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Threshold Ring Signature Scheme Based on the Curve

Hidenori Kuwakado† and Hatsukazu Tanaka†

Rivest, Shamir, and Tauman have proposed the ring signature scheme, which makes it
possible to specify a group without revealing which member signed a message. Bresson, Stern,
and Szydlo have shown a (k, n) threshold ring signature scheme. It is possible to convince a
verifier that at least k members in the n-member group signed a message without revealing
which k members signed the message. In this paper, we propose a new (k, n) threshold ring
signature scheme. While the previous schemes form a ring of individual signatures, our scheme
forms a curve of individual signatures. Our scheme is more efficient than the scheme shown
by Bresson, et al. Moreover, we show that ElGamal’s signature scheme, which is not based
on the trapdoor one-way permutation, is available in the threshold ring signature.

1. Introduction

Digital signature schemes are primitive tools
to achieve authenticated communication. Since
the concept of digital signatures was proposed
by Diffie and Hellman4), a lot of effort has been
devoted to achieving secure digital signature
schemes. As a result, digital signatures with re-
markable properties have been developed. For
example, group signatures have the following
properties3): (i) a verifier can verify that one of
group members signed a message, (ii) the veri-
fier cannot discover which group member signed
it. It seems difficult to achieve such properties
with handwriting signatures. Thus, digital sig-
natures are superior to handwriting signatures
from the viewpoint of functional respects.

Rivest, et al.9) have proposed a concept of
ring signatures, and they have shown its imple-
mentation (called the RST scheme). The ring
signature is one of group signatures. The ring
signature enables a signer to make a group sig-
nature without special preparation and other
members’ cooperation. The ring signature pro-
vides an elegant way to leak authoritative se-
crets anonymously. The ring signature assumes
that the number of signers is one.

Bresson, et al.1) have proved that a secure
ring signature is constructable without an ideal
cipher. Moreover, they have shown a (k, n)
threshold ring signature scheme (called the BSS
scheme); k and n are the number of signers and
that of group members respectively, the veri-
fier can verify the message and the number of
signers, and the verifier cannot know which k
group members signed the message. In the case
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of leaking secrets, information on the number
of signers is important for the verifier because
more group members sign the message, more
credible the message is.

In this paper, we propose a new (k, n) thresh-
old ring signature scheme. While the RST
scheme and the BSS scheme geometrically make
a ring of individual signatures, the proposed
scheme makes a curve of individual signatures.
The proposed scheme is more efficient than
the BSS scheme. Moreover, we show that El-
Gamal’s signature scheme is available in the
threshold ring signature.

1.1 Related Work
The properties of the ring signature are sum-

marized below9). The ring signature assumes
that the number of signers is one.
( 1 ) The ring signature makes it possible to

specify a set of possible signers with-
out revealing which member signed a
message. Namely, the ring signature is
signer-ambiguous.

( 2 ) The ring signature is setup-free; the
signer does not need the knowledge, con-
sent, or assistance of the other members.
All the signer needs is knowledge of their
regular public keys.

The notion of ring signatures is not completely
new, but previous references did not explicitly
formalize the notion, and proposed inefficient
constructions9). For example, Camenisch’s
scheme2) may be viewed as a ring signature
scheme.

The RST scheme has the above two proper-
ties. The RST scheme is two to three orders
of magnitude faster than Camenisch’s scheme.
The RST scheme requires all the members
to use signature schemes based on trapdoor
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one-way permutations, e.g., the RSA signature
scheme8).

The BBS scheme is the (k, n) threshold ver-
sion of the RST scheme. The BBS scheme uti-
lizes a super ring and sub rings. The super ring
proves that at least one split that consists of
sub rings has been solved. For the other splits,
one has to simulate a correct ring signature for
every unsolved sub ring. In order to generate
proper sub rings, the signers use the complete
partitioning system. Thus, the BSS scheme is
the natural extension of the RST scheme. The
objective of the BSS scheme is same as that
of our scheme. Hence, we mainly compare our
scheme with the BSS scheme with respect to
the efficiency.

