3K-5

ビルディングキューブ法に基づく非圧縮性流体計算の専用計算機 アーキテクチャに関する一考察

千葉 諒太郎[†] 高野 芳彰[†] 佐野 健太郎[†] 山本 悟[†] 佐々木 大輔[‡] 中橋 和博^{*} 東北大学[†] 金沢工業大学[‡] 宇宙航空研究開発機構^{*}

1. 緒論

今日、実用的な問題への適用が可能となった数値流体 力学(CFD)は、自動車、航空機、エネルギーなどの基幹 産業において、コストや労力の点から必要不可欠な技術 となっている。その一方で、大規模化、高精度化した今 日の CFD は計算時間が膨大なものとなりつつあり、計算 の高速化が求められている。

しかし、汎用計算機を用いて大規模な CFD 計算を行う 場合、演算器を十分に稼動できないという効率の問題が ある[1]。また、大規模な計算を行うには計算機を多数 接続した並列計算機が必要となるが、この場合演算器稼 働率はさらに低下する傾向にある。高い演算器稼働率が 得られない原因は、外部メモリ間や計算ノード間のバン ド幅が演算性能に比べて低いためである。バンド幅とは 単位時間に転送されるデータ量のことであり、計算機の 性能を左右する重要な要素である。バンド幅の不足によ り、サイクルあたりの入力データ量が制限される場合、 演算器稼働率は低下せざるを得ない。

次世代の並列 CFD 計算手法であるビルディングキュー ブ法 (BCM) [2] においても、演算器稼働率低下が問題とな るとの報告がなされている。BCM は直交格子による CFD の一つであり、複雑な計算格子が不要かつ計算が比較的 簡単という利点がある。また、全計算領域をキューブと 呼ぶ立方体に分割し、並列に計算を行う。

BCM の演算器稼働率を低下させる原因の一つは、その 低い演算密度である。ここでいう演算密度とは、外部メ モリを参照したデータ1バイトあたりの演算回数である。 非圧縮性流体の BCM 計算はステンシル計算の集合であり、 演算数に対し必要なデータ数が比較的多いため、メモリ バンド幅により計算性能が制限されやすい。また、ネッ トワークのバンド幅も演算器稼働率低下の大きな原因と なっている。BCM は負荷分散が均等であるため並列化に 適しているが、並列化が大規模になるほどデータ通信回 数は増加する。ネットワークのバンド幅が不十分な場合 には、大量のデータ通信に必要な時間が増大し、演算器 稼働率の低下を引き起こす。このため、計算機の台数を 増やしても、それに比例した性能向上は得られない[5]。

このようなバンド幅問題の解決策として、専用計算機 の構築があげられる。専用計算機は、対象となる計算問 題に適した演算器やデータパス、メモリシステム、およ びネットワークを構築することにより、演算器稼働率と 台数効果の高い効率の良い計算を実現可能と言われてい る。BCM に対しても、特にキューブの計算やキューブ間 のデータ交換に適したアーキテクチャを用いることによ り、台数効果の高い大規模計算が期待される。

近年では専用計算機を実装する手段として、回路再構

"Custom Accelerator Architecture for Incompressible Fluid Computation based on Building Cube Method"

Daisuke Sasaki, Kanazawa Institute of Technology

*Kazuhiro Nakahashi, JAXA

成可能デバイスである FPGA (Field Programmable Gate Array)が注目されている。汎用デバイスとして 1 チップ から入手可能な FPGA は、少量多品種の専用アクセラレ ータを低コストにより構築できる。以上の背景の下、本 研究では高い実効演算性能と低消費電力を両立する BCM 専用計算機の FPGA による実現を目指している。専用ネ ットワークとストリーム計算は実効性能向上に効果的で あると考えられるため、本稿ではそれらを想定した BCM 専用計算機の設計を行う。

2. BCM に基づく非圧縮性流体計算

2.1 ビルディングキューブ法

BCM は、計算領域を異なる大きさの小計算領域(キュー ブ)に分割し並列数値計算を行う手法である。複数のキ ューブに分割された計算格子の例を図1 に示す。 各キ ューブは同じ数の格子点(セル)からなる等間隔直交格 子であり、小さなキューブを用いた部分では高解像度の 計算ができる。これら大きさの異なるキューブを配置す ることにより、必要最小限の格子点数で計算を行うこと が可能である。また、各セルは流体セルと物体セルに分 類され、基本的な BCM の場合、物体形状は階段状に表現 される。流体セルでは、その中心において流速や圧力な どの物理量が定義される。BCM はキューブあたりの演算 数が同じことから、負荷分散に優れた並列計算が行える という特長がある。加えて、計算アルゴリズムが単純、 格子生成が容易、といった等間隔直交格子の利点をその まま引き継いでおり、非常に有用な流体解析手法である [2]

図1 BCM 計算格子例

2.2 非圧縮性流体計算

本研究では、計算対象として非圧縮性流体計算を取り 扱う。時間積分にはフラクショナルステップ法を採用し ている。フラクショナルステップ法は仮速度計算、定数 項計算、圧力計算、真速度計算の4つのステップを時間 発展的に繰り返すことにより各時刻の速度、圧力を順次 計算する。圧力計算には反復解法の一種であるレッドブ ラック SOR 法を用いる。各計算ステップは、隣接格子点 データから自格子点データを更新する、ステンシル計算 を行う。BCM において Cube 単位の並列計算を行うために は、各計算ステップ間で格子点データを同期する必要が ある。

