & delayb < delayc

Note that now all four cases can be expressed
as an inequality for delay values. Points in the
circuit corresponding to earlier signal become
end points for fast path, circuit points corre-
sponding to later signal become end points for
slow path and circuit points corresponding to
common reference point become start points for
the paths.

When a timing optimization is applied for an
asynchronous circuit, relation between two sig-
nals is utilized. Since logic synthesis methods
and corresponding tools use this relation, they
can indeed produce this relation as a timing
constraint in the format of fast path–slow path
pairs with a very small effort. During static
timing analysis cycles in the circuit are cut to
prevent infinite loops during traversal. How-
ever, intermediate points are especially used for
allowing cycles inherent to some asynchronous
circuits. Inhibit points are optional and usu-
ally used for not analyzing unrelated parts of
the circuit, possibly resulting in improved run-
time values. In our methodology, it is assumed
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Fig. 2 Verification methodology.

that constraints are produced at logic synthesis
level in fast path-slow path format.

3. Verification Methodology

When a timing optimization is applied using
the relation of signals in the circuit, this rela-
tion is to be progressed in the design flow. As
explained in the last section, this information is
incorporated as timing constraints in the form
of fast path-slow path pairs. This constraint in-
formation becomes the interface between logic
synthesis and layout phases. Later timing con-
straints are verified using STA method using
delay values before or after layout.

If any violation occurs for timing constraints,
they are corrected by adding delay pads into
the end points of the slow paths. However, this
procedure should be carried out carefully since
adding a delay pad into slow path may result
in generating new constraint violations if paths
are interleaved.

Figure 2 shows the design methodology of
asynchronous circuits with our verification and
correction concept. Verilog RTL level descrip-
tions for asynchronous circuits are taken as in-
put. Later logic synthesis is applied to ob-
tain gate-level asynchronous circuits. During
the logic synthesis, constraint are generated
in the proposed format of fast path-slow path
pairs. Depending on the synthesis methodol-
ogy and the type of the basic building blocks
for the circuit, different constraint information
may to be generated. Thus, some extra in-
formation is to be added into the general de-
sign flow or a constraint generation function is
to be added for each different logic synthesis
method. Currently, the latter is employed in
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the design methodology used in our research
group. As different logic synthesis methodolo-
gies are added into the design methodology, this
issue will be further examined.

Later, these constraints are verified with the
tool environment developed, which can be per-
formed either before layout or after layout us-
ing layout data information in Standard De-
lay File (SDF) format. For verification static
timing analysis with Depth First Search (DFS)
traversal is used; maximum delay analysis from
end points back to start points for fast paths is
performed (and similarly minimum delay anal-
ysis for slow paths). During traversal, if any
inhibit point or primary input of the circuit is
reached, that path is discarded. If an end point
is reached after visiting all intermediate points,
that path is considered as a valid path. Af-
ter verification, if any constraint violation exist,
delay padding information is generated and lay-
out is re-performed by adding delay pads into
proper places to correct the violations. Finally,
after re-layout constraints are once more veri-
fied, which are expected to be satisfied if there
is no cyclic relation between constraints (refer
to Section 4).

4. Constraint Verification and Viola-
tion Correction for Asynchronous
Circuits

For general asynchronous circuits, constraints
are to be generated by synthesis tools because
they cannot be detected without the knowledge
of synthesis phase. Furthermore, as the con-
straints may be interleaved, delay padding is a
challenging problem since adding a delay pad
may eventually generate new constraint viola-
tions.

The crucial observation is that, constraints
should be somehow sorted and addition of de-
lay pads should be done in ascending order to
obtain optimum delay padding. To conceptual-
ize this fact, let’s consider the relation between
a constraint a < b and another constraint c < d,
with start points as s1 and s2 respectively. Also
note that if there is a violation in a < b, it is
to be corrected by adding a delay pad into the
end point of b.

Case one; if end point of b is not included in
c or d, adding delay pad into b will not effect c
or d. Therefore, this case is straightforward.

Case two; end point of b is included within
d (Fig. 3a). Assume that delay values for a, b,
c, and d are 15, 10, 30, and 20 respectively. If

b) Endpoint of b included in ca) Endpoint of b included in d
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a b

s2

c d

s1

a b

s2

c
d

Fig. 3 Relation of two interleaved constraints.

c < d is checked first, a delay pad of 11 will be
added into d. Later when a < b is checked, a
delay pad of 6 will be added into b. However,
this will increase the delay value of d into 37,
making final delay values as 15, 16, 30, and 37
respectively. If the checking is done in the re-
verse order, final delay values will become 15,
16, 30, and 31.

