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The differential power analysis (DPA) is a realistic attack in which an adversary reveals
the secret key hidden in a smart card. In 1999, Messerges, et al. proposed the address-bit
DPA, a variant of DPA, against DES. Then, in 2002, Itoh, et al. extended the attack to the
exponentiation-based public key cryptosystems. In this paper, we propose a practical counter-
measure against the address-bit DPA applicable to the exponentiation part in RSA or ECC
with and without pre-computed tables. Proposed countermeasure has almost no overhead
for the protection, namely the processing speed is no slower than that without the counter-
measure. Since the countermeasure resists only the address-bit DPA, other countermeasures
should be combined in order to resist all DPAs. We list major DPA-countermeasures and
discuss the performance including the processing speed and the security level when combined.
As a result of the comparison, our proposed countermeasure will be included in practical
solutions.

1. Introduction

Smart cards are becoming a new infrastruc-
ture of the coming IT society because of their
plenty attractive applications such as identifica-
tion cards, telephone cards and electronic tick-
ets. However, the power analysis is a realistic
threat 16),17), in which an adversary reveals the
secret key hidden in a smart card by using the
power consumption of the device. The attack
will be successful if there is a correlation be-
tween the power consumption and the secret
key. The simple power analysis (SPA) and the
differential power analysis (DPA) are typical
examples. Implementers of cryptographic al-
gorithms should take countermeasures against
these attacks.

In 1999, Messerges, et al. proposed a new
variant of DPA against common key cryptosys-
tems, the address-bit DPA (ADPA) (from now
on, we call the previous DPAs as the data-bit
DPA (DDPA)), which analyzes a correlation
between the secret key and addresses of regis-
ters 22). Then, in 2002, Itoh, et al. extended the
attack to the exponentiation-based public key
cryptosystems including the famous RSA and
Elliptic Curve Cryptosystems (ECC) 8). Their
result implies that implementers should con-
sider correlations of the secret key to not only
data of registers but also addresses of registers.
Itoh, et al. also gave several countermeasures
against the attack, but those countermeasures

† FUJITSU LABORATORIES LTD.

require at least twice processing time than with-
out them.

In this paper, we propose a practical coun-
termeasure against ADPA applicable to the
exponentiation-based public-key cryptosystems
by randomizing addresses of registers. Pro-
posed countermeasure does not change the
scalar to be exponentiated; an overhead is very
small and the processing speed is as fast as
before, namely, a scheme resistant against the
data-bit DPA can be easily enhanced to that
against the address-bit DPA with almost no
penalty. The conversion can be applied to not
only binary methods but to some window-based
methods. We also discuss the security of our
countermeasure from both theoretical and ex-
perimental approaches.

Since our countermeasure is dedicated to re-
sist ADPA, other DPA-countermeasures should
be combined in order to resist all DPAs. How-
ever, finding a good combination, which satis-
fies a certain security level and requires a com-
promisable processing speed, is a hard task for
implementers. In this paper, we list some coun-
termeasures and discuss their performance in-
cluding the processing time and the security
level. As a criteria for the security, we adopted
the Attenuation Ration (AR) proposed by Itoh,
et al. 13) Consequently, our proposed method
(combined with other DPA-countermeasures)

A part of the paper was published in the proceed-
ings of the 5th International Workshop for Crypto-
graphic Hardware and Embedded Systems (CHES

2003) 10).
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provides a good practical solution for resisting
the power analysis.

In the followings, we mainly deal with scalar
exponentiations in Elliptic Curve Cryptosys-
tems (ECC), however, most algorithms includ-
ing our countermeasure can be applied to other
exponentiation-based cryptosystems. The rest
of this paper is organized as follows: In Sec-
tion 2, we give a brief overview of the power
analysis and countermeasures. Then Section 3
describes our proposed countermeasure with ex-
perimental results. Combinations of counter-
measures are discussed in Section 4.

2. Preliminaries

In this section, we give a brief introduction of
Elliptic Curve Cryptosystems (ECC) and the
power analysis against them. However, most
attacks can be applied to other exponentiation-
based cryptosystems.

2.1 Elliptic Curve Cryptosystems
Elliptic Curve Cryptosystems (ECC) are

among the standard technology in the area of
cryptography 7),25),33), because they only re-
quire smaller keys compared to existing other
cryptosystems. This feature of ECC is quite
suitable for implementing on smart cards.

