
Vol. 44 No. 5 IPSJ Journal May 2003

Regular Paper

JPEG Encoder Design Space Exploration

Using the ASIP Development System: PEAS-III

Shinsuke Kobayashi,† Kentaro Mita,† Yoshinori Takeuchi††

and Masaharu Imai††

In this paper, JPEG encoder application, one of DSP applications, was designed using the
ASIP development system: PEAS-III. Instructions for JPEG encoder, such as DCT instruc-
tion, and butterfly instructions, were added to the initial design. Area, performance, and
power consumption of processors were estimated using generated HDL description, compiler,
and assembler. From experimental results, 12 architectures can be designed in 16 hours,
and designer can select an optimal architecture that matches design constraints considering
hardware cost, clock frequency and execution cycles.

1. Introduction

There are two approaches to realize applica-
tion domain specific embedded systems. One
is to use general purpose processors and ASICs
(Application Specific Integrated Circuits), and
the other is to use ASIPs (Application Specific
Instruction set Processors). One of the advan-
tages of the second approach is that better im-
plementations can be realized by introducing
cost-effective instructions suitable for specific
applications. In the ASIP design, it is also im-
portant to search for a processor architecture
that matches the target application. To achieve
this goal, it is essential to estimate design qual-
ity of architecture candidates that have dif-
ferent instruction sets, pipeline stage counts,
and combinations of hardware resources. Here,
design quality means area, performance, and
power consumption of a design. Because there
are many architectural parameters, there exist
a huge number of processor architecture candi-
dates, which makes it difficult to find an opti-
mal architecture in a short design time. In this
case, the ASIP development system plays an
important role to estimate design quality and
develop target processors.

Conventional approaches to ASIP develop-
ment can be classified into two kinds. One
approach is a “parameterized generic proces-
sor core” such as PEAS-I 1), Satsuki 2), Meta-
Core 3), CASTLE 4), Xtensa 5) and so on. Their
processor models usually have basic instruction

† Graduate School of Engineering and Science, Osaka
University

†† Graduate School of Information Science and Tech-
nology, Osaka University

sets and a synthesizable ASIP description is
generated by adding predefined or user defined
instructions to the basic instruction set. Ar-
chitectures of these processors ease to develop
the parameterized retargettable compiler, but
in many cases have little flexibility on pipeline
structure and instruction variations. Hence, the
variety of architecture candidates by these sys-
tems is limited with respect to pipeline stage
count, instruction format and micro-operation
for each pipeline.

Another approach is based on “proces-
sor specification languages” such as nML 6),
ISDL 7), LISA 8), FlexWare 9), EXPRES-
SION 10), AIDL 11), and Hamabe, et al. 12)’s ap-
proach. The processor specification languages
nML, ISDL, LISA, FlexWare and EXPRES-
SION are originally developed to design a com-
piler, simulator and other tools for software de-
velopment. The instruction behavior and the
structure of the target processor are described
in these specification languages. The compiler
and other tools can be generated using these
languages, but it is difficult to generate syn-
thesizable HDL descriptions from these lan-
guages. Because it is not enough resource spec-
ification including timing specification, control
signal information and so on to generate HDL
descriptions. On the other hand, AIDL and
Hamabe, et al.’s approach are developed to pro-
duce HDL descriptions. The instruction behav-
ior, the timing relations of pipeline stages and
the structure of the processor core are described
in these languages. Using these languages, HDL
descriptions of the target processor can be gen-
erated. However, the modification cost is larger
than that of other approaches based on proces-

1190

Vol. 44 No. 5 JPEG Encoder Design Space Exploration Using PEAS-III 1191

sor specification language, because detail infor-
mation is described when designers use these
languages.

The PEAS-III system 13)∼15) is one of the
ASIP development systems, which generates
not only synthesizable HDL descriptions but
the target compiler and the target assembler.
PEAS-III is based on processor specification
language approach. Hence, wide range of
processor architecture can be described using
the PEAS-III system. The PEAS-III system
has well parameterized resource models, Flexi-
ble Hardware Models (FHM) 16). FHM-DBMS
(DataBase Management System) produces the
resource specification to generate HDL and the
target compiler. When designers would like
to change the features of resources, they only
change the parameters of FHM. Moreover, de-
signers describe processor specification through
the PEAS-III input environment using GUIs.
Resources and other architecture parameters
are specified using GUIs. These features reduce
the modification cost and improve design reuse.
In this paper, JPEG encoder application, one
of the typical DSP applications, was designed
using the ASIP design methodology. Instruc-
tions for JPEG encoder, such as DCT instruc-
tion, and butterfly instructions, were added
to the initial design. Area, performance, and
execution cycles of processors were calculated
using HDL descriptions, compiler, and assem-
bler. From experimental results, various archi-
tectures can be designed in a short time, and de-
signers can select an optimal architecture that
matches design constraints.

The rest of this paper is organized as fol-
lows. In Section 2, SoC design using ASIP is
described. In Section 3, the PEAS-III system,
one of the ASIP development systems, is intro-
duced. The case study and experimental result
are discussed in Section 4, and examined in Sec-
tion 5. Finally, Section 6 concludes this paper
and future work is described.