Case three; end point of b is included within
c (Fig. 3b). Again assume that delay values for
a, b, c, and d are are 15, 10, 30, and 20 respec-
tively. If c < d is checked first, a delay pad of
11 will be added into d. Later when a < b is
checked, a delay pad of 6 will be added into b.
However, this will increase the delay value of c
into 36, making delay values as 15, 16, 36, and
31 respectively. To have correct delay values,
c < d should be checked again and a delay pad
of 6 should be added into d, making final delay
values as 15, 16, 36, and 37 respectively. If the
checking is done in the reverse order, final de-
lay values will again become 15, 16, 36, and 37,
but only two checks will be enough in contrast
to three checks in former case.

It can be seen from the above three cases that,
naive delay padding without sorting will need
more constraint checks when a delay padding
location is included within another fast path,
and will not produce optimum delay padding
when a delay padding location is included
within another slow path. Based on this ob-
servation, we propose the following algorithm
to verify constraints and to correct constraint
violations, which is to be run if any constraint
violations exist in the circuit.

Algorithm for violation correction of in-
terleaved timing constraints

Definition 1. A constraint cons1 is said
smaller than another constraint cons2, if any
end point of cons1 is included within the fast
path or the slow path of cons2, and shown as
cons1 < cons2. Similarly, cons2 is said larger
than constraint cons1.

Definition 2. A constraint cons1 is said
recursively smaller than another constraint
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cons2, if cons1 < cons2 or for another con-
straint const3, cons1 < cons3 and cons3 <
cons2.

Other definitions:
eqi: constraint i expressed as eqi = fpi < spi
pi: places to add delay pads (endpoints of spi)

vi: list of constraints in conflict with const. i
Y : list of all constraints
Si: set of constraints smaller than eqi
SSi: set of constraints recursively smaller

than eqi
Li: set of constraints larger than eqi
X: sorted list of constraint subsets

Algorithm:
1. for each eqi in Y do → create Si and Li

2. if pi is included in some fpj or spj

3. add eqj into Li and eqi into Sj

4. if eqi is already in Lj (conflict!)
5. put eqi into vj and eqj into vi

6. for each eqi in Y do → individual
7. if Si and Li are empty
8. if there is violation for eqi

9. determine delay pad for eqi

10. subtract eqi from Y

11. for each eqi in Y do → create SSi

12. for each eqj in Si do
13. if eqj is not in vi

14. insert eqj into SSi

15. for each eqk in Sj do recursively
16. if eqk is in Li

17. put eqi into vk and eqk into vi

18. else
19. insert eqk into SSi

20. j = 1, X0 = {} → sort constraints
21. while (Y ! = {}) do
22. for each eqi in Y do
23. if SSi composed of elmt.s from Xk

(where k < j)
24. put eqi into Xj and subtract from Y
25. j = j + 1
26. for i = 1 to length of X do → fix viol.
27. for each eqi in Xi do
28. if there is violation for eqi

29. determine delay pad for eqi

30. if violation still remains
31. ERROR!! report conflicting constraints

This algorithm first creates smaller and
larger sets for constraints in lines 1 through
5. If any conflicting constraint exists, e.g.
a < b < a, then these constraints are marked
specially. Then constraints which are not in re-

lation with other constraints are first verified
and corrected in lines 6 through 10. Later us-
ing smaller and larger sets constructed in first
part, recursively smaller sets are constructed
in lines 11 through 19. Again if any constraints
are in conflict, e.g. a < b < c < a, two of
them from the cyclic list added into conflict
list of each other to prevent infinite recursion
for corrections. After recursively smaller sets
are constructed, final sorted list of constraints,
i.e., X, is constructed in lines 20 through 25,
of which elements are verified and corrected in
ascending order (lines 26 through 29). If any
violation remains, list of conflicting constraints
for the constraints with violation is output to
the user.