Let K be a finite field. An elliptic curve over
K can be represented by the Weierstrass equa-
tion

E(K) = {(x, y) ∈ K ×K | y2 + a1xy + a3y =
x3 + a2x

2 + a4x + a6} ∪ {O}, (1)

for ai ∈ K. The special point O is called
the point of infinity. An elliptic curve E(K)
has an additive group structure, in which the
point of infinity acts a neutral element. We
call P1 + P2 (P1 �= P2) the elliptic curve ad-
dition (ECADD) and P1 + P2 (P1 = P2), that
is 2P1, the elliptic curve doubling (ECDBL).
Let d be an integer and P be a point on
the elliptic curve E(K). A scalar exponenti-
ation is to compute the point dP = P + · · · +
P (d − 1 additions). A dominant computation
of all encryption/decryption and signature gen-
eration/verification algorithms of ECC is the
computation of dP for a secret integer d and a
public base point P .

Let d = dn−12n−1+· · ·+d121+d0 be a binary
expression of d with dn−1 = 1. Then the binary
method (from the most significant bit (MSB))
for a scalar exponentiation is in Algorithm 1.
Another algorithm from the least significant bit
(LSB) is constructed similarly.

Alg. 1. Binary method

INPUT: d[], P
OUTPUT: dP

1: T[0] = P
2: for i=n-2 downto 0 {
3: T[0] = ECDBL(T[0])
4: if(d[i]==1){
5: T[0] = ECADD(T[0],P)
6: }
7: }
8: return T[0]

Alg. 2. Add-and-double-always method

INPUT: d[], P
OUTPUT: dP

1: T[0] = P
2: for i=n-2 downto 0 {
3: T[0] = ECDBL(T[0])
4: T[1] = ECADD(T[0],P)
5: T[0] = T[d[i]]
6: }
7: return T[0]

2.2 Power Analysis
The power analysis is a powerful attack on

smart cards with cryptographic algorithms. An
adversary reveals the secret key hidden in a
smart card by using power traces of the ob-
served power consumption of the device. The
following simple power analysis (SPA) 16) and
the differential power analysis (DPA) 17) are
typical examples.

2.2.1 Simple Power Analysis
The binary method (Algorithm 1) computes

ECADD only when di = 1. Therefore an ad-
versary easily detects this irregular procedure
by observing the power consumption, and thus
obtains the bit information di. This is a basic
idea of the simple power analysis (SPA) 16).

In order to resist SPA, Coron proposed the
add-and-double-always method 4) (Algorithm
2), in which both ECDBL and ECADD are
computed in every bit (in step 3 and step 4).
The countermeasure makes a pattern of the
power trace fixed, so that the adversary cannot
obtain the secret information by SPA. For effi-
ciency, a variant of the add-and-double-always
method, the Montgomery ladder 20), is widely
used 2),11),12),15),28),29). A sample algorithm of
the Montgomery ladder is in Algorithm 3.

2.2.2 Differential Power Analysis
The differential power analysis (DPA) reveals

the secret key by using statistical analysis of
power consumptions 17),21). In DPA, an adver-
sary makes an assumption on di (di = 0, for
example) and simulates the procedure repeat-
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Alg. 3. Montgomery ladder

INPUT: d[], P
OUTPUT: dP

1: T[0] = P, T[1] = ECDBL(P)
2: for i=n-2 downto 0 {
3: T[2] = ECDBL(T[d[i]])
4: T[1] = ECADD(T[0],T[1])
5: T[0] = T[2-d[i]]
6: T[1] = T[1+d[i]]
7: }
8: return T[0]

Alg. 4. Add-and-double-always method with RPC

INPUT: d[], P
OUTPUT: dP

1: T[0] = RPC(P)
2: for i=n-2 downto 0 {
3: T[0] = ECDBL(T[0])
4: T[1] = ECADD(T[0],P)
5: T[0] = T[d[i]]
6: }
7: return invRPC(T[0])

edly. Then he/she divides the results into two
groups depending on the assumption, in order
to make a bias of the hamming weights of the in-
ternal information between these groups. If the
assumption is correct, then a difference of the
power consumption of two groups (a spike) can
be observed in the trace. Because of the princi-
ple of the analysis, DPA cannot attack the ex-
ponentiations with one-time scalars by nature
(signature generation in ECDSA, for example).
Coron proposed a methodology of DPA coun-
termeasures by using random numbers 4) in or-
der to make simulations impossible. Most of
following countermeasure adopt this methodol-
ogy.

Earlier DPA (the data-bit DPA) only consid-
ered a correlation of data of registers to the se-
cret key 17),21), while newer DPA (the address-
bit DPA) also considers a correlation of ad-
dresses of registers 8),22).