2. SoC Design Using ASIP

Requirements of embedded systems such as
consumer products, are cost effective architec-
ture and low power. Moreover, rapid technol-
ogy change makes product life cycles short and
makes time-to-market a critical issue for in-
dustries. Time required for design and verifi-
cation are measured in months or years with
high uncertainly. One of the solutions for
this requirement is ASIP (Application Specific

F
le

xi
bi

lit
y

Cost/Performance

Off-the-shelf
General Purpose
Processor

ASIP

ASIC

Fig. 1 Advantage of ASIP solution.

Instruction-set Processor) solution. ASIP is a
programmable processor that is designed for a
specific, well-defined class of applications. An
ASIP is usually characterized by a small, well-
defined instruction-set that is tuned to the crit-
ical inner loops of the application code.

Figure 1 shows advantage of ASIP solu-
tion. The horizontal axis is cost-performance
ratio and the vertical axis is flexibility. Off-
the-shelf general purpose processor like In-
tel Pentium processor has high flexibility, but
cost-performance ratio of the general purpose
processor is low. On the contrary, although
ASIC achieves high cost-performance, ASIC
has lower flexibility. The ASIP has higher flexi-
bility than ASIC has, and achieves higher cost-
performance than the general purpose proces-
sor. Hence, ASIP can be one of the key compo-
nent of SoCs.

On the other hand, the cost of a SoC de-
sign is very expensive. Industry analysts make
much of the rising cost of deep-submicron IC
masks: The cost of a full mask set approaches
$1 million. As a result, it is difficult that design-
ers change the SoC specification and redevelop
chips. ASIP design methods permit painless
workarounds for the design cost problem be-
cause ASIP has flexibility. Hence, flexibility is
a key issue in developing SoC. Although ASIC
cannot satisfy flexibility, ASIP can satisfy flex-
ibility.

In addition, ASIP design methods increase
designer productivity. RTL-based ASIC design
routinely includes bugs because complexity of
ASIC increases. An ASIP based SoC design
method significantly cuts risks of fatal logic
bugs and permits graceful recovery when testers
discover a bug. The reason is that designers

1192 IPSJ Journal May 2003

Architecture
Specification

Input Environment

Flexible
Hardware Model

Flexible
Hardware Model
Management System

Behavior Level

RT Level

Gate Level

Design Quality
Estimator

HDL Generator

Estimation
Report

Layout Level

Application
Program

Object
Code

Architecture
Information

Compiler
Assembler
Simulator
Debugger

Hardware Cost
Max Frequency
Power
Execution Cycle

Cycle Accurate
Model HDL Desc.

Behavior Model
HDL Description

Synthesizable
HDL Description

Software Development
Environment Generator

Fig. 2 Overview of PEAS-III system.

develop software instead of hardware logic in
complex function fields.

3. ASIP Development System: PEAS-
III

PEAS-III (Practical Environment for ASIP
development) is one of the ASIP development
systems. PEAS-III has the following features:
(1) Synthesizable HDL description generation,
(2) Software development environment genera-
tion, (3) Design reuse framework based on Flex-
ible Hardware Model (FHM), and (4) Design
quality estimation at early design phase.

The overview of the PEAS-III system is
shown in Fig. 2. Processor architecture spec-
ification is written in the input environment,
which encourages efficient input. The processor
specification description includes: (1) architec-
ture parameters such as pipeline stage counts,
the number of delayed branch slots, (2) decla-
ration of resources included in the processor,
such as ALUs and register files, (3) instruc-
tion format definitions, (4) behavior and micro-
operation descriptions of instructions, and (5)
interrupt definitions including cause conditions
and micro-operation description of interrupts.
The architecture description is passed from the
input environment to the HDL generator and
the software development environment genera-
tor. The HDL generator and the compiler gen-
erator uses FHM, which is parameterized re-
source model. Since FHM is used in HDL and
compiler generation, designers can change the
characteristics of resource only by changing the

parameters of each resource.
In the compiler generation method of PEAS-

III, special instructions can be added using
Compiler-Known-Functions. Compiler-Known-
Functions directly replace instructions instead
of constructing a usual function call. Designers
can tune processors for the target application
using Compiler-Known-Functions.

It is the advantage of the PEAS-III design
that a processor architect can design the syn-
thesizable HDL and the target compiler rapidly.
Since execution cycles, clock frequency and
hardware cost can be evaluated in the early de-
sign phase, designers can find an optimal archi-
tecture in the short design time.

4. Case Study

4.1 Objective of Case Study
Objective of this case study is to evaluate ef-

fectiveness of ASIP design method and the pro-
posed ASIP development environment. Partic-
ularly, it is evaluated that design space explo-
ration time using the PEAS-III system when
designers develop an application system used in
real world. Target applications of ASIP include
digital signal processing (DSP) such as JPEG,
MPEG, network system, wireless communica-
tion system such as mobile phone. JPEG is one
of the target applications of ASIP, and JPEG is
used for a lot of systems such as digital camera,
mobile phone with camera, and so on. Hence,
JPEG is a good example to confirm effective-
ness of ASIP design method and the proposed
ASIP development environment.