Naor6) has combined deniable authentica-
tions and ring signatures, and achieved deni-
able ring authentications, which have the deni-
ablity and the signer anonymity. The efficiency
of deniable ring authentications is comparable
to that of ring signatures (within multiplicative
constant). Naor discussed the extension of the
number of signers; Naor’s scheme can authenti-
cate the statement that at least k signers signed
the message.

Since ring signature schemes use individ-
ual regular signature schemes, ring signature
schemes extend domains of the individual veri-
fication functions to a large common domain.
Ohkubo, et al.7) have constructed ring sig-
nature schemes without the domain exten-
sion by using hash functions (called the OASI
schemes). The OASI schemes assume that the
number of signers is one.

1.2 Contribution of This Work
In this paper, we propose a new (k, n) thresh-

old ring signature scheme. The comparison
with previous schemes are summarized below.

Comparison with the RST scheme The
RST scheme enables the verifier to verify that
at least one ring member signed the message.
Even if two ring members signed the message,
the verifier cannot verify the number of sign-
ers because of the structure of the ring. In
the case of leaking secrets, information on the
number of signers is important for the verifier.
Our scheme enables the verifier to verify that at
least k ring members signed the message. In or-
der to achieve a (k, n) threshold ring signature
scheme, we use a curve instead of the ring. The
construction of our scheme is applicable to not
only the RSA scheme but also ElGamal’s signa-

ture scheme5). The disadvantage of our scheme
is the speed of the signing and the verification.
Our scheme is at least two times as slow as the
RST scheme.

Comparison with the BSS scheme The
objective of the BSS scheme is similar to that
of our scheme. The BSS scheme is a ring sig-
nature scheme with ad-hoc access structure in-
cluding the (k, n) threshold access structure.
However, their constructions are completely dif-
ferent; while the BSS scheme makes plural rings
of individual signatures, our scheme makes the
curve of individual signatures. Our scheme is
more efficient than the BSS scheme as follows.
The size of a signature of our scheme is O(n),
and that of the BSS scheme is O(2kn log n).
With respect to the number of computations of
individual signatures, our scheme is O(n), and
the BSS scheme is O(2kn log n). Specifically,
when a modulus of the RSA function is a 1024-
bit number, its exponent is 3, and k ≥ 10, the
time for generating a signature of our scheme is
shorter than that of the BSS scheme. The time
for verifying a signature of our scheme is always
shorter than that of the BSS scheme.

Comparison with Naor′s scheme Since
Naor’s scheme is interactive, some mechanism
of anonymous routing (e.g., MIX-net) is re-
quired for achieving the anonymity. Since our
scheme is non-interactive, our scheme does not
require such a mechanism. Our construction is
completely different from Naor’s construction.

Comparison with Camenisch′s scheme
Our scheme is setup-free. Namely, the signers
do not need the knowledge, consent, or assis-
tance of non-signers. All the signers need is
knowledge of regular signature schemes of non-
signers. Camenisch’s scheme is not completely
setup-free. Although Camenisch’s scheme is
based on the discrete logarithm problem, our
scheme can use not only the discrete logarithm
problem (DLP) but also the factoring problem
as the basis problem.

Comparison with the OASI scheme
While the OASI schemes are (1, n) threshold
ring signature schemes, our scheme is a (k, n)
threshold ring signature scheme. One of the
OASI schemes uses domains of individual veri-
fication functions instead of the large common
domain. We show the schemes based on the do-
mains that are smaller than any domains of the
individual verification functions. In Ref. 7), the
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DLP-based ring signature and the RSA-based
ring signature were discussed separately. We
show that ElGamal-based members and RSA-
based members can exist together.

The organization of this paper is as follows.
In Section 2, we describe definitions and the
RST scheme. The method for extending do-
mains of trapdoor permutations to a common
domain is also used in our scheme. In Sec-
tion 3, we propose a (k, n) threshold signature
scheme. We prove that the anonymity of signers
is unconditionally secure, and the forgery is as
hard as the forgery of the individual signature
schemes under the random oracle model. In
Section 4, we first improve the efficiency of our
scheme by decreasing the size of the common
domain. Next, we propose a (k, n) threshold
ring signature scheme based on ElGamal’s sig-
nature scheme. In Section 5, we conclude this
paper.