2.3 Data-bit DPA
The data-bit DPA (DDPA) analyzes a corre-

lation of the secret key to data of registers. For
example, after finishing step 5 in Algorithm 2,
the data of T[0] is equals to that of T[0] if
di = 0; otherwise it equals to that of T[1] if
di = 1. The randomized projective coordinate
(RPC) countermeasure works as follows 4). Let
P = (X : Y : Z) be a base point represented
by the projective coordinate. Then (X : Y : Z)
equals to (rX : rY : rZ) for all r ∈ K∗ math-
ematically; but they are different as a bit se-
quence. RPC converts (X : Y : Z) to (rX :

rY : rZ) for a randomly chosen number r ∈ K∗
so that the power consumption is randomized.
An example of RPC for the add-and-double-
always method is given in Algorithm 4, where
a function RPC converts a point (X : Y : Z)
to a randomized point (rX : rY : rZ) and a
function invRPC denotes its inverse map.

Joye-Tymen proposed the randomized curve
(RC) countermeasure 14), in which the base el-
liptic curve and the base point on it is trans-
formed to isomorphic curves in a random man-
ner. Two isomorphic curves are same math-
ematically; but different as a bit sequence.
Thus the power consumptions are randomized
by RC. A sample algorithm is easily obtained
similarly to Algorithm 4 by changing functions
RPC,invRPC to RC,invRC.

Instead of changing the expression of a base
point, Coron also proposed the randomized ex-
ponent and the randomized base point coun-
termeasures, in which the scalar is random-
ized. However, Okeya-Sakurai showed the bias
of these countermeasures 29). Messerges, et al.
proposed the randomized start point counter-
measure, in which a scalar is divided to two
parts and computed by different methods 21).
Oswald-Aigner proposed another approach to
randomize the scalar 27), but security problems
have been pointed out 30),32),35). Walter pro-
posed the MIST algorithm 34), which random-
izes the intermediate data T (and U) by re-
peating T = (di mod ri)U + T, U = riU and
di+1 = �di/ri�, where ri are random numbers
and initial values of T, U, di are O, P, d re-
spectively.

2.4 Address-bit DPA
The address-bit DPA (ADPA) was firstly pro-

posed by Messerges, et al. for common key
cryptosystems 22), which analyzes a correlation
of the secret-key and addresses of registers.
Recently, Itoh, et al. extended the attack to
public-key cryptosystems 8). For example, in
step 5 in Alg. 4, a correlation of data are given
by T [0] ← T [0] if di = 0, and T [0] ← T [1]
if di = 1; Actually these operations are same,
but substituted data are loaded from different
registers. A main idea of ADPA is to detect
this correlation. Itoh, et al. concluded that
only the exponent splitting countermeasure 5),
in which the scalar is divided into d = (d−r)+r
for a random number r, and the randomized
window method 13) are resistant against the at-
tack 8). But as a drawback, required processing
speed become at least twice than that of with-
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Alg. 5. 4-bit window method

INPUT: d[], P
OUTPUT: dP

1: W[0] = 0, W[1] = P
2: W[2] = ECDBL(W[1])
3: for i=3 upto 15 {
4: W[i] = ECADD(W[i-1],W[1])
5: }
6: T = W[d[n-1,n-4]]
7: for i=n-5 downto 0 step -4 {
8: T = ECDBL(T), T = ECDBL(T)
9: T = ECDBL(T), T = ECDBL(T)

10: T = ECADD(T,W[d[i,i-3]])
11: }
12: return T

Alg. 6. 4-bit window method with RPC

INPUT: d[], P
OUTPUT: dP

1: W[0] = 0, W[1] = RPC(P)
2: W[2] = ECDBL(W[1])
3: for i=3 upto 15 {
4: W[i] = ECADD(W[i-1],W[1])
5: }
6: T = W[d[n-1,n-4]]
7: for i=n-5 downto 0 step -4 {
8: T = ECDBL(T), T = ECDBL(T)
9: T = ECDBL(T), T = ECDBL(T)

10: T = ECADD(T,W[d[i,i-3]])
11: }
12: return invRPC(T)

out countermeasures. Another countermeasure
is proposed by May, et al. 24), however, it re-
quires a special hardware using a method called
the Random Register Renaming (RRR).

2.5 Window-based Method
In a scalar exponentiation, pre-computed ta-

bles sometimes deduce the computing time if
extra registers are available (the window-based
method). The most simplest example is in Al-
gorithm 5 with window size 4 just for simplicity
(where n is supposed to be a multiple of 4).

Similar to the binary method (Algorithm 4),
the window method is also vulnerable to SPA,
because ECADD in step 10 is not computed
if W[i,i-3] = O. Möller proposed a method
to construct an addition chain in which W[]
is never equal to O 18),19), which assures the
SPA-resistance. One can combine RPC or RC
countermeasures with Möller’s methods (Al-
gorithm 6 for RPC case) in order to resist
DDPA. However, Okeya-Sakurai showed the
insecureness against the second-order data-bit
DPA 31). Other approach to resist both DDPA
and ADPA is proposed by Itoh, et al. 13), which
randomizes the window to be added in step 10
in Algorithm 5.