Vol. 44 No. 5 JPEG Encoder Design Space Exploration Using PEAS-III 1193

8 * 8 blocks

Source Image Data

DCT Quantization VLC

Compressed Image
Data

Table
Specification

Table
Specification

DCT based Encoder

Fig. 3 JPEG encoder procedures based on the DCT.

x(0)

x(1)

x(2)

x(3)

x(4)

x(5)

x(6)

x(7)

X(0)

X(4)

X(2)

X(6)

X(1)

X(5)

X(3)

X(7)

-1

-1

-1

-1

-1

-1

-1

-1

-C1_4

C1_4
C1_4

C1_4

C1_4
C1_4

C1_4
-C1_4

S1_8
C1_8
-S3_8

C3_8
S1_16

S5_16

C7_16

C3_16
-S7_16

-S3_16

C5_16

C1_16

MADD3

MADD3

MADD1

MADD1 ADD1ADD2

MADD2

Step1 Step2 Step3 Step4

Fig. 4 Data flow of Chen DCT (1-dimensional 8 points).

4.2 Target Application: JPEG Codec
JPEG is a definition of a still-image com-

pression algorithm established by the JPEG
committee. Figure 3 shows JPEG encoder
procedures based on the DCT. In the encod-
ing process, the input component’s samples are
grouped into 8 × 8 blocks, and each block is
transformed by the DCT into a set of 64 val-
ues referred to as DCT coefficient. The first
element is referred to as the DC coefficient and
the other elements are referred to as the AC
coefficients. Each of the 64 coefficients is then
quantized using one of 64 corresponding values
from a quantization table. After quantization,
the DC coefficient and the 63 AC coefficients
are prepared for Variable Length Coding (VLC)
which compresses the DC and AC coefficients.
In JPEG specification, one of two coding pro-
cedures can be used. One is Huffman encoding
and the other is arithmetic coding.

4.3 Architecture Candidates
Several kinds of parameters are defined in

JPEG specification. In this case study, 8 bit

precision baseline algorithm was selected. Huff-
man coding was selected as VLC and VLD. In
the following section, architecture candidates
are described, and experimental results are ex-
plained.

4.3.1 DCT and IDCT
DCT and IDCT are designed using Chen

DCT algorithm 17), which is one of the famous
algorithm reducing multiplications and addi-
tions. Data flow of Chen DCT is shown in
Fig. 4. Here, x(i) denotes element of input ma-
trix, X(i) denotes transformed element. Ci j
and Si j denote cos(i×π

j) and sin(i×π
j), respec-

tively. Using Chen algorithm, multiplication
times are reduced from 64 to 16, and addition
times are reduced from 56 to 26 in 1 dimen-
sional 8 points DCT. IDCT can be designed us-
ing inverse of DCT. Hence, multiplication and
addition times in IDCT are reduced as much as
those of DCT.

There are several approaches in DCT and
IDCT design.

1194 IPSJ Journal May 2003

• Sequential Instructions Approach
Sequential instructions approach stands for
software design. All of the algorithm is pro-
cessed by software.

• DCT Instruction Approach
DCT instructions approach stands for
hardware unit design. All of the algorithm
is processed by hardware.

• Butterfly Instructions Approach
Butterfly instructions approach stands for
design using fine grain instructions. The
part of the algorithm is processed by hard-
ware, and the other part of the algorithm
is processed by software.

These approaches have trade-offs between
hardware cost and performance.

4.3.2 Quantization
In quantization design, several approaches

exist, which is the same as DCT design. Fig-
ure 5 shows the C source code of quantization.

quantization (short int ∗input,
short int ∗output,
short int ∗qtable) {

short int *inputPtr = input;
for (; inputPtr < input + 64; inputPtr++) {

if (∗inputPtr > 0) {
∗output = (∗inputPtr + (∗qtable >> 1)) /

∗qtable;
} else {

∗output = (∗inputPtr - (∗qtable >> 1)) /
∗qtable;

}
output++; qtable++;

}
}

Fig. 5 C source code of quantization.

reg0 reg1 reg2 reg3 reg4 reg5 reg6 reg7

selector

selector

MADD3MADD2MADD1ADD Block2ADD Block1

Controller

address Unit

Read and Write
base address

Data address

start fin

Data

2 data read/write or
1 data read/write
on 32 bits data bass

Fig. 7 DCT/IDCT Unit.

From Fig. 5, quantization divides the element
by the element of quantization table. Hence,
the performance of divider affects the execution
cycles of quantization. In this case study, the
algorithm of divider was changed.

4.4 Input Image
In this evaluation, a standard image (Fig. 6)

was used as an input image. The image size was
256×256 pixels and the sampling factors of each
component were as follows: horizontal sampling
factors of Y, U, V were 4, 1, 1, and vertical
sampling factor were 4, 1, 1, respectively.

4.5 DCT/IDCT Unit
Figure 7 shows the DCT/IDCT unit

that processes 2 dimensional (2-D) 8 points
DCT/IDCT. The input and output ports of
DCT/IDCT unit consist of as follows: (a) in-
put or output 32-bit data bus, (b) input port
of 32-bit base address for data read/write, (c)
32-bit data address bus, (d) 1-bit calculation
mode signal to change DCT execution or IDCT

Fig. 6 Sample color image (Lenna).