2. Preliminaries

2.1 Definitions
The terminology of this paper is basically

same as that of Ref. 9). We call a set of possi-
ble signers Ai (i ≥ 1) a ring, denoted by R. We
call a ring member who generates a signature
a signer, and each of the other ring members a
non-signer. Let S and S̄ denote a set of sign-
ers and that of non-signers, respectively. Here,
we have R = S ∪ S̄ and S ∩ S̄ = ∅. We as-
sume that a ring member Ai is associated with
a public key Pi that specifies the procedure for
verifying Ai’s signature.

A (k, n) threshold ring signature scheme is
defined by the following procedures.
( 1 ) A signing procedure produces a (k, n)

threshold ring signature σ for a message
m, given the public keys Pi (i ∈ R)
of n ring members and the secret keys
Si (i ∈ S) of k signers.

σ = sign(m, {Pi|i ∈ R}, {Si|i ∈ S})
( 2 ) Given m, k, and σ, a verification proce-

dure verify(m, k, σ) outputs true if m and
k are valid. Otherwise it outputs false.

The (k, n) threshold ring signature scheme au-
thenticates the statement that at least k ring
members in R signed the message. The (1, n)
threshold ring signature scheme is equivalent to
the original ring signature scheme.

2.2 RST Scheme
This section mentions the RST scheme9).

Each ring member Ai has an RSA public key

Pi that specifies the trapdoor one-way permu-
tation

fi(x) = xei mod Ni.
We assume that only Ai can compute the in-
verse permutation f−1

i efficiently8).
For each fi, the extended trapdoor permu-

tation gi over the common domain {0, 1}b is
defined in the following way. For x ∈ {0, 1}b,

gi(x) =
{

qiNi + fi(ri) if (qi + 1)Ni ≤ 2b,
x otherwise,

where x = qiNi + ri and 0 ≤ ri < Ni. No-
tice that 2b is much larger than any Ni’s; for
example, 2b ≈ 2160 · maxi∈R(Ni).

Given a message m to be signed, the signer
computes a ring signature as follows. The
signer first computes a key z = h(m) where
h is a public collision-resistant hash function
from {0, 1}∗ to {0, 1}�. The signer uniformly
chooses v from {0, 1}b at random. The signer
picks xi ∈ {0, 1}b (i ∈ S̄) at random, and com-
putes yi = gi(xi). The signer solves the follow-
ing equation for yi (i ∈ S). Notice that the
number of signers is one, i.e., |S| = 1.

Ez(yn⊕Ez(yn−1 . . .⊕Ez(y1⊕v) . . .))) = v, (1)
where E is a symmetric encryption with a block
length b and a key length �. Using the trapdoor
information, the signer inverts gi on yi for i ∈ S,
i.e.,

xi = g−1
i (yi).

The ring signature of m is defined as
σ = {v, (Pi, xi) (i ∈ R)}.

A verifier can verify the ring signature σ as
follows. For i ∈ R, the verifier computes yi =
gi(xi). The verifier obtains z by hashing m.
The verifier checks that the yi’s satisfy Eq. (1).
If it is satisfied, then the verifier accepts m as
valid. Otherwise the verifier rejects m.

We observe that the RST scheme authenti-
cates the statement that at least one ring mem-
ber signed the message. Even if two signers
exist, the verifier cannot check the number of
signers.

3. Threshold Ring Signature Scheme

We propose a (k, n) threshold ring signature
scheme based on the curve over a finite field.

3.1 Tools
Similar to the RST scheme and the BSS

scheme, our simplest construction assumes that
ring members use trapdoor one-way permuta-
tions to generate and verify signatures. As
stated in Section 2.2, each ring member Ai has
an RSA public key Pi, and fi is transformed
into gi on the common domain {0, 1}b. We can
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consider {0, 1}b as the finite field GF(2b).
We assume the existence of the public sym-

metric encryption E with the block length b and
the key length �. For a fixed key z, Ez is a per-
mutation on {0, 1}b. We assume the existence
of public collision-resistant hash functions h, h′
where h is a mapping {0, 1}∗ to {0, 1}b and h′
is a mapping {0, 1}∗ to {0, 1}�. In the security
proof of the proposed scheme, we will consider
that Ez, E−1

z , h, and h′ are computed by ran-
dom oracles.