3. Proposed Countermeasure

In this section, we propose a practical coun-
termeasure, the randomized addressing method
(RA), against the address-bit DPA by random-
izing addresses of registers used in a scalar ex-
ponentiation. An overhead of the countermea-
sure is small and the effectiveness will be shown
by experimental results described in this sec-
tion.

3.1 Outline
The address-bit DPA is based on the depen-

dency of addresses of registers on the secret key.
In other word, addresses of registers are deter-
mined by the secret key uniquely, because in
Algorithm 1, for example, T [0]← T [0] if di = 0
and T [0]← T [1] if di = 1 so that if di changes,
then registers will change, too.

A weakness lies on the direct correlation be-
tween the secret key and addresses of regis-
ters. What we should hide is the correlation
(rather than the scalar). So we randomize ad-
dresses of registers by a one-time random num-
ber rn−12n−1 + · · · + r12 + r0 (ri ∈ {0, 1}).
We change all parameters di to di ⊕ ri, where
⊕ denotes the XOR operation. Then all ad-
dresses of registers are randomized so that the
side channel information will be randomized for
each scalar exponentiation. This is a basic idea
of our proposing countermeasure, the random-
ized addressing method (RA), against ADPA.

The most advantage of our method is the
small overhead; the random number is easily
generated and required additional operations
are just XORs. However, our countermeasure
has no DDPA-resistance. We have to combine
other countermeasures to resist all DPAs. A
DDPA-resistant scheme can be enhanced to an
ADPA-scheme with almost no cost. Moreover,
our countermeasure can be easily applied to
window methods.

3.2 Description of Algorithms
Example algorithms of our countermea-

sure combined with the add-and-double-always
method, the Montgomery ladder and the win-
dow method are in Algorithm 7-9. All sam-
ple algorithms are resistant against all of SPA,
DDPA, and ADPA. The functions R,invR de-
note RPC,invRPC or RC,invR described in Sec-
tion 2.3, respectively.

In these algorithms, a random number r is
generated at the beginning and stored. In order
to reduce the memory, it is possible to generate
ri’s on the fly, namely to generate 1-bit random
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Alg. 7. Proposed countermeasure (add-and-
double-always method)

INPUT: d[], P
OUTPUT: dP

1: T[2] = R(P)
2: T[r[n-1]] = T[2]
3: for i=n-2 downto 0 {
4: T[r[i+1]] = ECDBL(T[r[i+1]])
5: T[1-r[i+1]] =

ECADD(T[r[i+1]],T[2])
6: T[r[i]] = T[d[i]⊕r[i+1]]
7: }
8: return invR(T[r[0]])

Alg. 8. Proposed countermeasure (Montgomery
ladder)

INPUT: d[], P
OUTPUT: dP

1: T[r[n-1]] = R(P)
2: T[1-r[n-1]] = ECDBL(T[r[n-1]])
3: for i=n-2 downto 0 {
4: T[2] = ECDBL(T[d[i]⊕r[i+1]])
5: T[1] = ECADD(T[T[0],T[1])
6: T[0] = T[2-(d[i]⊕r[i])]
7: T[1] = T[1+(d[i]⊕r[i])]
8: }
9: return invR(T[r[0]])

Alg. 9. Proposed countermeasure (4-bit window
method)

INPUT: d[], P
OUTPUT: dP

1: W[0] = 0, W[1⊕r] = P
2: W[2⊕r] = ECDBL(W[1⊕r])
3: for i=3 upto 15 {
4: W[i⊕r] = ECADD(W[(i-1)⊕r],W[1⊕r])
5: }
6: T = W[d[n-1,n-4]⊕r]
7: for i=n-5 downto 0 step -4 {
8: T = ECDBL(T), T = ECDBL(T)
9: T = ECDBL(T), T = ECDBL(T)
10: T = ECADD(T,W[d[i,i-3]⊕r])
11: }
12: return invR(T)

numbers when they are used. However, it may
also reduce the security or the processing speed.

Note 1 In the above descriptions, we mainly
thought of software implementations. However,
even for hardware implementations, ADPA will
be successful if indexed registers (e.g., DRAM)
are used, because ADPA detects the correla-
tion between indexes and the secret key. In
short, ADPA does not depend on implemen-
tations 8),9),24). Since RA randomizes destina-
tions of registers, it actually contributes as a
countermeasure.