Vol. 44 No. 5 JPEG Encoder Design Space Exploration Using PEAS-III 1195

Idle 1st Step 2nd Step

3rd Step 4th Step

Idle

Second

First

Data Read

Data Write

8 times

8 times

start

end

4 times

4 times

Dimenssion 2 Dimenssion 1

Fig. 8 Finite state machine of DCT/IDCT unit controller.

execution, (e) 1-bit start signal, and (f) 1-
bit fin signal. Functional blocks consist of 8
blocks: 16-bit internal registers, ADD block1,
ADD block2, MADD1, MADD2, MADD3, ad-
dress unit, and controller. ADD block1, ADD
block2, MADD1, MADD2, and MADD3 exe-
cute part of Chen DCT data flow illustrated
in Fig. 4. ADD block1 has 4 input ports (in1,
in2, in3, in4), and 4 output ports (out1, out2,
out3, out4). Each adder calculates using the
following equation: out1 = in1 + in2, out2 =
in1− in2, out3 = −in3+ in4, out4 = in3+ in4.
ADD block2 has 8 input ports (in1, in2, in3,
in4, in5, in6, in7, in8), and 8 output ports (out1,
out2, out3, out4, out5, out6, out7, out8). Each
adder calculates using the following equation:
out1 = in1 + in8, out2 = in2 + in7, out3 =
in3 + in6, out4 = in4 + in5, out5 = in4 − in5,
out6 = in3 − in6, out7 = in2 − in7, out8 =
in1 − in8. MADD1 has 2 input ports (in1,
in2) and 2 output ports (out1, out2). MADD1
unit calculates using the following equation:
out1 = cos(1×π

4) · in1 + cos(1×π
4) · in2, out1 =

cos(1×π
4) · in1 − cos(1×π

4) · in2. MADD2 has 2
input ports (in1, in2) and 2 output ports (out1,
out2). MADD2 unit calculates using the follow-
ing equation: out1 = sin(1×π

8) · in1+cos(1×π
8) ·

in2, out2 = sin(3×π
8) · in1 + cos(3×π

8) · in2,
MADD3 has 4 input ports (in1, in2, in3, in4)
and 4 output ports (out1, out2, out3, out4).
MADD3 unit can change calculation mode to
use the same unit twice in Chen DCT/IDCT
calculation flow. MADD3 unit calculates using
the following equation: out1 = sin(1×π

16) · in1 +

cos(1×π
16) ·in4, out2 = sin(5×π

16) ·in2+cos(5×π
16) ·

in3, out3 = − sin(3×π
16) · in2 + cos(3×π

16) · in3,
out4 = − sin(7×π

16) · in1 + cos(7×π
16) · in4, or

out1 = in1 + in4, out2 = in2 + in3, out3 =
in2 − in3, out4 = in1 − in4. Each value is cal-
culated in 16-bit fixed point arithmetic.

Figure 8 shows the finite state machine of
DCT/IDCT unit. The finite state machine con-
sists of two part. One is 1-D Chen DCT calcu-
lation control part, the other is 2-D DCT cal-
culation control part. In 2-D part, first step
calculates row of matrix and second step cal-
culates column of matrix. In each step, 1-D
Chen DCT is executed 8 times. In 1-D part,
the flow consists of data read, 4 steps execu-
tion illustrated in Fig. 4, and data write. The
DCT/IDCT unit fetches data from the data
memory to the internal registers. When the
DCT/IDCT unit fetches data that is from row
of matrix, one 16-bit value can be fetched us-
ing an address. In column data of matrix, two
16-bit values can be fetched using an address.
Hence, the number of memory accesses when
the DCT/IDCT unit fetches from row of ma-
trix is 8, and the number of memory accesses
when the DCT/IDCT unit fetches from column
of matrix is 4. From this feature, the number
of memory accesses can be reduced when the
DCT/IDCT unit is used. The reason why the
DCT/IDCT unit has 32-bit data bus is that the
data is allocated to the data memory which is
the same memory of ASIP.

1196 IPSJ Journal May 2003

(a) Behavior Description for Compiler Generator

ckf prototype {
void dct (unsigned int , unsigned int);

}

DCT {
operand {

GPR UInt31to0 a;
GPR UInt31to0 b;

}
format { “DCT” “,” a “,” b }
function {
stage(1) { PC.read IMEM.load word

PC.inc IR.read }
stage(2) {GPR.read0 GPR.read1 }
stage(3) { }
stage(4) { DCT0.dct }
stage(5) { }
}
behavior {

dct (a , b);
}

}

(b) Micro-Operation Description

stage(1){ IR := IMEM[PC]; PC.inc();},
stage(2){ $op1 := GPR.read0(rs); $op2 := GPR.read1(rt);},
stage(3){},
stage(4){$dummy := DCT0.dct($op1,$op2);},
stage(5){}

(c) Bit Field
000000 rs rt 0000000000 111111

Fig. 9 DCT instruction specification of PEAS-III.

4.6 Additional Instructions
• DCT

DCT instruction executes the procedure of
DCT. This instruction uses the DCT unit
described in section 4.5. Instruction set
specification for PEAS-III is described in
Fig. 9. In application written in C lan-
guage, DCT is described using function
call. In PEAS-III specification, Compiler-
Known-Function “dct” is defined, and the
behavior of DCT instruction is defined us-
ing “dct” function. Micro-Operation de-
scription defines pipeline execution. DCT
unit is executed at pipeline stage 4.

