Balanced $\left(C_{5}, C_{12}\right)$－Foil Designs and Related Designs Kazuhiko Ushio（Kinki University）

1．Balanced $\left(C_{5}, C_{12}\right)$－Foil Designs

Let K_{n} denote the complete graph of n vertices．Let C_{5} and C_{12} be the 5 －cycle and the 12 －cycle，respec－ tively．The $\left(C_{5}, C_{12}\right)$－ $2 t$－foil is a graph of t edge－ disjoint C_{5}＇s and t edge－disjoint C_{12}＇s with a common vertex．When K_{n} is decomposed into edge－disjoint sum of（ C_{5}, C_{12} ）－2t－foils and every vertex of K_{n} ap－ pears in the same number of $\left(C_{5}, C_{12}\right)$－2t－foils，we say that K_{n} has a balanced $\left(C_{5}, C_{12}\right)$－2t－foil decom－ position．This decomposition is to be known as a balanced（ C_{5}, C_{12} ）－2t－foil design．

Theorem 1．K_{n} has a balanced $\left(C_{5}, C_{12}\right)$－ $2 t$－foil design if and only if $n \equiv 1(\bmod 34 t)$ ．
Example 1．1．Balanced（ C_{5}, C_{12} ）－2－foil design of K_{35} ．Starter ：
$\{(35,1,16,32,14),(35,5,8,18,26,13,20,11,23,21,10,4)\}$ ． Example 1．2．Balanced $\left(C_{5}, C_{12}\right)$－4－foil design of K_{69} ．Starter ：
$\{(69,2,32,63,27),(69,9,14,34,49,24,37,61,43,40,18,7)$ ， $(69,1,30,62,28),(69,10,16,35,51,25,39,22,45,41,20,8)\}$ ．
Example 1．3．Balanced（ C_{5}, C_{12} ）－6－foil design of K_{103} ．Starter ：
$\{(103,3,48,94,40),(103,13,20,50,72,35,54,90,63,59,26,10)$ ，
$(103,2,46,93,41),(103,14,22,51,74,36,56,91,65,60,28,11)$ ，
$(103,1,44,92,42),(103,15,24,52,76,37,58,33,67,61,30,12)\}$ ．
Example 1．4．Balanced（ C_{5}, C_{12} ）－8－foil design of K_{137} ．Starter ：
$\{(137,4,64,125,53),(137,17,26,66,95,46,71,119,83,78$ ， $34,13)$ ，
$(137,3,62,124,54),(137,18,28,67,97,47,73,120,85,79$ ， $36,14)$ ，
$(137,2,60,123,55),(137,19,30,68,99,48,75,121,87,80$ ， $38,15)$ ，
（137，1，58，122，56），（137，20，32，69，101，49，77，44，89，81， $40,16)\}$ ．

2．Related Designs

Theorem 2．K_{n} has a balanced $C_{17}-t$－foil design if and only if $n \equiv 1(\bmod 34 t)$ ．
Example 2．1．Balanced C_{17} design of K_{35} ．
Starter ：$\{(35,1,16,32,14,19,5,8,18,26,13,20,11,23,21$ ， $10,4)\}$ ．
Example 2．2．Balanced C_{17}－2－foil design of K_{69} ．Starter ：

[^0]$\{(69,2,32,63,27,36,9,14,34,49,24,37,61,43,40,18,7)$ ， $(69,1,30,62,28,38,10,16,35,51,25,39,22,45,41,20,8)\}$ ． Example 2．3．Balanced C_{17}－3－foil design of K_{103} ．Starter ：
$\{(103,3,48,94,40,53,13,20,50,72,35,54,90,63,59,26,10)$ ， （103，2，46，93，41，55，14，22，51，74，36，56，91，65，60，28，11）， （103，1，44，92，42，57，15，24，52，76，37，58，33，67，61，30，12）\}. Example 2．4．Balanced C_{17}－4－foil design of K_{137} ．Starter ：
$\{(137,4,64,125,53,70,17,26,66,95,46,71,119,83,78,34,13)$ ， （ $137,3,62,124,54,72,18,28,67,97,47,73,120,85,79,36,14)$ ， （137，2，60，123，55，74，19，30，68，99，48，75，121，87，80，38，15）， （137，1，58，122，56，76，20，32，69，101，49，77，44，89，81，40，16）\}.

