5ZH-5

肺野構造解析に基づく胸部CT像とMR造影像の 対応探索法の検討

岩男悠真†後藤敏行†影井清一郎† 韋 營營† 岩澤多恵‡ 横浜国立大学環境情報学府/研究院†

神奈川県立循環器呼吸病センター放射線科*

1. まえがき

異なる医用画像モダリティを統合することに より、相互の情報を補い利用することが期待で きる.たとえば、CTと MRIの統合により、解剖 学的構造と機能の対応が可能になることから, 頭部など変形の少ない器官を中心に研究が進め られている[1]. 本研究では、呼吸連動して形状 が変化する胸部領域を対象に、造影 MR 像から 得た血流解析[2]とX線 CT 画像から求める肺野構 造[3]を統合することで、肺葉や区域などの肺野 構造に着目した血流解析システムの開発を目指 している.本稿では、特に分解能や呼吸状態の 差異の問題を回避してX線 CT と造影 MR 画像の 対応関係を求める方法について報告する.

2.提案手法の概要

2.1 アルゴリズム概要

胸部造影 MR 像と3次元X線 CT 像は、画像化 対象,スライス厚,分解能の違いなど画像の性 質が異なる. さらに, 呼吸状態が必ずしも一致 しないという問題もある.本手法では、造影 MR 像において血液環流によって描出される血管像 (図1)とX線 CT で捉えた血管像を画像の性質の 違いを補正しながら弾性的にマッチングするこ

図1 肺野の血流解析

図2 処理の流れ

とによって対応関係を求める(図2).

Lung Field Registration for 3DCT and Contrast Enhanced

MRI. [†]Y. Wei, Y. Iwao, T. Gotoh, S. Kagei: Graduate School of Environment and Information Sciences, Yokohama National University, Hodogaya-ku, Yokohama 240-8501 [‡]T. Iwasawa: Department of Radiology, Kanagawa Cardiovascular and Respiratory Center, Tomiokahigashi, Kanazawa- ku, Yokohama 236-0004

2.2 血管領域の抽出

造影剤のボーラス注入により得られる血流変 化の時系列 MR 画像に対して時間方向の最大値 フィルタを適用することで血管領域を抽出する. 2.3 分解能補正

CT と MR では画素サイズやスライス厚(1mm, 12mm)が異なり、画像の分解能も異なっている. 最初に, CT 画像を MR 画像のスライス厚に合わ せて平均化する.次に,双方の画像の周波数成 分を一致させるための逆フィルタを求める.こ こでは、画像の劣化がガウス関数に基づくと仮 定し, CT 画像と MR 画像の周波数成分の誤差が 最小となるガウシアンフィルタの最適サイズを 次式に基づいて算出する.実際には,MRの周波 数成分 $F_{MR}(u,v)$ と CT の周波数成分 $F_{CT}(u,v)$ から,

 $F'_{\rm G}(u,v) = F_{\rm MR}(u,v)/F_{\rm CT}(u,v)$ (1)両者の比を求め, F'_G(u, v)にフィットするガウシ アンフィルタ $F_{c}(u, v)$ の分散を算出することによ り求める. さらに、このガウシアンフィルタを CT 画像に畳み込むことによって分解能の補正を 行う.

2.4 濃度分布補正

CT 画像と MR 画像の肺野内の濃度分布を補正 する.ここでは、最初に以下の手順に基づいて、 画像の肺野領域の形状マスクを作成する.

1) 判別分析法による画像の二値化

- 2) モルフォロジーを用いた雑音除去
- 3) 領域の分割

4) 前後のスライス比較による輪郭サイズ補正 その後、マスク内の CT 画像の濃度分布が MR

画像と一致するようにヒストグラム変換を用い て補正する.

2.5 大域的弾性マッチング

X線 CT 画像と造影 MR 画像は撮影時期が異な ることから呼吸状態が異なる可能性がある.こ の問題に対して、左右の肺野で局所領域の濃度 パターンと特徴点の分布形状を用いた大域的弾 性マッチングを行い、対応点を検出する.