3.2 Protocol
3.2.1 Signing
Given a message m to be signed, k signers

generate a (k, n) threshold ring signature as fol-
lows. We can assume that 1 ≤ k ≤ n − 1; if
k = 0, then there is no signer, and if k = n,
then all ring members are signers.
step 1 The signers select n − k non-signers

arbitrarily. For simplicity, suppose that
R = {1, 2, . . . , n}.

step 2 The signers define (x0, y0) and z as
x0 = 0,
y0 = h(m, k, P1, P2, . . . , Pn),
z = h′(m, k, P1, P2, . . . , Pn).

step 3 The signers uniformly choose αi (i ∈
S̄) from {0, 1}b at random, and compute
xi = Ez(gi(αi)). If xi = xi′ for i, i′ ∈ S̄,
then the signers choose αi again. Then,
the signer uniformly choose βi (i ∈ S̄)
from {0, 1}b at random, and computes yi =
Ez(gi(βi)) for i ∈ S̄.

step 4 The signers determine the lowest-
degree curve C that goes through the (n−
k + 1) points (xi, yi) (i ∈ S̄ ∪ {0}).

C : y = c(x) =
∑

j

cjx
j , cj ∈ GF(2b)

If the degree of C is not equal to n−k, then
the signers go back to step 3.

step 5 The signers uniformly choose xi ∈
GF(2b) (i ∈ S) at random. If xi = xi′ for
i, i′ ∈ S, then the signers choose xi again.
They compute yi = c(xi). Using their se-
cret keys, they compute αi = g−1

i (E−1
z (xi))

and βi = g−1
i (E−1

z (yi)).
step 6 Finally, the (k, n) threshold ring sig-

nature of m is defined as
σ = {C, k, (Pi, αi, βi) (i ∈ R)}. (2)

In step 4, the signers obtain the curve C that
goes through the (n−k+1) points. The degree

of C is probably n − k because the probability
that the degree is less than n− k is 2−b. Thus,
the signers can probably obtain C with degree
n − k without going back to step 3. Since the
degree of C is related with the number of sign-
ers, the signers must use C with degree n − k.

3.2.2 Verification
A verifier can verify the (k, n) threshold ring

signature σ on the message m as follows.
step 1 The verifier checks that 1 ≤ k ≤ n−1.

If it does not hold, then the verifier rejects
m and k. The verifier checks that C is an
(n− k)-degree curve over GF(2b) and each
of (αi, βi) (i ∈ R) is in GF(2b)2. If one
of them is not satisfied, then the verifier
rejects m and k.

step 2 The verifier computes
z = h′(m, k, P1, P2, . . . , Pn).

For i ∈ R ∪ {0}, the verifier computes

xi =
{

0 if i = 0,
Ez(gi(αi)) if i ∈ R,

yi =
{

h(m, k, P1, P2, . . . , Pn) if i = 0,
Ez(gi(βi)) if i ∈ R.

step 3 For i ∈ R∪{0}, the verifier checks that
yi = c(xi) over GF(2b). In other words, the
verifier checks that all the (n + 1) points
(xi, yi) (i ∈ R ∪ {0}) lie on C. If it holds,
then the verifier accepts m and k. Other-
wise the verifier rejects them.

3.3 Security
3.3.1 Anonymity
The identity of the signers, which the points

placed later indicate, is unconditionally pro-
tected with the proposed scheme. Intuitively,
the verifier cannot decide which points are
placed on the pre-determined curve.

Let us consider two different signer sets S1,
S2 in the same ring R. Fix a message m to
be signed. We denote by ςi a set of possible
(k, n) threshold ring signatures generated by Si.
Any signature in ς1 can be also generated by S2.
Similarly, any signature in ς2 can be also gen-
erated by S1. Thus, we have ς1 = ς2. Since
the signature by Si is chosen uniformly from ςi,
the distribution of signatures on ς1 is same as
that on ς2. Therefore, the verifier cannot dis-
tinguish ς1 from ς2. The above discussion does
not depend on any computational assumptions.

