
Texture-Based Storage of Tracked Areas for Localized Stylization of View-Dependent Lines
Extracted from 3D Models

Luis Cardona Suguru Saito
Graduate School of Information Science and Engineering, Tokyo Institute of Technology

1 Introduction

We propose a method to stylize individual lines by
storing the ID of each line in a texture map as an
area that can be used to recover its properties after
arbitrary camera movement. As the camera position
changes and view-dependent lines move across the
surface, we track each line in order to extract and
store the areas of the surface in which they appear.
We call this region the tracked area of the line. Addi-
tionally, we provide a method for line segmentation
of occluding contours[1] and suggestive contours[2, 3]
as well as an user interface to select and stylize indi-
vidual lines.

In our algorithm, we divide the contour lines at in-
flection points in order to segment them in a way
that is better suited for localized stylization as well
as to better approximate artist strokes. We also op-
timize the line tracking process by making use of the
Gaussian curvature to separate the elliptic and hy-
perbolic areas of the surface. The results obtained in
this paper show how each line only appears in a lim-
ited area of the surface corresponding to its tracked
area and how we can store this data in a texture
map. Finally, we highlight the achievements of our
system for localized stylization of the contour lines
of 3D models.

2 Algorithm

2.1 Line segmentation

The apparent curvature κapp is the curvature of the
contours in image-space[4]. κapp is positive at convex
parts of a contour, negative in the concave parts and
zero at inflections. Koenderink[1] described the re-
lationship between the apparent curvature κapp and
the Gaussian curvature K as follows:

κapp =
dK

κr
(1)

with d being the distance to the camera and κr the
radial curvature.

Since the visible occluding contours only appear
where κr is positive, both κapp and K have the same
sign. Consequently, we use K instead of κapp to di-
vide the contours at inflections(where K = 0).
In the case of suggestive contours, the lines only ap-
pear at hyperbolic regions(where K < 0). As result,
we can not segment these lines in the same way as
occluding contours.

2.2 Line tracking

One of the main problems we have to face is that for
view-dependent lines, the shape and position of each
line changes from frame to frame. Since they usually

appear in different triangles compared to the previ-
ous frame, tracking becomes necessary to be able to
recognize them as the same line.

In our method, we check the squared distance of both
start and end of a given line with all terminal points
of the lines of the next frame. For the line currently
being checked, we define the points sk and ek as the
start and end points respectively. A line in the frame
k is considered the same as a line in frame k − 1 if
the following conditions are fulfilled:

• sk and ek are matched to the same line in frame
k − 1

• s and e are matched to different terminal points,
i.e sk−1 6= ek−1

2.3 Gaussian curvature areas

We segment the surface using the sign of the Gaus-
sian curvature to separate the elliptic and the hyper-
bolic parts of the model (Figure 1). Consequently, we
can optimize the tracking process by checking only
the lines contained in the same Gaussian curvature
area. We make use of the connectivity data of the tri-
angles as well as the zero-crossings of K to determine
the ID at each vertex. Afterwards, we pass the K
zero-crossing data to a fragment shader to assign an
unique color for each ID. This shader also separates
the IDs of the triangles containing a zero-crossing of
K by assigning different colors to each side of the
zero-crossing. Additionally, since the Gaussian cur-
vature is view-independent, the segmentation pro-
cess can be pre-computed (Figure 2).

Figure 1: Gaussian curvature areas separated by the
boundary where K = 0 (red)

2.4 Tracked areas

As the camera position changes, view-dependent
lines move across the surface until they eventu-
ally merge with other lines or completely disappear.
Therefore, contour lines can’t be tracked at all view-
points and by consequence, it is essential to be able
to store and retrieve their IDs after arbitrary cam-
era movements. Since contour lines can only appear
around a limited area, we store their IDs in a color-
coded texture map containing the regions of the sur-
face where each line has previously appeared (Fig-
ure 4). For a given line, we retrieve the ID from
the texture map only if both of its terminal points

Copyright 2013 Information Processing Society of Japan.
All Rights Reserved.4-281

3ZC-7

情報処理学会第75回全国大会

Figure 3: A 3D model without stylization (up) and with localized stylization (down) as the viewpoint changes

Figure 2: Pre-computed segmentation using the sign
of the Gaussian curvature K

and its center point are in a the same tracked area.
Since these areas can be used to identify each line,
pre-computing all the areas could eventually make
tracking unnecessary.

Figure 4: Five lines of a 3D model as the viewpoint
changes(up) and the evolution of the corresponding
tracked areas

3 Results

In our implementation, the user can select each line
and change its properties. The process to stylize
one line only needs to be done for one viewpoint
because its properties are preserved as the camera
moves. As result, compared to previous stylization
approaches[5, 6], our system not only enables the
user to stylize individual lines but also frees him
from the tedious process of customizing them for
each viewpoint. For an experienced user, the whole

process of stylizing the contour lines of the model
shown in Figure 3 can be done in about one minute.

4 Conclusion and Future Work

We have proposed a method to store in a texture
map the IDs of contour lines for localized styliza-
tion of both occluding contours and suggestive con-
tours. However, future approaches should imple-
ment more robust tracking methods to prevent in-
correct matches between two different lines. Our
system only provides control over the line thickness
and therefore we should also extend the range of cus-
tomizable properties. In addition, given that dif-
ferent lines may have common regions where they
can appear, we should add support for overlapping
tracked areas. Finally, the correlation between the
lines in object-space and their image-space counter-
part could be improved to better match how artists
draw them in real line drawings.

References

[1] J.J. Koenderink et al. What does the occluding con-
tour tell us about solid shape. Perception, 13(3):321–
330, 1984.

[2] Doug DeCarlo, Adam Finkelstein, Szymon
Rusinkiewicz, and Anthony Santella. Sugges-
tive contours for conveying shape. ACM Trans.
Graph., 22(3):848–855, July 2003.

[3] Doug DeCarlo, Adam Finkelstein, and Szymon
Rusinkiewicz. Interactive rendering of suggestive con-
tours with temporal coherence. In Proceedings of the
3rd international symposium on Non-photorealistic
animation and rendering, NPAR ’04, pages 15–145,
New York, NY, USA, 2004. ACM.

[4] Szymon Rusinkiewicz, Forrester Cole, Doug DeCarlo,
and Adam Finkelstein. Line drawings from 3d mod-
els. In ACM SIGGRAPH 2008 classes, SIGGRAPH
’08, pages 39:1–39:356, New York, NY, USA, 2008.
ACM.

[5] Robert D. Kalnins, Lee Markosian, Barbara J. Meier,
Michael A. Kowalski, Joseph C. Lee, Philip L. David-
son, Matthew Webb, John F. Hughes, and Adam
Finkelstein. Wysiwyg npr: drawing strokes directly
on 3d models. ACM Trans. Graph., 21(3):755–762,
July 2002.

[6] Stéphane Grabli, Emmanuel Turquin, Frédo Durand,
and François X. Sillion. Programmable rendering of
line drawing from 3d scenes. ACM Trans. Graph.,
29(2):18:1–18:20, April 2010.

Copyright 2013 Information Processing Society of Japan.
All Rights Reserved.4-282

情報処理学会第75回全国大会