Let’s see how the algorithm works for a sam-
ple set of constraints;

eq1 = d < g, eq2 = k < l, eq3 = b < c, eq4 =
c < d, eq5 = a < b, eq6 = l < m, eq7 = b < f ,
eq8 = f < d

For easier representation inequalities are
given letters to visualize relation between con-
straints. In addition to above constraints, also
assume that m is included within the slow path
of d. At the first stage, Si’s and Li’s are con-
structed as follows;

S1 = {c < d, f < d}, S2 = {}, S3 = {a < b},
S4 = {b < c, l < m}, S5 = {}, S6 = {k < l},
S7 = {a < b}, S8 = {b < f, l < m}

L1 = {}, L2 = {l < m}, L3 = {c < d},
L4 = {d < g}, L5 = {b < c, b < f}, L6 = {c <
d, f < d}, L7 = {f < d}, L8 = {d < g}

In the next step, SSi’s are constructed as fol-
lows;

SS1 = {c < d, b < c, a < b, l < m, k < l, f <
d, b < f}, SS2 = {}, SS3 = {a < b}, SS4 =
{b < c, a < b, l < m, k < l}, SS5 = {}, SS6 =
{k < l}, SS7 = {a < b}, SS8 = {b < f, a <
b, l < m, k < l}

Finally, Xi’s are constructed as follows;
X1 = {k < l, a < b}, X2 = {b < c, l < m, b <

f}, X3 = {c < d, f < d}, X4 = {d < g},
Note that, searching whether places to add

delay pads are included in some other fast paths
or slow path is the most computationally expen-
sive part of the algorithm (since DFS is used,
this search is linear to the number of constraints
and the number of nodes in the circuit). How-
ever, this search is inevitable if constraints are
interleaved. In this algorithm, this search is
performed only once for each constraint. Sort-
ing of constraints are performed with opera-
tions on constraint set. This is computationally
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less expensive since the number of constraints
are expected to be far less than the number of
nodes in the circuit. Similarly, checking of con-
straints are also performed only twice for each
constraint (which is also linear to the number of
nodes in the circuit). Finally, calculated delay
pads have the minimum values.

Let’s see how the algorithm works when con-
flicting set of constraints exist, i.e. there is a
cyclic relation between constraints;

eq1 = a < b, eq2 = b < c, eq3 = c < d,
eq4 = d < a.

Si’s and Li’s are constructed as follows;
S1 = {d < a}, S2 = {a < b}, S3 = {b < c},

S4 = {c < d}.
L1 = {b < c}, L2 = {c < d}, L3 = {d < a},

L4 = {a < b}
In the next step, SSi’s and vi’s are con-

structed as follows;
SS1 = {d < a, c < d}, SS2 = {}, SS3 = {b <

c}, SS4 = {c < d, b < c}.
v1 = {b < c}, v2 = {a < b}, v3 = {}, v4 = {}
Finally, Xi’s are constructed as follows;
X1 = {b < c}, X2 = {c < d}, X3 = {d < a},

X4 = {a < b},
In this way, a circular list of inequalities will

be broken at one point; here in this example at
the equation b < c.

5. Constraints for Asynchronous Data-
Path Circuits and Their Verifica-
tion

In case asynchronous circuits can be divided
into control and data-path circuits, verification
and correction of data-path circuit can be per-
formed rather easier by focusing on request-
acknowledgment signals. This section gives in
detail constraints for asynchronous data-path
circuits. Again note that after constraints are
specified, any constraint violation can be cor-
rected again by adding delay pads into end-
points of slow paths.

Asynchronous data-path circuits commu-
nicate with control circuits using request-
acknowledgment signals. Therefore, during the
timing analysis emphasis should be given to
data input-output signals and req-ack signals.

In general, data-path circuits can be divided
into two main groups; data-path circuits with-
out idle phase, i.e. bundled data-path circuits in
which successive arrival of data is expressed us-
ing a strobe signal and data-path circuits with
idle phase, i.e. M-out-of-N signaling circuits.
Here we use dual-rail circuits as an example for

delay element

ack

comp.
ack

a) Single-rail b) Dual-rail

data

inputs

data

outputs

data
inputs
& req

data

outputs

data-
path

data-
path

req

fast path

slow path

fast path

slow path

Fig. 4 Timing constraints for single- and dual-rail
data-path circuits.

M-out-of-N signaling circuits, but same princi-
ples apply for other kinds as well.