3.3.2 Forgery
First, we consider a special attack. Given a

valid (k, n) threshold ring signature
σ = {C, k, (Pi, αi, βi) (i ∈ R)}
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an adversary attempts to change C and k with-
out changing (Pi, αi, βi) (i ∈ R). This attack
intends to forge the number of signers.

Suppose that the adversary changes k to k̃
where 1 ≤ k̃ ≤ n− 1. From step 2 of the verifi-
cation procedure, the adversary obtains

z̃ = h′(m, k̃, P1, P2, . . . , Pn)

x̃i =
{

0 if i = 0,
Ez̃(gi(αi)) if i ∈ R,

ỹi =
{

h(m, k̃, P1, P2, . . . , Pn) if i = 0,
Ez̃(gi(βi)) if i ∈ R.

Due to Ez̃, (x̃i, ỹi) is a random point. Given the
n + 1 random points, the probability that they
lie on an (n−k̃)-degree curve is 2−bk̃. Therefore,
this attack fails with the overwhelming proba-
bility.

Next, we consider a general attack. The
forgery is possible if one of the individual signa-
ture schemes is insecure. Hence, we prove that
the proposed scheme is as secure as the indi-
vidual signature schemes. In order to do it, we
will prove that Algorithm A that can generate a
new (k, n) threshold ring signature with adap-
tive chosen-message attack can be transformed
into Algorithm B that inverts one of the trap-
door one-way permutations fi on input τ .

Algorithm A accepts Pi (i ∈ R) and can ac-
cess oracles E, E−1, h, h′, and a ring signing or-
acle. Algorithm A generates a valid (k, n) ring
signature on a new message with non-negligible
probability. Algorithm B uses Algorithm A
as a black box, but fully controls oracles E,
E−1, h, h′, and the ring signing oracle. Then,
Algorithm B can simulate the ring signing or-
acle; E (and E−1 if necessary) is adjusted in
such a way that the points (xi, yi) (i ∈ R) lie
on the specified-degree curve.

The goal of Algorithm B is to compute θ =
g−1

i (τ ) for some i and random input τ . When
Algorithm A asks the oracle E−1 to answer
E−1

z (xi) or E−1
z (yi), Algorithm B makes the

oracle E−1 answer τ . If it is used in final
forgery, then Algorithm B can find θ satisfy-
ing θ = g−1

i (τ ) in the forged signature. We
observe that if Algorithm A produces a valid
(k, n) threshold ring signature, then Algorithm
A must ask the oracle E−1 to answer E−1

z (xi)
or E−1

z (yi) that is used in final forgery; if Al-
gorithm A does not ask it, then all the points
(xi, yi) in the final forgery are considered as ran-
dom points because of E. When (xi, yi) are

Table 1 Comparison with the BSS scheme.

BSS Prop.

size 2kn log n 3n − k + 1

signing gi 2kn log n − k 2(n − k)
g−1

i k 2k

verification 2kn log n 2n

randomly chosen, the probability of success of
the forgery is negligible.

Algorithm B does not know which queries on
E−1

z (xi) and E−1
z (yi) are actually used in the

final forgery. Here, Algorithm B makes a ran-
dom guess. The probability of guessing cor-
rectly is at least 1/w where w is the number of
queries on E−1

z (xi) and E−1
z (yi) asked by Algo-

rithm A. Hence, Algorithm B can obtain θ with
non-negligible probability 1/w at least from the
forged signature.

3.4 Efficiency
In this section, we compare the proposed

scheme with the BSS scheme in terms of the
size of a signature and the time of procedures.
The results are summarized in Table 1.

3.4.1 Size of a Signature
We discuss the relationship of the size of a

signature, the number of members n, and the
number of signers k. The number of data to
represent curve C is n−k+1. The number of αi

and βi is 2n. Accordingly, the essential number
of data of a signature is 3n − k + 1. In the
case of the BSS scheme, the essential number
of data of a signature is 2kn log n. When k ≥ 2,
we have 3n − k + 1 < 2kn log n. Therefore,
our scheme is better than the BSS scheme with
respect to the size of a signature. In both of the
above evaluations, the public key Pi is ignored
because it is public.