• MADD1
MADD1 instruction calculates the MADD1
block in Fig. 4. MADD1 instruction takes
2 operands as input and write back to the
same operand registers. Instruction set
specification for PEAS-III is described in
Fig. 10. In application written in C lan-
guage, MADD1 is described using function
call. In PEAS-III specification, Compiler-
Known-Function “madd1” is defined, and
the behavior of MADD1 instruction is de-
fined using “madd1” function. MADD1
unit is executed at pipeline stage 3.

• MADD2
MADD2 instruction calculates the MADD2
block in Fig. 4. MADD2 instruction takes
2 operands as input and write back to the
same operand registers. Instruction set
specification for PEAS-III is described in

(a) Behavior Description for Compiler Generator

ckf prototype {
void madd1 (unsigned int , unsigned int);

}

MADD1 {
operand {

GPR UInt15to0 a;
GPR UInt15to0 b;

}
format { “MADD1” “,” a “,” b }
function {
stage(1) { PC.read IMEM.load word

PC.inc IR.read }
stage(2) {GPR.read0 GPR.read1 }
stage(3) {MADD1U0.madd }
stage(4) { }
stage(5) {GPR.write0 GPR.write1 }
}
behavior {

madd1 (a , b);
}

}

(b) Micro-Operation Description

stage(1){ IR := IMEM[PC]; PC.inc();},
stage(2){ $op1 := GPR.read0(rs); $op2 := GPR.read1(rt);},
stage(3){($result1, $result2) := MADD1U0.madd($op1, $op2);},
stage(4){ },
stage(5){GPR.write0($result1, rs); GPR.write1($result2, rt); }

(c) Bit Field
000000 rs rt 0000000000 011110

Fig. 10 MADD1 instruction specification of
PEAS-III.

(a) Behavior Description for Compiler Generator

ckf prototype {
void madd2 (unsigned int , unsigned int);

}

MADD2 {
operand {

GPR UInt15to0 a;
GPR UInt15to0 b;

}
format { “MADD2” “,” a “,” b }
function {
stage(1) { PC.read IMEM.load word

PC.inc IR.read }
stage(2) {GPR.read0 GPR.read1 }
stage(3) {MADD2U0.madd }
stage(4) { }
stage(5) {GPR.write0 GPR.write1}
}
behavior {

madd2 (a , b);
}

}

(b) Micro-Operation Description

stage(1){ IR := IMEM[PC]; PC.inc();},
stage(2){ $op1 := GPR.read0(rs); $op2 := GPR.read1(rt);},
stage(3){($result1, $result2) := MADD2U0.madd($op1, $op2);},
stage(4){ },
stage(5){GPR.write0($result1, rs); GPR.write1($result2, rt);}

(c) Bit Field
000000 rs rt 0000000000 011111

Fig. 11 MADD2 instruction specification of
PEAS-III.

Fig. 11. In application written in C lan-
guage, MADD2 is described using function
call. In PEAS-III specification, Compiler-
Known-Function “madd2” is defined, and
the behavior of MADD2 instruction is de-
fined using “madd2” function. MADD2
unit is executed at pipeline stage 3.

4.7 Compiler Generation for Target
Processors

The target compiler is generated using pro-

Vol. 44 No. 5 JPEG Encoder Design Space Exploration Using PEAS-III 1197

Table 1 Processor cores and their execution cycles of JPEG application.

Multiplier Divider Area Max Freq. Exec Cycles Power
(K gates) (MHz) (M cycles) (mW/MHz)

1. Normal seq(32) seq(34) 39.43 151 61.28 2.40
2. Normal seq(32) array 52.1 22.5 51.19 2.44
3. Normal array seq(34) 57.59 44.5 44.54 2.48
4. Normal array array 70.19 43.3 34.45 2.53
5. Butterfly seq(32) seq(34) 57.3 149 53.57 2.48
6. Butterfly seq(32) array 70.0 23.0 43.48 2.52
7. Butterfly array seq(34) 75.5 44.5 43.52 2.56
8. Butterfly array array 88.0 23.0 33.43 2.61
9. DCT seq(32) seq(34) 71.17 151 39.62 2.49
10. DCT seq(32) array 89.35 22.4 29.53 2.54
11. DCT array seq(34) 83.86 43.3 36.25 2.58
12. DCT array array 101.93 43.3 26.17 2.62

Library: 0.14 CMOS Standard Cell Library.

cessor specification partly represented in previ-
ous section. The target compiler produced by
the proposed compiler generator executes the
following steps: (1) Parsing the source code,
(2) Machine independent optimization, (3) Syn-
tax tree rewriting and pattern matching, (4)
Register allocation and Spill code insertion,
(5) Instruction scheduling, (6) Machine depen-
dent optimization, and (7) Output assembly
code. When special instructions such as DCT,
MADD1 and so on are added to the processor
specification, the proposed compiler generation
method produces the following information: (a)
function prototypes for C parser, (b) mapping
rules for special instructions, and (c) instruc-
tion throughput and latency table for instruc-
tion scheduling. When parser reads the special
instructions written in target application, the
generated compiler makes CKF internal repre-
sentation for compiler. When back-end of com-
piler generates assembler, target instruction is
emitted using mapping rule for CKF. For exam-
ple, DCT function is read by the compiler and
the internal representation “xirCKF” is gener-
ated, which means that extended internal repre-
sentation “CKF”. The “xirCKF” has attributes
that include operands and CKF ID. The map-
ping rule for “xirCKF” specifies assembly for-
mat which is specified in format section. For
instance, in DCT instruction in Fig. 9, the map-
ping rule of DCT instruction includes instruc-
tion string “DCT” and the operand order of
DCT instruction “a” and “b”. Furthermore, in-
struction latency and throughput are calculated
using resource usage described in function sec-
tion of instruction behavior specification. Re-
source throughput and latency can be obtained
from FHM-DBMS. The proposed compiler gen-
erator traces the resource connection graph and