5.1 Single-rail Data-path Circuits
For this kind of circuits, a strobe signal is

used to designate successive arrival of data.
This strobe signal is directly used as the request
signal for the data-path and completion of the
operation is designated by ack signal which is
generated using an appropriate delay element.
The delay value of the delay element should be
larger than the largest delay in the data-path.
Therefore, start and end points can be decided
as shown in Fig. 4a. Any violation in the cir-
cuit can be corrected by increasing delay ele-
ment appropriately.

5.2 Dual-rail Data-path Circuits
Dual-rail asynchronous circuits also use

request-acknowledgment scheme for communi-
cation. However, between successive arrivals of
data, spacer (all zeros in data inputs) is inserted
into the circuit. This also sets outputs of the
circuit to all zeros. In this way data path cir-
cuit alternate between working phase (from ar-
rival of data inputs until generation of outputs
and ack signal) and idle phase (from inserting
spacer into data input until outputs and ack re-
turn to zero). As shown in Fig. 1b, if dual-rail
data-path circuits are designed according to the
SDI model and completion signal is generated
from some midpoint in the circuit (not like QDI
model where completion is detected after all
data-path circuit stabilizes), a new timing con-
straint arises. Start and end points of slow and
fast paths can be decided as shown in Fig. 4b.
Again any violation in the circuit can be cor-
rected by adding an appropriate delay pad at
the end of completion generation circuit.

5.3 Dual-rail Data-path Circuits with
Fine-grain Pipelining

Fine-grain pipelining is a method used for
concealing the overhead of idle phase (and even
overhead of control logic sometimes) for dual-
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rail asynchronous data-path circuits 7),8). Fig-
ure 5a shows dual-rail data-path circuits with-
out fine-grain pipelining. Circuit can only start
processing of next data after the whole cir-
cuit finishes its working phase and then its idle
phase.

The basic idea of fine-grain pipelining is to
introduce latches into the circuit to divide data-
path into substages and let the idle phase
of each substage start immediately after data
reaches to the next latch without waiting the
data to reach to the rightmost latch (Fig. 5b).
In this way, idle phase of a substage can be over-
lapped with the working phases of the succeed-
ing substages; practically concealing the over-
head of idle phase. Note that, although struc-
turally similar, this method is different from
increasing the number of pipeline stages and
data input ratio so that there exist data in each
pipeline stage. In order fine-grain pipelining
to effectively conceal the idle phase, some of
the pipeline stages should be empty during the
progress of data 13).

One concern is the latches inserted into the
data-path circuit which cause increase in the
latency of the circuit. Differential Domino
Logic (DDL) gates 9) are a special logic fam-
ily which behave like transparent latches when
their one special ‘precharge’ input is level one.
If precharge input is level zero, they can be pre-
set to all zero values quickly. For this reason
they are often used for implementing dual-rail
encoded asynchronous data-path circuits.

Furthermore, timing optimizations like in the
Section 5.2 can be applied within each sub-
stage, like early completion generation or check-
ing only a few bits for completion generation in-
stead of whole bits. In this way different high-
throughput fine-grain pipelining methods can
be obtained 10).

For fine-grain pipelined circuits, data in each
substage should alternate between working and
idle phase similar to original whole data-path
circuit. Basically there are two sets of timing
constraints which are to be guaranteed even af-
ter layout. First one (constraint 1) corresponds
to the situation that presetting data in current
stage should be done only after data is pro-
cessed and reaches to the next stage, otherwise
data disappears at that stage. Second one (con-
straint 2) corresponds to the situation that af-
ter processing the data, reading the next one
should be done only after spacer is ready at in-
puts, otherwise same data would be read twice
as a malfunction. If these two constraints are
satisfied, data will alternate between working
and idle phase exactly once and correct progress
of data will be guaranteed.

Fine-grain pipelined data-path circuits are
not pure combinational circuits, therefore re-
quire special handling to cut cycles in the cir-
cuit to able to perform timing analysis. In our
previous work 11), we identified start, end and
appropriate intermediate and inhibit points for
two mainly used fine-grain pipelining methods
separately. Figure 6 shows the two above con-
straints for general fine-grain pipelining cir-
cuits. For DDL gates, inputs are shown at
left-hand side, outputs at right-hand side and
precharge (pcb) input at the bottom side. For
each substage local completion circuits are built
and fed to DDL gates for precharging. This in-
put to precharge pins becomes the cause for cy-
cles in the circuit. Therefore, they should be
carefully utilized to cut the loops in the circuit
for STA analysis and to correctly designate fast
and slow paths.