3.4.2 Computing Time
We discuss the number of computations of gi

and g−1
i , which is related with the computing

time of procedures.
In the signing procedure of the proposed

scheme, the number of computations of gi is
2(n − k), and that of g−1

i is 2k. In the verifi-
cation procedure of the proposed scheme, the
number of computations of gi is 2n.

In the signing procedure of the BSS scheme,
the number of computations of gi is 2kn log n−
k, and that of g−1

i is k. In the verification pro-
cedure of the BSS scheme, the number of com-
putations of gi is 2kn log n.

Let us compare the signing procedures. Usu-
ally, the exponent of the RSA function is small,
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e.g., e = 3. Suppose that the 1024-bit modulo
binary method is used for the exponentiation.
Then, the computing time of g−1

i is 768 times
as long as that of gi on average. The comput-
ing time of our scheme can be considered as
2(n− k) +768 · 2k, and that of the BSS scheme
can be done as 2kn log n − k + 768k.(

2kn log n − k + 768k
) − (2(n − k) + 1536k)

= 2kn log n − 2n − 767k

≥ 2kn log n − 769n

Hence, when k ≥ 10, the signing procedure of
our scheme is more efficient than that of the
BSS scheme.

The verification procedure of our scheme is
always more efficient than that of the BSS
scheme. It should notice that the proposed
scheme does not depend on the number of sign-
ers.

In the proposed scheme, the computation for
obtaining coefficients of the curve is required.
However, when n is not so large, the dominant
factor of the computing time is the computa-
tion of g−1

i . In the case of the BSS scheme, the
computation for obtaining the complete parti-
tioning system is required, but it is ignored in
the above discussion.

4. Modifications

4.1 Improvement on the Efficiency
The proposed scheme uses GF(2b) as the

common domain where 2b is much larger than
Ni. If the size of the common domain can be
reduced, then the efficiency is improved. In this
section, we discuss use of a smaller common do-
main. Specifically, we use GF(2d) as the com-
mon domain where 2d is smaller than Ni. For
example, when Ni is a 1024-bit number, d is
256.

We define a mapping Ei,z from ZNi
to GF(2d)

for z ∈ {0, 1}� and its inverse mapping E−1
i,z as

follows. Let Êz be a public symmetric cipher
{0, 1}d ×{0, 1}� → {0, 1}d. Let LSBt(x) be the
least significant t bits of x and |Ni| the number
of bits of Ni. Then, we define, for x ∈ ZNi

,

Ei,z(x) = Êz(LSBd(x)), (3)

and for y ∈ {0, 1}d,

E−1
i,z (y)=r|Ni|||r|Ni|−1|| · · · ||r|Ni|−d||Ê−1

z (y), (4)

where || is the concatenation operator and ri is
a random bit such that the right side of Eq. (4)
is less than Ni where the most significant bit is

r|Ni|. Since 2d is smaller than Ni, E−1
i,z is a prob-

abilistic function satisfying w = Ei,z(E−1
i,z (w))

for any w ∈ GF(2d).
Then, steps 3, 4, 5 in the signing procedure

described in Section 3.2 are changed as follows.
step 3 For i ∈ S̄, the signers uniformly choose

αi from the domain of fi at random, and
compute xi = Ei,z(fi(αi)). If xi = xi′ for
i, i′ ∈ S̄, then the signers choose αi again.
For i ∈ S̄, the signers uniformly choose βi

from the domain of fi at random, and com-
pute yi = Ei,z(fi(βi)).

step 4 The signers determine the lowest-
degree curve C that goes through the n −
k + 1 points (xi, yi) (i ∈ S̄ ∪ {0}).

C : y = c(x) =
∑

j

cjx
j , cj ∈ GF(2d)

If the degree of C is not equal to n−k, then
the signers go back to step 3.

step 5 For i ∈ S, the signers uniformly choose
xi ∈ {0, 1}d at random. If xi = xi′ for
i, i′ ∈ S̄, then the signers choose xi again.
Then, the signers compute yi = c(xi) for
i ∈ S. Using their secret keys, they
compute αi = f−1

i (E−1
i,z (xi)) and βi =

f−1
i (E−1

i,z (yi)).

The verification procedure described in Sec-
tion 3.2 are changed as follows.
step 1 The verifier checks that 1 ≤ k ≤ n−1.