calculates instruction throughput and latency.
4.8 How to Estimate Design Quality
Hardware Cost and maximum clock fre-

quency were estimated using Synopsys De-
sign Compiler. Input of Design Compiler
was synthesizable HDL generated by PEAS-III.
0.14 µm CMOS standard cell library (voltage
1.5 V) was used for logic synthesis. Execution
cycle was estimated using Synopsys Scirocco
that is a cycle-based HDL simulator. Dynamic
power was estimated by gate-level simulation
using Mentor Graphics ModelSim and Synop-
sys Power Compiler.

4.9 Processor Organization
Processor organization in this case study is

shown in Table 1. Normal denotes base in-
struction set that is sub set of MIPS-R3000
instruction set. Butterfly denotes instruction
set added MADD1, and MADD2 instructions.
DCT denotes instruction set added DCT in-
struction. The hardware algorithm of multi-
plier is sequential type that executes 32 cycles
and array type that executes 1 cycle. On the
other hand, the hardware algorithm of divider
is sequential type that executes 34 cycles, and
array type that executes 1 cycle.

4.10 Trade-offs Between Hardware
Cost and Performance

Figure 12 shows trade-offs between hard-
ware cost and execution cycles when JPEG
encoder has been executed. Horizontal axis
is hardware cost, and vertical axis is execu-
tion cycles. The number of each plot point in
Fig. 12 corresponds to each processor in Table 1.
From Fig. 12, the trade-off between hardware
cost and execution cycles exists when instruc-
tions are added and the hardware algorithms
are changed.

Figures 13 and 14 show trade-offs between

1198 IPSJ Journal May 2003

Fig. 12 Trade-offs between hardware cost and execu-
tion cycles when JPEG encoder was executed.

Fig. 13 Trade-offs between hardware cost and execu-
tion time when JPEG encoder was executed
(66 MHz).

Fig. 14 Trade-offs between hardware cost and execu-
tion time when JPEG encoder was executed
(40 MHz).

hardware cost and execution time when JPEG
encoder has been executed. Horizontal axis is
hardware cost, and vertical axis is execution
time. In Fig. 13, execution time was calculated
using execution cycles and clock frequency that
was 66 MHz, and in Fig. 14, execution time was
calculated using execution cycles and clock fre-
quency that was 40 MHz. As shown in these
figures, the number of architecture candidates
was changed because the max clock frequency
of each architecture candidate ranges between
about 20 MHz and 150 MHz. These results

Fig. 15 Trade-offs between hardware cost and power
consumption when JPEG encoder was exe-
cuted within 0.5 second.

Fig. 16 Trade-offs between hardware cost and power
consumption when JPEG encoder was exe-
cuted within 1 second.

show that designers have to consider not only
the execution cycles of an application, but also
the clock frequency when architecture candi-
dates are selected. In Fig. 13, when a design
constraint is that hardware cost is under 60 K
gates, the processor No.5 in Table 1 is selected
as the optimal architecture.

4.11 Trade-offs Between Hardware
Cost and Power Consumption

Figures 15 and 16 show trade-offs between
hardware cost and power consumption when
JPEG encoder has been executed. The hori-
zontal axis is hardware cost, and the vertical
axis is dynamic power. In Fig. 15, JPEG En-
coder was executed within 0.5 second, and in
Fig. 16, JPEG Encoder was executed within 1
second. In Fig. 15, the frequency of processor
1 was about 120 MHz, the frequency of pro-
cessor 9 was about 90 MHz. Hence, the dy-
namic power of processor 1 in Fig. 15 was about
290 mW, and the dynamic power of processor
9 was about 190mW. If design constraint of
power consumption is 200mW, the processor
9 can be selected, but if design constraint of
power consumption is 300mW, processor 1 can
be selected because the hardware cost of pro-

Vol. 44 No. 5 JPEG Encoder Design Space Exploration Using PEAS-III 1199

Table 2 Design time.

Time (hour)
C source code design 130
DCT unit design 60
Total 190

Base processor design 12
Registration of DCT unit and Convo-
lution blocks to FHM-DBMS

1

Instruction addition 1
Hardware algorithm selection 0.1
Others 150
Total 164.1

cessor 1 is smaller than that of processor 9.
Furthermore, if design constraint of execu-

tion time is within 1 second, the trade-off be-
tween hardware cost and power consumption is
Fig. 16. In Fig. 16, processors 5 and 7 cannot
be architecture candidates.