Theorem 3．K_{n} has a balanced $\left(C_{10}, C_{24}\right)$－2t－foil design if and only if $n \equiv 1(\bmod 68 t)$ ．
Example 3．1．Balanced（ C_{10}, C_{24} ）－2－foil design of K_{69} ．\quad Starter ：
$\{(69,2,32,63,27,55,28,62,30,1),(69,9,14,34,49,24,39,61$ ， $43,40,18,7,15,8,20,41,45,22,39,25,51,35,16,10)\}$ ．
Example 3．2．Balanced（ C_{10}, C_{24} ）－4－foil design of K_{137} ．Starter ：
$\{(137,4,64,125,53,107,54,124,62,3)$ ，
（137，2，60，123，55，111，56，122，58，1），
（137，17，26，66，95，46，71，119，83，78，34，13，27，14，36，79，85， $120,73,47,97,67,28,18)$ ，
$(137,19,30,68,99,48,75,121,87,80,38,15,31,16,40,81,89$ ， $44,77,49,101,69,32,20)\}$ ．
Example 3．3．Balanced（ C_{10}, C_{24} ）－6－foil design of K_{205} ．Starter ：
$\{(205,6,96,187,79,159,80,186,94,5)$ ，
$(205,4,92,185,81,163,82,184,90,3)$ ，
（205，2，88，183，83，167，84，182，86，1），
（205，25，38，98，141，68，105，177，123，116，50，19，39，20，52， 117，125，178，107，69，143，99，40，26），
（205，27，42，100，145，70，109，179，127，118，54，21，43，22，56， $119,129,180,111,71,147,101,44,28)$ ，
（205，29，46，102，149，72，113，181，131，120，58，23，47，24，60， $121,133,66,115,73,151,103,48,30)\}$ ．
Example 3．4．Balanced $\left(C_{10}, C_{24}\right)$－8－foil design of K_{273} ．Starter ：
$\{(273,8,128,249,105,211,106,248,126,7)$ ，
（273，6，124，247，107，215，108，246，122，5），
$(273,4,120,245,109,219,110,244,118,3)$ ，
（273，2，116，243，111，223，112，242，114，1），
（273，33，50，130，187，90，139，235，163，154，66，25，51，26，68， $155,165,236,141,91,189,131,52,34)$ ，
（273，35，54，132，191，92，143，237，167，156，70，27，55，28，72， $157,169,238,145,93,193,133,56,36)$ ，
（273，37，58，134，195，94，147，239，171，158，74，29，59，30，76， $159,173,240,149,95,197,135,60,38)$ ，
（273，39，62，136，199，96，151，241，175，160，78，31，63，32，80，
$161,177,88,153,97,201,137,64,40)\}$ ．
Theorem 4．K_{n} has a balanced $C_{34}-t$－foil design if and only if $n \equiv 1(\bmod 68 t)$ ．
Example 4．1．Balanced C_{34} design of K_{69} ．
Starter ：$\{(69,2,32,63,27,36,9,14,34,49,24,37,61,43,40$ ， $18,7,15,8,20,41,45,22,39,25,51,35,16,10,38,28,62,30,1)\}$ ． Example 4．2．Balanced C_{34}－2－foil design of K_{137} ．Starter ：
$\{(137,4,64,125,53,70,17,26,66,95,46,71,119,83,78,34,13$ ， $27,14,36,79,85,120,73,47,97,67,28,18,72,54,124,62,3)$ ， $(137,2,60,123,55,74,19,30,68,99,48,75,121,87,80,38,15$ ， $31,16,40,81,89,44,77,49,101,69,32,20,76,56,122,58,1)\}$ ．
Example 4．3．Balanced C_{34}－3－foil design of K_{205} ．Starter ：
$\{(205,6,96,187,79,104,25,38,98,141,68,105,177,123,116$ ， $50,19,39,20,52,117,125,178,107,69,143,99,40,26,106,80$ ， 186，94，5），
（205，4，92，185，81，108，27，42，100，145，70，109，179，127，118， $54,21,43,22,56,119,129,180,111,71,147,101,44,28,110,82$ ， 184，90，3），
（205，2，88，183，83，112，29，46，102，149，72，113，181，131，120， $58,23,47,24,60,121,133,66,115,73,151,103,48,30,114,84$ ， $182,86,1)\}$ ．
Example 4．4．Balanced C_{34}－4－foil design of K_{273} ．Starter ：
$\{(273,8,128,249,105,138,33,50,130,187,90,139,235,163$ ， $154,66,25,51,26,68,155,165,236,141,91,189,131,52,34$ ， $140,106,248,126,7$ ），
（273，6，124，247，107，142，35，54，132，191，92，143，237，167， $156,70,27,55,28,72,157,169,238,145,93,193,133,56,36$ ， $144,108,246,122,5)$ ，
（273，4，120，245，109，146，37，58，134，195，94，147，239，171， $158,74,29,59,30,76,159,173,240,149,95,197,135,60,38$ ， $148,110,244,118,3)$ ，
（273，2，116，243，111，150，39，62，136，199，96，151，241，175， $160,78,31,63,32,80,161,177,88,153,97,201,137,64,40$ ， $152,112,242,114,1)\}$ ．