If it does not hold, then the verifier rejects
m and k. The verifier checks that C is
an (n − k)-degree curve over GF(2d) and
αi, βi (i ∈ R) are elements in ZNi

. If one
of them is not satisfied, then the verifier
rejects m and k.

step 2 The verifier computes
z = h′(m, k, P1, P2, . . . , Pn).

For i ∈ R ∪ {0}, the verifier computes

xi =
{

0 if i = 0,
Ei,z(fi(αi)) if i ∈ R,

yi =
{

h(m, k, P1, P2, . . . , Pn) if i = 0,
Ei,z(fi(βi)) if i ∈ R.

step 3 The verifier checks that all the (n+1)
points lie on C over GF(2d). If it does not
hold, then the verifier rejects m and k.

The identity of the signers is unconditionally
protected with the above scheme. For i ∈ S̄,
the distribution of xi is uniform on {0, 1}d be-
cause the distribution of LSBd(f(αi)) can be
considered as uniform. For i ∈ S, the distribu-
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tion of xi is also uniform on {0, 1}d due to the
signing procedure. For i ∈ S̄, the distributions
of αi and βi are uniform on Ni due to the sign-
ing procedure. For i ∈ S, the distribution of
αi is uniform on Ni because the distribution of
the right side of Eq. (4) is uniform on Ni. The
distribution of βi is also uniform on Ni because
αi and βi for i ∈ S̄ are uniformly distributed
and αi for i ∈ S is uniformly done.

On the other hand, the difficulty of the
forgery is an open problem. Since the signers
(the adversary) can choose ri, we cannot prove
the difficulty of the forgery in the manner sim-
ilar to Section 3.3.2. In addition, selecting of
ri might enable the adversary to compute f−1

i
easily.

However, we conjecture that the above
scheme is secure from the following consider-
ation. In order to forge a signature, the adver-
sary has to place n + 1 points on the (n − k)-
degree curve. Due to Ei,z, the probability that
n + 1 random points lie on the (n − k)-degree
curve is 2−kd, which is negligible. Hence, it
seems that the adversary has no choice but to
place k points on the (n−k)-degree curve that is
uniquely determined by the n−k+1 points. In
order to place the k points on the (n−k)-degree
curve, the adversary has to compute f−1

i . The
computation of f−1

i seems to be difficult even
if ri can be selected.

4.2 Application to ElGamal’s Signa-
ture Scheme

We show a (k, n) threshold ring signature
scheme based on ElGamal’s signature scheme5),
which is not based on the trapdoor one-way per-
mutation. Each ring member Ai has an ElGa-
mal public key Pi that specifies verification keys
ui, vi, pi and a verification function

vm
i ≡ ut

it
s (mod pi),

where (t, s) is a signature of m. Usually the
hashed value of m is signed, but the hash func-
tion is not applied to m in this section.

Similar to Section 4.1, we use a mapping Ei,z

from Zpi
to GF(2d) for z ∈ {0, 1}� and its in-

verse mapping E−1
i,z . Here, 2d is smaller than

any of the pi’s (e.g., d = 256). In addition, h is
a public collision-resistant hash function from
{0, 1}∗ to GF(2d). The finite field GF(2d) is
used as the common domain.

The signing procedure is given as follows.
step 1 The k signers select n − k non-

signers arbitrarily. Suppose that R =
{1, 2, . . . , n}.

step 2 The signers define (x0, y0) and z as
x0 = 0,
y0 = h(m, k, P1, P2, . . . , Pn),
z = h′(m, k, P1, P2, . . . , Pn).

step 3 For i ∈ S̄, the signers find αi, βi, γi

satisfying

vβi

i ≡ uαi
i αγi

i (mod pi) (5)

by using the existential forging method5).
That is, they randomly choose ηi and λi

satisfying gcd(λi, pi − 1) = 1 from Zpi−1,
and compute

αi = vηi

i uλi
i mod pi

βi = −αiηi

λi
mod (pi − 1)

γi = −αi

λi
mod (pi − 1).

