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1 Introduction

　 Stencil computation is one of the typical scientific
computing kernels[1]. Various accelerators to solve
stencil computation at high speed are designed by us-
ing multiple high end FPGAs[2].
We have developed an effective stencil computa-

tion accelerator by using multiple FPGAs, which em-
ploys 2D-mesh architecture connecting multiple small
FPGAs[3]. On the process of the development, there is
a trouble that the system generates an illegal compu-
tation result when the multiple FPGA nodes are used.
The cause is clock period variation.
This paper describes a quantitative evaluation result

of clock variations for every FPGA node and the de-
sign and implementation of a mechanism to operate
the synchronization of data.

2 Parallel Stencil Computation by using
Multi-FPGA

　 Figure 1 shows a typical pattern of 2D stencil com-
putation. k in the figure represents time-step. Each
circle represents a value of grid-point and each value
of grid-point at next time-step (k+1) is computed by
using the values of its four adjacent grid-points at cur-
rent time-step (k). (i, j) represents coordinate of grid-
point. Two buffers, V0 and V1, are used for the com-
putation. As shown in Figure 1, V1[i][j] is updated by
the summation of four values. The each value is ob-
tained by multiplying weighting factor by one adjacent
grid-points (V0[i-1][j], V0[i][j-1], V0[i][j+1], V0[i+1][j]).
Finally, every grid-point is updated for the next time-
step.
As shown in Figure 1, the data set of stencil compu-

tation is divided into several blocks according to the
number of vertical and horizontal array of FPGAs.
Each data block is assigned to each FPGA. The com-
putation on each FPGA uses the assigned data and
the boundary data of each block shared. The neces-
sary boundary data of the adjacent FPGAs have to be
sent to. In Figure 1, a group of grid-points (4 × 4) is
assigned one FPGA, an arrow represents communica-
tion to the neighbor FPGA. Gray regions represent the
data subset communicated to other FPGAs.

3 Clock Period Variation

　 Each FPGA node in our system is equipped with
the clock oscillator (CSX-750PB(B)) with operation
frequency 40MHz, and the frequency stability of the
oscillator is ±50ppm. ±50ppm of the frequency sta-
bility means the clock period variation per 1,000,000
cycles is within ±50 cycles.
As a preliminary evaluation, we evaluated the clock

period variation in each FPGA node. The clock period
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Figure 1: Parallel Stencil Computation by using Multi-
FPGA.

variation is cited as the cause of trouble that the sys-
tem generates an illegal computation result when the
multiple FPGA nodes are used. We used ScalableCore
system to measure the clock period variation. Scal-
ableCore system emulates an environment for many-
core processors, and the many-core processors are syn-
chronized with the concept named virtual cycle. In
order to examine the frequency stability by using this
mechanism, we coded the application in C, which is
working in many-core processors on the ScalableCore
system.
In this paper, we measured the clock period varia-

tion of each FPGA node by running the implemented
program, and varied measurement time for each mea-
surement. We targeted the FPGA array (8 × 8) and
the results are shown in Figure 2, Figure 3 and Table
1.
Figure 2 shows the clock period variation depending

on measurement time (20sec). The Z axis in these fig-
ures represents the clock period variation per 1,000,000
cycles. The X and Y axes represent the position coor-
dinate of each FPGA node. As shown in Figure 2,
the clock period variation per 1,000,000 cycles keeps
within ±50 cycles. This result means that it is guar-
anteed that the frequency stability of the oscillator is
±50ppm.
Table 1 shows that the worst clock period variation

and standard deviation of the clock variation in each
measurement time. The Time, Worst Value and Stan-
dard Deviation in Table 1 represent measurement time,
the worst clock period variation and standard deviation
of the clock variation on FPGA array (8 × 8) respec-
tively. As shown in Table 1, the Worst Value and the
Standard Deviation did not change nearly though we
changed measurement time. This result means that
the clock period variation does not depend on mea-
surement time.
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Figure 2: Clock Period Variation
(Measurement Time :20sec).
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Figure 3: Relative Clock Period Vari-
ation.

Table 1: Measurement Result

Time[sec] Worst Value[ppm] Standard Deviation
20 20.47 (x=3, y=5) 4.73
40 20.47 (x=3, y=5) 4.68
80 20.47 (x=3, y=5) 4.73
160 20.59 (x=3, y=5) 4.77
320 20.66 (x=3, y=5) 4.79

Figure 3 shows the result which is the clock pe-
riod variation (320sec) divided by the variation (20sec).
The X, Y axes in Figure 3 represent the same in Figure
2. The Z axis in the figure represents the clock period
variation per 1,000,000 cycles with respect to the re-
sult (20sec). As shown in Figure 3, the clock period
variation in almost all the nodes shows about 1 [ppm].
This result also shows that the clock period variation
does not depend on measurement time.
From these results, it is clear that the system must be

designed considering the clock period variation which
almost does not change on time axis.

4 Design and Implementation of Synchroniza-
tion Mechanism

We designed and implemented the mechanism to syn-
chronize all FPGA nodes in order to operate the system
successfully. The mechanism absorbs the clock period
variation.
We describe the design of synchronization mecha-

nism and Figure 4 (a) shows it. We define FPGA node
(A) in Figure 4 (a) as Master node. Each FPGA node
executes stencil computation in synchronism with the
signal transmitted from Master node. The nodes other
than Master node stall stencil computation until re-
ceiving a synchronization signal.
The synchronization signal is generated by Master

node in a period of α+ β and sent to the other nodes.
The α represents the number of cycles required to ex-
ecute stencil computation between one “Iteration”. In
this paper, the Iteration is defined a sequent process to
compute all the grid-points at a time-step. The β rep-
resents the margin to absorb the clock period variation
of each FPGA node. The β represents the margin to
absorb the clock period variation of each FPGA node.
This margin must be the value which hides the worst
clock period variation in α cycles.
We describe the implementation of synchronization

mechanism and Figure 4 (b) shows it. The α and β
in Figure 4 (b) are same as the α and β in Figure 4
(a). The FPGA nodes other than Master node, which
receive a synchronization signal, send the synchroniza-
tion signal to right and down FPGA nodes. There-
fore, all FPGA nodes are synchronized to Master node.
The FPGA node receiving the synchronization signal
restarts to execute stencil computation after waiting
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Figure 4: Design and Implementation of Synchroniza-
tion Mechanism.

several cycles. The reason why the FPGA node waits
several cycle is to prevent chattering.

5 Conclusion

This paper describes a quantitative evaluation result
of clock variations for every FPGA node and the de-
sign and implementation of a mechanism to operate
the system successfully. The future work is to evaluate
the performance of the accelerator by using multiple
FPGAs.
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