Theorem 5．K_{n} has a balanced $C_{51}-t$－foil design if and only if $n \equiv 1(\bmod 102 t)$ ．
Example 5．1．Balanced C_{51} design of K_{103} ．
Starter ：$\{(103,3,48,94,40,53,13,20,50,72,35,54,90,63,59$ ， $26,10,21,11,28,60,65,91,56,36,74,51,22,14,55,41,93,46$ ， $2,45,43,44,92,42,57,15,24,52,76,37,58,33,67,61,30,12)\}$ ．
Example 5．2．Balanced C_{51}－2－foil design of K_{205}－Starter ：
$\{(205,6,96,187,79,104,25,38,98,141,68,105,177,123,116$ ， $50,19,39,20,52,117,125,178,107,69,143,99,40,26,106,80$ ， $186,94,89,93,4,92,185,81,108,27,42,100,145,70,109,179$ ， $127,118,54,21)$ ，
（205，3，90，184，82，110，28，44，101，147，71，111，180，129，119， $56,22,45,23,58,120,131,181,113,72,149,102,46,29,112,83$ ， $183,88,2,87,85,86,182,84,114,30,48,103,151,73,115,66$ ， $133,121,60,24)\}$ ．

Theorem 6．K_{n} has a balanced $C_{68}-t$－foil design if
and only if $n \equiv 1(\bmod 136 t)$ ．
Example 6．1．Balanced C_{68} design of K_{137} ．
Starter ：$\{(137,4,64,125,53,70,17,26,66,95,46,71,119$ ， $83,78,34,13,27,14,36,79,85,120,73,47,97,67,28,18,72$ ， $54,124,62,59,61,2,60,123,55,74,19,30,68,99,48,75,121$ ， $87,80,38,15,31,16,40,81,89,44,77,49,101,69,32,20,76$ ， $56,122,58,1)\}$ ．
Example 6．2．Balanced C_{68}－2－foil design of K_{273} ．Starter ：
$\{(273,8,128,249,105,138,33,50,130,187,90,139,235,163$ ， $154,66,25,51,26,68,155,165,236,141,91,189,131,52,34$ ， $140,106,248,126,119,125,6,124,247,107,142,35,54,132$ ， $191,92,143,237,167,156,70,27,55,28,72,157,169,238,145$ ， $93,193,133,56,36,144,108,246,122,5)$ ，
（273，4，120，245，109，146，37，58，134，195，94，147，239，171， $158,74,29,59,30,76,159,173,240,149,95,197,135,60,38$ ， $148,110,244,118,115,117,2,116,243,111,150,39,62,136$ ， $199,96,151,241,175,160,78,31,63,32,80,161,177,88,153$ ， $97,201,137,64,40,152,112,242,114,1)\}$ ．

Theorem 7．K_{n} has a balanced $C_{85}-t$－foil design if and only if $n \equiv 1(\bmod 170 t)$ ．
Example 7．1．Balanced C_{85} design of K_{171} ．
Starter ：$\{(171,5,80,156,66,87,21,32,82,118,57,88,148$ ， $103,97,42,16,33,17,44,98,105,149,90,58,120,83,34,22$ ， $89,67,155,78,4,77,73,76,154,68,91,23,36,84,122,59,92$ ， $150,107,99,46,18,37,19,48,100,109,151,94,60,124,85,38$ ， $24,93,69,153,74,2,3,1,72,152,70,95,25,40,86,126,61,96$ ， $55,111,101,50,20)\}$ ．

Theorem 8．K_{n} has a balanced $C_{102}-t$－foil design if and only if $n \equiv 1(\bmod 204 t)$ ．

Theorem 9．K_{n} has a balanced $C_{119}-t$－foil design if and only if $n \equiv 1(\bmod 238 t)$ ．

Theorem 10．K_{n} has a balanced C_{136}－t－foil design if and only if $n \equiv 1(\bmod 272 t)$ ．

References［1］K．Ushio and H．Fujimoto，Balanced bowtie and trefoil decomposition of complete tripartite multigraphs，IEICE Trans．Fundamentals，E84－A，839－ 844，2001．［2］—，Balanced foil decomposition of com－ plete graphs，IEICE Trans．Fundamentals，E84－A，3132－ 3137，2001．［3］－，Balanced bowtie decomposition of complete multigraphs，IEICE Trans．Fundamentals， E86－A，2360－2365，2003．［4］－，Balanced bowtie de－ composition of symmetric complete multi－digraphs，IE－ ICE Trans．Fundamentals，E87－A，2769－2773， 2004. ［5］－，Balanced quatrefoil decomposition of complete multigraphs，IEICE Trans．Information and Systems， E88－D，19－22，2005．［6］－，Balanced C_{4}－bowtie decom－ position of complete multigraphs，IEICE Trans．Fun－ damentals，E88－A，1148－1154，2005．［7］－，Balanced C_{4}－trefoil decomposition of complete multigraphs，IEICE Trans．Fundamentals，E89－A，1173－1180， 2006.

[^0]: Department of Informatics，Faculty of Science and Tech－ nology，Kinki University，Osaka 577－8502，JAPAN．E－ mail：ushio＠info．kindai．ac．jp Tel：＋81－6－6721－2332（ext．5409） Fax：＋81－6－6727－2024