[†]Ryotaro Chiba, Yoshiaki Kono, Kentaro Sano, Satoru Yamamoto, Tohoku Univercity

3. BCM 専用計算機アーキテクチャ

3.1 全体構成と Accelerator Element

高効率な大規模並列計算を実現する専用計算機を設計 するにあたっては、計算要素を増加しても稼働率が低下 しないように、不要なデータ移動を抑えつつデータ参照 に十分なバンド幅を確保する必要がある。このためには、 計算の局所性に基づきキューブデータや境界データを配 置し、大域的なデータ移動をできる限り行わないような 構造が適している。本節では、そのような要件を満たす 図2の専用計算機アーキテクチャを提案する。

図2 BCM 専用計算機アーキテクチャ

本アーキテクチャは、計算領域を Accelerator Element (AE) と呼ばれる複数の計算要素に割り当て、さ らに Cube Engine (CE) と呼ばれる AE 内部の演算器群によ ってキューブ単位でのストリーム並列計算を行う構造を 持つ。複数の AE がネットワークにより接続されており、 AE 数を自由に増加させることができる。AE 間通信が必 要な場合は、データ交換モジュール (DEM) が自律的に他 の AE との通信を制御する。キューブのデータは CE それ ぞれの Local Memory (LM) に格納されている。LM には担 当キューブの全セルの速度、圧力等の物理量が記憶され ており、CE の計算の進行に応じてデータの読み書きが行 われる。

また、キューブ境界データを各 CE ができるだけ容易 に参照できるようにするため、Cube Boundary Memory (CBM) と呼ばれるメモリを備えている。フラクシ ョナルステップ法ではキューブ境界セルの計算の際に隣 接キューブの値を参照するが、この時に発生する遅延が 性能の低下を招く可能性がある。本アーキテクチャでは、 各ステップにおいて計算結果が得られると、境界データ を CBM に書き込む。各 CE は CBM を共有しており、書き 込まれているキューブ境界データを参照することができ る。これにより CE が隣接キューブの計算を待つ時間を 削減できる他、データ読み込み中に別の部分の計算を行 うことにより遅延の隠蔽が可能となる。

3. 2 Cube Engine

図3に、Cube Engineのブロックダイアグラムを示す。 CE はLM から格子点データを読み出し、ストリーム計算 を行う。ストリーム計算においては、データを規則的か つ連続的に演算回路に流すことにより、連続して計算結 果が出力される。これにより、外部メモリへの参照回数 を抑えることができる他、規則的参照によりその帯域を 有効に用いることが可能となり、演算器稼働率の向上が 期待できる。本計算における入力データは各方向の速度 u, v, 圧力 p, および格子点属性情報 CelAtb の4 つである。 これらを図3の CE に流すと、計算ユニットである仮速 度計算ユニット,定数項計算ユニット,圧力計算ユニット, 真速度計算ユニットによる複数パイプラインステージの

計算の後、更新後の u, v, p が出力される。

ただし、ステンシル計算においては、隣接格子点デー タを参照するため、同一格子点のデータを複数回参照す る必要がある。このステンシル計算をストリーム化する ために、図3に示すバッファモジュールを各計算ユニッ トの前に配置する。2次元キューブの辺の長さをNとす ると、このモジュールは長さ(2N+2)のシフトレジスタで ある。シフトレジスタにおいてN+1番目のレジスタにあ るデータを座標(i, j)とした場合、1番目には(i, j-1), 2N+1番目には(i, j+1)の座標のデータが格納されてい る。これらを読み出せば、ステンシル計算に必要な隣接 格子点のデータを得ることができる。以上により、外部 メモリへの規則的かつ連続なストリーム参照が可能とな る。圧力計算ユニットを25段とした場合、図3のCE1 つあたりに必要なバッファサイズは340(2N+2)[Kbyte]と なる。N=32のときは22.4[Kbyte]である。

4. 結論

次世代の並列 CFD 計算手法である BCM の演算器稼働率 の問題を解決するため、本研究では BCM 専用計算機アー キテクチャを提案している。本アーキテクチャは、メモ リシステムのバンド幅に対し、BCM の演算密度を考慮し た性能の計算回路を有する。また、キューブ間のデータ 通信がボトルネックとならないようなデータ交換モジュ ールを持つ。本稿では、キューブを計算する回路である Cube Engine (CE)について、そのストリーム計算方法と 内部構造の説明を行った。CE では、入力格子データをバ ッファに蓄えることにより、ステンシル計算のストリー ム化を実現する。

今後は、CE における境界計算の検討や、キューブ間の データ通信を行うためのモジュールの設計を行い、複数 の FPGA による実装により提案アーキテクチャの有効性 を評価する予定である。

参考文献

[1] 佐野健太郎, 王陸州, 初田義明, 山本悟, "FPGA による 数値流体力学専用計算機の設計と評価", 第 21 回数値流体力 学シンポジウム, 66-2, 2008.

[2] Nakahashi, K., "Building-Cube Method for Flow Problems with Broadband Characteristic Length," Computational Fluid Dynamics 2002, edited by Armfield S., Morgan R., Srinivas K., Springer, pp. 77-81, 2003.

[3] 中橋和博, 佐々木大輔, 小林広明, 江川隆輔, 高橋俊, 新 井紀夫, 東田学, 石井 克哉, "次世代ペタスケール CFD のア ルゴリズム研究", 学際大規模情報基盤共同利用・共同研究拠 点 平成 23 年度共同研究 中間報告書, 2011