3.3 Security Analysis
Let us discuss the security of our countermea-

sure. Basically our scheme is designed to com-
bine other countermeasures to totally resist the
power analysis; we only consider the security
against ADPA. In Alg. 7-9, addresses of regis-
ters are determined by di⊕ri. ADPA can distin-
guish whether two addresses corresponding to
di and dj are same or not. If these addresses are
same, an adversary can know di ⊕ ri = dj ⊕ rj .
But the adversary cannot determine di = dj or
not, because ri, rj are chosen randomly. Con-
versely, even if di = dj , addresses are not always
same by ri and rj . Thus addresses of registers
are randomized and our countermeasure is se-
cure against ADPA.

3.4 Comparison
We should mention a hardware-based coun-

termeasure proposed by May, et al. 24), which
is called the Randomized Register Renaming
(RRR). A basic idea of RRR is very similar to
ours. However, RRR is assumed to be imple-
mented on a special hardware called the Non-
Deterministic Instructions Stream Computer
(NDISC), which processes given operations in
randomized order, if possible. RRR use phys-
ically separated registers from virtual registers
described in the code. Consequently RRR on
NDISC assures the SPA- and DPA-resistance
without taking other countermeasures in the
programming level.

Proposed countermeasure does not assume
such special hardwares; our countermeasure can
be implemented on various processors and can
be implemented by only software with very
simple program codes. These specifications
make our countermeasure very practical. Since
our countermeasure only requires physical reg-
isters, implementers can easily grasp what is
being computed in the program. Even if other
security-hole has been discovered, implementers
can easily take more countermeasures.

There is a tradeoff between RRR and our
countermeasure. RRR resists all DPAs on spe-
cial hardware, while proposed countermeasure
resists only ADPA. In order to resist all DPAs,
proposed countermeasure should be combined
to other DPA-countermeasures.

3.5 Experimental Results
We performed an experiment for verifying

the effect on the security by using our counter-
measure. We used the address-bit DPA attack
against an implementation of Montgomery lad-
der using RPC with and without the register
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Fig. 1 Differential power traces without register
randomization.

Fig. 2 Differential power traces with register
randomization (proposed method).

randomization. In the experiment, the target
processor was run at 10 MHz, the sampling ra-
tio was set to 100 MHz, and we made a differen-
tial power trace as a difference between means
of 10000 traces when loading Q[addr[da]] and
means of 10000 traces when loading Q[addr[db]]
for da �= db where addr[dx](x = a or b) repre-
sents the address value determined from dx in
each implementation. Figure 1 shows a differ-
ential power trace without register randomiza-
tion, and Fig. 2 shows that with register ran-
domization. In Fig. 1, some spikes showing the
evidence for da �= db are observed, but they
are not found in Fig. 2. Hence we confirmed
the effect of our countermeasure for protecting
against address-bit DPA.

4. Combining Countermeasures

As in the previous section, our countermea-
sure was dedicated to resist only ADPA. In
order to resist all DPAs, other countermea-
sures should be combined. However, finding a
good combination which has a certain security
level and compromisable processing speed is a

hard task for implementers, for there were no
standard criteria to compare these (combined)
countermeasures. In this section, we provide
some criterion for comparing countermeasures
including security level, processing speed, and
amount of required registers. Moreover we
show that combined countermeasures can be
evaluated by these criterion. As a result, our
proposed countermeasure can be combined to
establish a practical solution for resisting the
power analysis in real world.

4.1 Evaluation Technique
We examine an exponentiation in 160-bit

ECC from the security level, processing speed,
and amount of required registers. In the follow-
ings, the binary methods and the Montgomery
Ladder are called the base algorithms to which
countermeasures are applied. We do not discuss
the window-based cases nor non-generic meth-
ods for space limitation.

4.1.1 Security Level
In order to evaluate the security of a coun-

termeasure against each of SPA, DDPA and
ADPA, we adopt a criteria called the Atten-
uation Ratio (AR) proposed by Itoh, et al. 13).
Let denote the ratio against SPA, DDPA and
ADPA by ARS , ARd and ARa respectively.
Originally, only ARd was considered 8). ARd

is between 0 and 1 and is desired to be smaller.
If ARd = 0, an adversary cannot observe spikes
by any cost and the countermeasure is secure;
if ARd = 1, the adversary can always observe
spikes and the countermeasure is totally inse-
cure. In order to extend ARd to ARS and ARa

with inheriting these properties, we define ARS

and ARa as follows. ARS takes 0 or 1: ARS = 0
implies the vulnerability to SPA and ARS = 1
implies the resistance to SPA. On the other
hand, ARa only take 0 or 1, rather than arbi-
trary values between 0 and 1. A brief explana-
tion is in the appendix.