For constraint 1, fast and slow paths can be
designated for substage i as follows;

Fast path: ends with rising transition
start inputs of DDL gates

except pcb in substage 0;
DDLin

0

end outputs of DDL gates in
substage i; DDLout

i

Slow path: ends with falling transition
start DDLin

0

end pcb inputs of DDL
gates in substage i; DDLpcb

i
intermediate Output pin of

completion circuit i; COi

Similarly, for constraint 2;
Fast path: ends with falling transition
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Fig. 6 Constraints for fine-grain pipelined circuits.

start DDLin
0

end DDLin
i

intermediate COi−1

Slow path: ends with rising transition
start DDLin

0

end DDLpcb
i

intermediate COi

Outputs of the local completion circuits other
than the ones designated as the intermediate
points, may be utilized as inhibit points to pre-
vent analysis of the unrelated parts of the cir-
cuit.

Let’s follow the progress of data in the circuit
to affirm these two constraints. Initially all in-
puts to the circuit are zero and completion cir-
cuit outputs are 1 making DDL gates ready to
accept data. When data is fed into the circuit

it advances through substages. As an example
when we consider substage i-1, precharging of
data to zero in that substage should be done
only after data passes through this stage (con-
straint 1). After precharging occurs in substage
i-1, spacer will be fed into the inputs of sub-
stage i. Spacer should be ready at the inputs of
substage i before precharge inputs at substage
i change into 1 (constraint 2), otherwise previ-
ous data will be read twice in substage i. Cor-
rect operation will return substage i into origi-
nal state and make it ready to accept next wave
of data.

If any violation occurs in the circuit, delay
pads can be added into the end points of slow
paths. Note that end point polarities of slow
paths are different for constraint 1 and 2. Al-
though fast and slow paths are interleaved, by
designating delay pad insertion points as output
pins of completion circuit and correctly adjust-
ing delay pads according to polarities, correct
delay pad values can be obtained. Also note
that, local completion circuits may be in any
format, e.g., using completion sensing or delay
elements, but this will not effect constraint des-
ignation and violation correction basically.

Although constraints for different fine-grain
pipelining schemes are shown separately in lit-
erature, this is the first time constraints are des-
ignated for general case to the authors’ knowl-
edge. With the special naming of precharge
input pin, constraints for fine-grain pipelined
circuits can be generated automatically, even
avoiding the need to produce them by synthe-
sis tools (this part is also implemented in our
CAD framework).

6. Experimental Results

The general design methodology for asyn-
chronous circuits is shown in Section 3. In our
research group, a CAD environment is devel-
oped for logic synthesis of asynchronous cir-
cuits with dual-rail encoded fine-grain pipelined
data-paths, which also includes verification
methodology suggested in this paper.

Currently, verification tool is able to check
constraints for data-path circuits and suggest
delay pad values for any constraint violation.
In addition, automatic generation of constraints
for fine-grain pipelined circuits is incorporated
into the tool environment (constraint genera-
tion part in Fig. 2). Basically, the special nam-
ing of the ‘pcb’ inputs of DDL gates is utilized
to find the output pin of each local completion
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Table 1 Verification results for sample circuits.

delay element comp. det.
add shift add

Substage 0; 4.03 2.03 6.49
slow/fast (ps) 1277/317 1246/613 2056/317

S Substage 1; 2.34 1.44 3.40
slow/fast (ps) 1437/613 1438/996 2087/613

E Substage 2; 1.94 1.32 2.63
slow/fast (ps) 1657/853 1657/1260 2240/853

T Substage 3; 1.69 1.26 2.24
slow/fast (ps) 1884/1114 1924/1525 2500/1114
Substage 4; 1.53 1.19 1.97