4.12 Design Time
The design time of the case study is shown in

Table 2. From Table 2, about ten hours were
spent using the PEAS-III system. Here, the
reason why the hardware algorithm selection
time is short is only changing FHM parameters
to select hardware algorithm. From this result,
the hardware description and the target com-
piler can be designed in a short design time. 130
hours were spent designing JPEG codec using
C source code. 60 hours were spent DCT unit
design. Others include debug time and simula-
tion time and synthesizing time to evaluate the
processor core. It seems that the time of JPEG
codec application design and DCT unit design
is as long as other environments.

5. Discussion

The experimental result shows that architec-
ture candidates are changed when clock fre-
quency or time constraint are changed. From
this result, designers must consider not only
the execution cycles of a target processor but
also the max frequency of a target proces-
sor and power consumption. For example, in
Fig. 15, processor 5 can be an architecture can-
didate. However, in Fig. 16, processor 5 is not
an architecture candidate because processor 3
can achieve low power and the same hardware
cost. In the PEAS-III design, software devel-
opment environment and designed processor’s
HDL descriptions are generated at the same
time. Hence, designers can consider the execu-
tion cycles of application, the clock frequency of
processor, hardware cost and power consump-
tion efficiently.

When an application such as DSP applica-
tion is designed using ASIPs, designers con-
sider trade-offs among hardware cost, perfor-
mance and power consumption. Generally, it
is said that the design time of hardware de-
scription, compiler and assembler require sev-
eral months or at least several weeks. How-
ever, it is too long to meet a requirement of
the design time in design space exploration.
On the other hand, when designers use other
ASIP development systems that have been ex-
plained in section 1, either software develop-
ment environment or hardware description is
produced in a short time, but the other part, for
example processor cores for software develop-
ment environment, must be developed by them-
selves. The advantage of the PEAS-III system
is that compiler, assembler and hardware de-
scription are generated at the same time. Fur-
thermore, the modification cost of the design is
low, and hardware modules such as DCT unit
can be reused easily, because designers only se-
lect modules from FHM-DBMS as resources.
Using the PEAS-III system, designers can eval-
uate processors and select an optimal architec-
ture in a short design time.

The architecture candidates described in Sec-
tion 4.3 were selected from the feature of C
source code or data flow. Although a lot of can-
didates can be considered, several architecture
candidates that were expected to improve pro-
cessor performance were designed to evaluate
the potential of PEAS-III design method in this
case study. Generally, architecture candidates
selection is very difficult. Hence, the profiling
environment to select architecture candidates
and architecture selection method are needed
to reduce design cost and to get better solution.

In Table 2, the time of others includes debug
time and simulation time of target processor.
To reduce this part, a source code debugger and
a faster simulator are desirable.

6. Conclusion

In this paper, JPEG encoder design space
exploration using the PEAS-III system is de-
scribed, which is one of the ASIP develop-
ment system. Instructions for JPEG encoder,
such as DCT instruction, and butterfly instruc-
tions, were added to the initial processor. Area,
performance, and dynamic power of processors
were calculated using the generated HDL de-
scription, compiler, and assembler. From ex-
perimental results, 12 architectures can be de-

1200 IPSJ Journal May 2003

signed in a short time. Moreover, the design
quality of each processor including hardware
cost, execution cycles of application, clock fre-
quency, and power consumption was evaluated
using the PEAS-III system efficiently. Future
work includes instruction set simulator, profiler,
and debugger generation, and architecture can-
didates selection method.

Acknowledgments The authors are grate-
ful to the members of PEAS Project. The
authors also would like to express thanks to
Mr. Nobuyuki Hikichi from SRA (Software Re-
search Associates Inc.). Moreover, the authors
are also grateful to Japan Novel Corp. The
compiler development kit CoSy is provided by
ACE Associated Compiler Experts bv. This
work was partly supported by STARC (Semi-
conductor Technology Academic Research Cen-
ter), and one of tools was supported by Mentor
Graphics higher education program.

References

1) Sato, J., Alomary, A.Y., Honma, Y., Nakano,
T., Shiomi, A., Hikichi, N. and Imai, M.:
PEAS-I: A Hardware/Software Codesign Sys-
tem for ASIP Development, IEICE Trans.
Fundamentals, Vol.E77-A, No.3, pp.483–491
(March 1994).

2) Shackleford, B., Yasuda, M., Okushi, E.,
Koizumi, H., Tomiyama, H. and Yasuura, H.:
Satsuki: An Integrated Processor Synthesis and
Compiler Generation System, IEICE Trans.
Inf. & Syst., Vol.E79-D, No.10, pp.1373–1381
(Oct. 1996).

3) Yang, J.-H., Kim, B.-W., Nam, S.-J., Cho, J.-
H., Seo, S.-W., Ryu, C.-H., et al.: MetaCore:
An Application Specific DSP Development Sys-
tem, 35th DAC, pp.800–803 (1998).

4) Campasano, R. and Wilberg, J.: Embedded
System Design, Design Automation for Embed-
ded Systems, Vol.1, No.1-2, pp.5–50 (Jan.1996).

5) Tensilica: Xtensa. http://www.tensilica.com
6) Fauth, A.: Beyond tool-specific machine de-

scriptions, Code Generation for Embedded Pro-
cessors, pp.138–152, Kluwer Academic Pub-
lishers (1995).