Note 2 In the above discussion on AR, we as-
sumed that noises are disappeared during the
averaging process. In other words, AR ratios
are just theoretical bounds of countermeasures.
Different values may be led from real observa-
tions.

4.1.2 Processing Speed
Processing speed of a scalar exponentiation

dP is measured by the numbers of ECADDs de-
noted NA and ECDBLs denoted ND. For the
base algorithms, ND and NA are given by inte-
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gers. If a countermeasure requires ECADDs a
times than before, we denote it by “×a”. We ig-
nore the cost for randomizations or transforma-
tions required in the countermeasure because
they are relatively small compared to NA and
ND.

4.1.3 Register
Amount of required registers are measured by

the number of points RP and that of scalars
Rs in a scalar exponentiation. We assume all
points are represented by the projective coor-
dinate just for simplicity. For the base algo-
rithms, RP and Rs are given by integers. For
countermeasures, RP and Rs are evaluated as
extra points and scalars required in the expo-
nentiation. If a countermeasure requires b extra
points than before, RP is denoted by “+b”. We
ignore the temporary registers for ECADD and
ECDBL.

4.2 Countermeasures
In this section, we evaluate these values for

each countermeasure. We only deal with coun-
termeasures whose recommended parameters
are explicitly given in the original papers, so we
exclude RRR and some other countermeasures.
We did not deal with the randomized addition-
subtraction chain 27) because it is shown to be
insecure 30),32),35).

4.2.1 SPA Countermeasure
The add-and-double-always method (Alg. 2)

computes ECDBL and ECADD for every bit
and is SPA-resistant (ARS = 0). But data
computed in step 5 is predictable (ARd = 1)
and a correlation of addresses in step 5 is re-
lated to d (ARa = 1). Required ECDBLs are
same (ND = ×1) but ECADDs are doubled in
average (NA = ×2). Extra points and scalars
are not required (RP = +0, Rs = +0). Same
discussion can be applied to the LSB case.

The Montgomery Ladder (Alg. 3) computes
ECDBL and ECADD for every bit and is SPA-
resistant (ARS = 0). But data computed in
step 5 and 6 are predictable (ARd = 1) and
a correlation of addresses of registers in step
3,5,6 are related to d (ARa = 1). Required
ECDBLs and ECADDs are 160 (ND = NA =
160). Required registers are RP = 3, Rs = 1.

4.2.2 DPA Countermeasure by Data
Randomization

In the Randomized Projective Coordinate
(RPC) 4), a point (X, Y, Z) is randomized to
(rX, rY, rZ) by a 160-bit random number r and
it resists DDPA (ARd = 2−160). As it is vul-
nerable to SPA (ARS = 1), it must be used

with the add-and-double-always method or the
Montgomery Ladder. It is also vulnerable to
ADPA (ARa = 1). Processing speed is un-
changed (NA = ND = ×1). An extra point for
the randomized point and an extra scalar for
random number are required (RP = +1, Rs =
+1).

In the Randomized Curve (RC) 14), a point
(X, Y, Z) is randomized to (r2X, r3Y, Z) on an
isomorphic curve by a 160-bit random number
r and it resists DDPA (ARd = 2−160). But
it is vulnerable to SPA and ADPA (ARS =
ARa = 1). Processing speed is unchanged
(NA = ND = ×1). Extra scalars for r and
coefficients of isomorphic curves are required
(RP = +0, Rs = +3).

In the Randomized Base Point 4), a scalar ex-
ponentiation dP is computed by d(P +R)−dR
for a random point R. As R is chosen for each
exponentiation, the method is DDPA-resistant
(ARd = 2−160). But it is vulnerable to SPA
and ADPA (ARS = ARa = 1). The counter-
measure requires two exponentiations and an
extra ECADD (ND = ×2, NA = ×2 + 1).
Extra registers for R and P + R are required
(RP = +2, Rs = +0).

4.2.3 DPA Countermeasure by Scalar
Randomization

In the Randomized Exponent 4), a scalar d
is randomized to d + rφ for a random num-
ber r and the order φ of the base point P .
In the original paper, the length of r is 20-
bit and, thus, the countermeasure is DDPA-
resistant (ARd = 2−20) (There is an analy-
sis which claims the 20-bit randomization is
not sufficient 29). Of course, we can relax the
condition to 160-bit, however, the processing
speed becomes much slower). It is also ADPA-
resistant (ARa = 0), however it is vulnera-
ble to SPA (ARS = 1). Processing speed
becomes slower for the scalar is 20-bit longer
(ND = NA = ×180/160 = ×1.13). An extra
register for r is required (RP = +0, Rs = +1).