1 slow/fast (ps) 2172/1417 2109/1765 2792/1417
Substage 5; 1.41 - 1.45

slow/fast (ps) 2338/1662 - 2304/1662
Substage 0; - - -

slow/fast (ps) - - -
S Substage 1; 1.50 2.08 2.15

slow/fast (ps) 4285/2852 4286/2057 7876/3668
E Substage 2; 1.83 2.15 2.38

slow/fast (ps) 4503/2464 4503/2094 7917/3324
T Substage 3; 1.67 1.95 2.26

slow/fast (ps) 4732/2827 4771/2444 8537/3771
Substage 4; 1.62 1.80 2.11

2 slow/fast (ps) 5047/3115 4959/2750 8829/4179
Substage 5; 1.51 - 1.54

slow/fast (ps) 5237/3471 - 6894/4479
run time (sec.) ≈ 1 ≈ 1 ≈ 1
area (mm2) 0.104 0.050 0.104

circuit in the circuit structure. In this way, the
start, end, intermediate and inhibit points can
be generated due to Section 5.3 and this infor-
mation is utilized by verification tool to calcu-
late the delay values for each constraint. Lay-
out data can also be back-annotated in SDF
format. The tool applies DFS traversal of the
circuit with polarity after start, end, interme-
diate and inhibit points are designated.

Some example circuits are designed applying
fine-grain pipelining, where completion part is
for each substage is implemented with delay el-
ements or with completion detection method
(they correspond to LPSR2/2 and LP2/2 in10)

respectively). In fine-grain pipelining with de-
lay elements, the delay value of each stage is
matched with a delay element and completion
signal is generated thereafter. Whereas in fine-
grain pipelining with completion detection, ar-
rival of data to the next stage is sensed by
a completion detection circuit and completion
signal is generated thereafter. To verify con-
straints for fine-grain pipelining, 32 bit dual-rail
adder and shifter circuits are designed, placed,
routed and checked for constraints. Layout is
done by using 0.25µm, five layer CB-C10 tech-
nology 12). Automatic placement and routing is
performed by Cadence tools and constraint ver-
ification is performed using the tool developed.

Table 1 gives verification results for some
sample designs on a 2 GHz Pentium 4 machine
with 1 GB of memory. The results are grouped
into two sets referring to the constraints 1 and
2 in Fig. 6. For each box, lower line gives min-
imum delay for slow paths/maximum delay for
fast paths, whereas upper line gives their ratio
which indicates how much allowance exist for
these two racing paths. Final two rows in the
table give the run times for the tool and areas
of corresponding designs. For the sample cir-
cuits, verification process takes around one sec-
ond and constructing the data structure takes
around 2 to 5 seconds.

Note that if allowance is set to 2, violations
arise for adder circuit with completion detec-
tion in constraint set 1 at substages 4 & 5 and
in constraint set 2 at substage 5 (slow/fast ra-
tio is smaller than 2 for these substages). For
these violations, calculated delay pads by the
tool are 43, 921 and 1,192 ps respectively, even-
tually correcting violations.

When start, end and optional intermediate
and inhibit points are given along the end-point
polarity, the tool can also verify any timing con-
straint. In addition, the algorithm proposed in
Section 4 is implemented and tested on some
basic examples.

Currently, CAD environment is being devel-
oped to synthesize single-rail data-path circuits
besides dual-rail counterparts. Verification part
can already handle both kind of dapa-paths.

7. Conclusion

A methodology for verifying timing con-
straints in asynchronous circuits and a CAD
tool framework for verification of constraints
and correction of constraint violations for asyn-
chronous circuits have been presented. Viola-
tion correction after layout is important since it
avoids an expensive back-tracing to logic syn-
thesis phase.

Then a new algorithm is proposed for gen-
eral asynchronous circuits for constraint verifi-
cation and violation correction. The algorithm
applies a special sorting on timing constraints
and enables to determine optimal delay padding
to correct violations for interleaved timing con-
straints.

Concealing the idle phase overhead and gen-
eration of fast completion signals are main chal-
lenges in asynchronous data-path circuit design.
In this work, timing constraints are examined in
detail for asynchronous data-path circuits and



Vol. 44 No. 5 Verification and Violation Correction of Timing Constraints 1253

guidelines are extracted to practically cover all
types of data-path circuits. Fine-grain pipelin-
ing is an effective method for concealing idle
phase for dual-rail data-path circuits, but also
bring new constraints to be met and makes tim-
ing analysis more challenging with cycles due to
local completion circuits. The presented CAD
environment also includes automatic generation
of timing constraints for fine-grain pipelined cir-
cuits, their verification and correction of con-
straint violations.

Next step in our work will be the utilization
of the new algorithm and CAD environment for
more sample circuits.
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