ここでは,最初にハリスのコーナー検出によ り, MR 画像上で特徴点を求め,特徴点評価値が 高くかつ距離が離れた特徴点を左右の肺野について5点ずつ検出する.続いて,それぞれの特徴 点に対して,MR上の局所画像をテンプレートと して CT 画像上で正規化相関R_{ZNCC}を用いて,画 素の類似度(特徴点類似度)を算出し,閾値以上 の10点を対応点の候補とする.さらに,CT上に おいて,対応点候補の組み合わせを求め,MR 画 像の特徴点の組が作る形状と比較した形状類似 度を評価し,特徴点類似度と形状類似度がとも に高い特徴点の組を対応点として判定する.

具体的には、形状類似度としては、重心 (G_x, G_y) から特徴点 i までのユークリッド距離を 正規化した分布 $Q_i(x, y)$ を求める.

$$\begin{aligned} Q_i(x,y) &= D_i / \sum_{n=1}^5 D_n \end{aligned} \tag{2}$$

 $D_i = \sqrt{(x_i - G_x)^2 + (y_i - G_y)^2}$

次に, CT 画像と MR 画像の間の特徴点 i の正規 化された位置 $Q_i^{MR}(x,y) \ge Q_i^{CT}(x,y)$ の距離を比較 し, その最大値を形状類似度とする.

 $B_{\text{max}} = \max_i (Q_i^{\text{MR}}, Q_i^{\text{CT}})$ (3) 続いて,形状類似度 B_{max} と特徴点類似度 R_{ZNCC} を 組み合わせた次式を

 $S = B_{\text{max}} \times (1 - R_{\text{ZNCC}})$ (4) 総合類似度として比較し、Sが最小となるパター ンを求める.さらに、この処理によって求めら れた特徴点の組を基準として、残りの特徴点の 対応関係を求める.

3. 実験結果

図3に実験で用いた原画像を示す. MR 画像に ついては画素サイズ 1.68×1.68×12mm の画像で あり,時系列画像の特定時刻のデータを示して いる.また, CT については画素サイズ 0.723× 0.723×1mm の画像であり,特定スライスを示し ている*.

図4は、抽出された5点の特徴点の対応関係を 求めた結果、また、図5はそれらの特徴点をも とに残りの特徴点を対応付けた結果である.図 6は、検出された対応点を用いて、MR 画像に幾 何学的変換を行った結果である.また、図7は MR と CT のスライスを重ね合わせた結果と、肺 血管の3次元再構築結果と血流解析結果を統合 表示した結果を示す.

これらの結果より、血流解析結果と CT の構造 解析による肺葉や区域の抽出結果と統合が可能 となり、血流動態の詳細な解析が期待できる.

4.まとめ

肺野構造解析に基づく胸部 CT 像と MR 造影像 との対応について検討した.形態情報と機能情

図3 原画像のスライス

図4 MRとCT画像の特徴点のマッチング

図5 MRとCT像の全特徴点のマッチング

図6 MR 画像の幾何学的変換

図7 血流解析と肺野構造の統合

報を持つ2つのモダリティを統合することで, 解剖学的構造を考慮した血流分布の解析に見通 しを得た.また,同時に対応探索の検出精度が 肺野領域の精度に依存することも分かった.こ の改良については,引き続き検討する.

参考文献

- [1] 守田 了, "CT 画像と MRI 画像の三次元画像融合",信 学技報 MI2007-48, 2007.
- [2] 坂知 樹,他, "Gd 造影特性の逆転効果を考慮した胸部 時系列 MR 画像の血流解析法",映像情報メディア学会 技術報告 35(8), 21-24, 2011.
- [3] 岩男悠真,他,"医用画像のモダリティ統合のための 3 次元胸部 CT 像の構造解析システム",情報処理学会 第74回全国大会,2012.

^{*}これらの画像は、いずれも共著者の所属機関の倫理委員会 の承認と患者の紙面による了承のもとで使用している.