In the Randomized Start Point 21), a start bit
is chosen from a 160-bit scalar and an exponen-
tiation is computed from the chosen bit by MSB
for upper bits and by LSB for lower bits. How-
ever, the effect is rather small (ARd = 1/160 =
2−7.3). It is also ADPA-resistant (ARa = 0),
however it is vulnerable to SPA (ARS = 1).
There requires no extra process (ND = NA =
×1) and register (RP = Rs = +0).

In the Exponent Splitting 5), a scalar d is di-
vided into r and d−r for a 160-bit random num-
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Table 1 Comparison of countermeasures for 160-bit ECC (non-window methods).

No. Method ARS ARd ARa ND NA RP Rs

1 binary method (form MSB) 1 1 1 160 80 1 0
2 binary method (from LSB) 1 1 1 160 80 2 0
3 add-and-double-always method 0 1 1 ×1 ×2 +1 +0
4 Montgomery ladder 0 1 1 160 160 3 0

5 Randomized Projective Coordinate 1 2−160 1 ×1 ×1 +1 +1

6 Randomized Curve 1 2−160 1 ×1 ×1 +0 +3
7 Randomized Base Point 1 2−160 1 ×2 ×2 +2 +0
8 Randomized Exponent (|r| = 20) 1 2−20 0 ×1.13 ×1.13 +0 +1

9 Randomized Start Point 1 2−7.3 0 ×1 ×1 +0 +0
10 Exponent Splitting 1 2−160 0 ×2 ×2 + 1 +1 +2
11 Randomized Addressing (RA) 1 1 0 ×1 ×1 +0 +2

1+3+5+11 Best Combination 0 2−160 0 160 160 3 3

1+3+6+11 Best Combination 0 2−160 0 160 160 2 5
4+5+11 Other Solution 0 2−160 0 160 160 4 3
4+6+11 Other Solution 0 2−160 0 160 160 3 5

ber r. As the secret information d is random-
ized, it is resistant against DDPA and ADPA
(ARa = 0, ARd = 2−160). However, it is vul-
nerable to SPA (ARS = 1). The countermea-
sure requires two exponentiations and an ex-
tra ECADD (ND = ×2, NA = ×2 + 1). Ex-
tra registers for (d − r)P , r, d are required
(RP = +1, Rs = +2).

In the Randomized Addressing (RA) (Alg. 5),
proposed in this paper, registers in step 4,5,6
are determined by a random bit ri. It is ADPA-
resistant (ARa = 0), however, it is vulnerable
to SPA and DDPA (ARS = ARd = 1). There
requires no extra process (ND = NA = ×1).
Extra registers for r and r ⊕ d are required
(RP = +0, Rs = +2).

4.3 Combining Countermeasures
As we saw in the previous section, some coun-

termeasures only resist specific attacks. Im-
plementers should combine them to resist all
power analysis. In our setting, we can eas-
ily evaluate and compare each combined coun-
termeasures (Table 1). Here we have three
choices from three categories. Firstly, an ad-
dition chain is chosen from 1-4 (more precisely,
from 1,2,4,1+3 or 2+3). Then secondly, a DPA
countermeasure is chosen from 5-10. Finally,
if ADPA countermeasure is needed, choose 11.
In this way, we can combine countermeasures
and evaluate their performance. The security
level ARS , ARd, ARa can be evaluated by
their product. Similarly, the processing speed
is evaluated by their product and amount of
registers are evaluated by their sum. For ex-
ample, if we use the Montgomery Ladder com-
bined with RPC and RA, which is denoted as
4+5+11 in the following Table 1, the security
levels, processing speed and amount of registers
are given by ARS = 0, ARd = 2−160, ARa = 0,

ND = 160, NA = 160, RP = 4, Rs = 3.
4.4 Comparison
This section provides a complete comparison

of countermeasures (Table 1). The base algo-
rithms are described in italic. As in the previ-
ous section, the security level can be evaluated
for combined countermeasures. By this table,
we can easily choose the most suitable counter-
measure(s) from the security level, processing
speed and amount of required registers.

Form Table 1, we can conclude that com-
binations 1+3+5+11 and 1+3+6+11 provide
the best combination from security level and
processing speed. Other possible solutions are
4+5+11 and 4+6+11. In these combinations,
more effective addition formula for ECADD and
ECDBL are applicable and faster processing
speed and fewer amount of registers can be ex-
pected 12). In these combinations, our proposed
countermeasure are used.

Similar discussion for window-based methods
can be established. We do not compare them
here for a space limitation.

5. Concluding Remarks

In this paper, we proposed a practical coun-
termeasure against the address-bit DPA appli-
cable to ECC and RSA. Unlike the similar re-
sult of RRR, our method can be implemented
in software level and thus has more flexibility.
A recent result of Han, et al. implies the appli-
cability of our countermeasure to other cryp-
tosystems 6).