They compute xi = Ei,z(αi) and yi =
Ei,z(βi). If xi = xi′ for i, i′ ∈ S̄, then the
signers choose αi again.

step 4 The signers determine the lowest-
degree curve C that goes through the
points (xi, yi) (i ∈ S̄ ∪ {0}).

C : y = c(x) =
∑

j

cjx
j , cj ∈ GF(2d)

If the degree of C is not equal to n−k, then
the signers go back to step 3.

step 5 For i ∈ S, the signers choose ri ∈
Zpi−1 satisfying gcd(ri, pi − 1) = 1 at ran-
dom, and compute αi = vri

i mod pi and
xi = Ei,z(αi). If xi = xi′ for i, i′ ∈ S, then
the signers choose ri again. After the sign-
ers computed yi = c(xi), the signers obtain
βi = E−1

i,z (yi). Then, the signers compute
γi satisfying the following equation by us-
ing the secret keys.

vβi

i ≡ uαi
i αγi

i (mod pi)

step 6 Finally, the (k, n) threshold ring sig-
nature of m is defined as

σ = {C, k, (Pi, αi, βi, γi) (i ∈ R)}.

The verification procedure is given as follows.
step 1 The verifier checks that 1 ≤ k ≤ n−1.

If it does not hold, then the verifier rejects
m and k. The verifier checks that C is
an (n − k)-degree curve over GF(2d) and
αi, βi, γi (i ∈ R) are elements in Zpi

, Zpi−1,
and Zpi−1, respectively. If one of them does
not hold, then the verifier rejects m and k.

step 2 The verifier checks that the following
equation holds for any i ∈ R.
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vβi

i ≡ uαi
i αγi

i (mod pi)

step 3 The verifier computes
z = h′(m, k, P1, P2, . . . , Pn).

For i ∈ R ∪ {0}, the verifier computes

xi =
{

0 if i = 0,
Ei,z(αi) if i ∈ R,

yi =
{

h(m, k, P1, P2, . . . , Pn) if i = 0,
Ei,z(βi) if i ∈ R.

The verifier checks that yi = c(xi) over
GF(2d) for all i ∈ R ∪ {0}. If it holds for
i ∈ R∪{0}, then the verifier accepts m and
k. Otherwise the verifier rejects them.

The identity of the signers is unconditionally
protected with the above scheme. The distribu-
tions of αi, βi, and γi are same for the signers
and the non-signers; αi is uniformly distributed
on the set of generators of GF(pi), βi is uni-
formly distributed on Zpi−1, and γi is uniquely
determined by αi and βi. Notice that the exis-
tential forging method in step 3 of the signing
procedure requires neither the secret key nor a
previous valid signature5).

On the other hand, the difficulty of the
forgery is an open problem. Since E−1

i,z is given
by Eq. (4), selecting of ri might enable the ad-
versary to find αi, βi, and γi such that the
points lies on the (n−k)-degree curve. However,
we conjecture that the above scheme is secure
from the consideration similar to Section 4.1.

We discussed a ring of RSA-based members
and a ring of ElGamal-based members sepa-
rately. However, when the above small domain
is used, the difference is how to compute xi, yi.
When (xi, yi) are once decided, the curve C is
determined from the points, and does not de-
pend on the individual signature schemes. The
change of computation of (xi, yi) corresponding
to ring members enables RSA-based members
and ElGamal-based members to join the same
ring.

5. Concluding Remarks

In this paper, we have shown the provably
secure (k, n) threshold ring signature scheme.
While the RST scheme and the BSS scheme
form the ring of individual signatures, our
scheme forms the curve of them. Our scheme is
more efficient than the BSS as follows. The size
of a signature of our scheme is smaller than that
of the BSS scheme. The computing time of the
signing procedure of our scheme is shorter than

that of the BSS scheme when k ≥ 10. The com-
puting time of the verification procedure of our
scheme is shorter than that of the BSS scheme.

We have also discussed the reduction of the
common domain, and have shown the (k, n)
threshold ring signature scheme with the small
domain. Using the small domain, we have
constructed the (k, n) threshold ring signature
scheme based on ElGamal’s signature scheme.
This scheme utilizes the fact that ElGamal’s
signature scheme is existentially forgeable. We
note that the security of the schemes with the
small domain is not proved; it is an open prob-
lem.
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