7) Hadjiyiannis, G., Russo, P. and Devadas, S.: A
Methodology for Accurate Performance Eval-
uation in Architecture Exploration, 36th De-
sign Automation Conference, pp.927–932 (June
1999).

8) Pees, S., Hoffmann, A., Zivojnovic, V. and
Meyr, H.: LISA — Machine Description Lan-
guage for Cycle-Accurate Models of Pro-
grammable DSP Architecture, 36th Design Au-
tomation Conference, pp.933–938 (1999).

9) Paulin, P.G., Liem, C., May, T.C. and
Sutawala, S.: FlexWare: A Flexible Firmware
Development Environment for Embedded Sys-
tems, Code Generation for Embedded Proces-
sors, pp.65–84 (1995).

10) Halambi, A., Grun, P., Ganesh, V., Khare,
A., Dutt, N. and Nicolau, A.: EXPRESSION:
A Language for Architecture Exploration
through Compiler/Simulator Retargetability,
DATE 99, pp.485–490 (March 1999).

11) Morimoto, T., Saito, K., Nakamura, H., Boku,
T. and Nakazawa, K.: Advanced Processor
Design Using Hardware Description Language
AIDL, ASP-DAC’97, pp.387–390 (1997).

12) Hamabe, M., Nose, A., Togawa, N., Yanagi-
sawa, M. and Ohtsuki, T.: A Generation Sys-
tem for Hardware Description of Pipelined Pro-
cessors, Tech. Report of IEICE, VLD97-117,
pp.33–40 (1997) (in japanese).

13) Itoh, M., Higaki, S., Sato, J., Shiomi, A.,
Takeuchi, Y., Kitajima, A. and Imai, M.:
PEAS–III: An ASIP design environment, Proc.
2000 IEEE International Conference on Com-
puter Design: VLSI in Computers & Processors
(ICCD2000), pp.430–436 (Sept. 2000).

14) Kobayashi, S., Mita, K., Takeuchi, Y. and
Imai, M.: Design Space Exploration for DSP
Applications using the ASIP Development Sys-
tem PEAS-III, Proc. IEEE International Con-
ference on Acoustics, Speech, and Signal Pro-
cessing, Vol.3, pp.3168–3171 (May 2002).

15) Kobayashi, S., Takeuchi, Y., Kitajima, A. and
Imai, M.: Compiler Generation in PEAS-III: an
ASIP Development System, SCOPES 2001, St.
Goal, Germany (March 2001).

16) Takeuchi, Y., Ueda, K., Yamane, Y., Shiomi,
A. and Imai, M.: Flexible Hardware Model: A
Hardware Model for IP Reuse and its Database
Management System FHM-DBMS, Technical
Report of IEICE, Vol.VLD2002-119, pp.221–
226 (Nov. 2002) (in japanese).

17) Chen, W.H., Smith, C.H. and Fralick, S.C.:
A fast computational algorithm for the dis-
crete cosine transform, IEEE Trans.Commun.,
Vol.COM-25, pp.1004–1009 (Sept. 1977).

(Received October 16, 2002)
(Accepted March 4, 2003)

Vol. 44 No. 5 JPEG Encoder Design Space Exploration Using PEAS-III 1201

Shinsuke Kobayashi re-
ceived his M.E. degree from Os-
aka University in 2000. He is
currently a doctoral candidate
in the Department of Informat-
ics and Mathematical Sciences,
Graduate School of Engineering

Science at Osaka University. His research inter-
ests include software development environment
generation for ASIPs, VLSI design, processor
architecture and VLSI CAD. He is a member
of IEEE CAS Society, ACM SIGDA, and IE-
ICE.

Kentaro Mita received his
B.E. degree from Osaka Uni-
versity in 2001. He is cur-
rently a master’s candidate in
the Department of Informat-
ics and Mathematical Sciences,
Graduate School of Engineering

Science at Osaka University. His research inter-
ests include software development environment
generation for ASIPs.

Yoshinori Takeuchi received
his B.E., M.E. and Dr. Eng.
degrees from Tokyo Institute of
Technology in 1987, 1989 and
1992, respectively. He is cur-
rently an Associate Professor of
the Graduate School of Engi-

neering Science at Osaka University. His re-
search interests include digital signal process-
ing, VLSI design and VLSI CAD. He is a mem-
ber of IEEE of SP, CAS, and SSC Society, and
IEICE.

Masaharu Imai received his
B.S., M.S., and Ph.D. de-
grees from Nagoya University,
Nagoya, Japan in 1974, 1976,
and 1979, respectively. He
joined the Department of Infor-
mation and Computer Sciences

at Toyohashi University of Technology in 1979.
He was a visiting Assistant Professor at the Uni-
versity of South Carolina, SC, U.S.A. from 1984
to 1985. Since 1996, he has been with the De-
partment of Informatics and Mathematical Sci-
ence, Graduate School of Engineering Science,
Osaka University, where he is currently a pro-
fessor. Since 1991, he has been working for the
Standardization of VHDL under IEEE/DASC
and EIAJ (Electronic Industries Association of
Japan). His research interests include HW/SW
Codesign and VLSI architecture. He is a mem-
ber of IEICE of Japan, IPSJ, IEEE, and ACM.