In order to resist the power analysis, consider-
ing countermeasures against each attack is an
important factor for implementers. However,
when they are to establish a total security, com-
binations of some countermeasures are more im-
portant. For this purpose, our table (Table 1)
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will be a great help.

References

1) Akkar, M., Dischamp, P. and Moyart, D.:
Power Analysis, What is Now Possible..., Asi-
acrypt 2000, LNCS 1976, pp.489–502, Springer-
Verlag (2000).

2) Brier, E. and Joye, M.: Weierstraß Ellip-
tic Curves and Side-Channel Attacks, PKC
2002, LNCS 2274, pp.335–345, Springer-Verlag
(2002).

3) Blake, I., Seroussi, G. and Smart, N.: Elliptic
Curves in Cryptography, Cambridge University
Press (1999).

4) Coron, J.: Resistance against differential
power analysis for elliptic curve cryptosystem,
CHES’99, LNCS 1717, pp.292–302, Springer-
Verlag (1999).

5) Clavier, C. and Joye, M.: Universal exponen-
tiation algorithm—A first step towards prov-
able SPA-resistance, CHES 2001, LNCS 2162,
pp.300–308, Springer-Verlag (2001).

6) Han, D.-G., Lim, J. and Sakurai, K.: On In-
security of the Side Channel Attack on XTR,
Proc. 2004 Symposium on Cryptography and
Information Security (SCIS2004 ), pp.671–676
(2004).

7) IEEE P1363, Standard Specifications for
Public-Key Cryptography (2000).

8) Itoh, K., Izu, T. and Takenaka, M.: Address-
bit Differential Power Analysis of Crypto-
graphic Schemes OK-ECDH and OK-ECDSA,
CHES 2002, LNCS 2523, pp.129–143, Springer-
Verlag (2003).

9) Itoh, K., Izu, T. and Takenaka, M.: An
Address-bit Differential Power Analysis of the
Countermeasure with Montgomery-form Ellip-
tic Curves (in Japanese), to appear, IPSJ Jour-
nal, Vol.45, No.7 (2004).

10) Itoh, K., Izu, T. and Takenaka, M.: A Prac-
tical Countermeasure against Address-bit Dif-
ferential Power Analysis, CHES 2003, LNCS
2779, pp.382–396, Springer-Verlag (2003).
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Appendix

In this appendix, we briefly discuss the char-
acteristics of ARa described in Section 4, in
which the signal content, not noise content, is
evaluated. Merit of this idea is as follows. The
possibility of the real-world DPA attack de-
pends on the signal-to-noise ratio (SNR), and
its evaluation method is proposed in Refs. 22)
and 23). This may lead the exact evaluation,
but needs the parameters of the signal and
noise, which are peculiar to the target and it is
difficult to archive the target-independent eval-
uation. In opposite, we evaluate the ratio of sig-
nal by AR, and if its absolute value is very little,
countermeasure is regarded as DPA-resistant.
In comparison with SNR, AR is indirect, but
it is evaluated by only the characteristic of the
countermeasure. Hence, merit of our evaluation
is target-independent.

Suppose a DPA-adversary inputs data

a1, . . . , aN into the target device, and obtains
power traces V (a1, t), . . . , V (aN , t), where t de-
notes the time. Let δR(V (aj , t

′)) be an evalu-
ation function (the hamming weight, for exam-
ple) of V (aj , t

′) for an input aj at time t = t′,
and GR0, GR1 be un-overlapped sets of range
of δR(V (aj , t

′)). If N is large enough and el-
ements of GR0 and GR1 is roughly same, we
have a difference

∆R(t) =
2
N


 ∑

j s.t. δR(V (aj ,t′))∈GR0

V (aj , t)

−
∑

j s.t. δR(V (aj ,t′))∈GR1

V (aj , t)


 .

In DPA, the adversary assumes a base value of
data or address, simulates the target compu-
tation for time t = t′, and computes the eval-
uation function δS(V (aj , t

′)) for each aj , Let
GS0, GS1 be un-overlapped sets of range of
δS(V (aj , t

′)). Then the difference function is
given by

∆S(t) =
2
N


 ∑

j s.t. δS(V (aj ,t′))∈GS0

V (aj , t)

−
∑

j s.t. δS(V (aj ,t′))∈GS1

V (aj , t)


 .

If the assumption is correct, there appears a
spike at ∆S(t′), which implies δS(V (aj , t

′)) =
δR(V (aj , t

′)) and thus GR0 = GS0, GR1 =
GS1.

When countermeasures are used, δS(V (aj , t
′))

is not always equal to δR(V (aj , t
′)). Let

p be the probability being δS(V (aj , t
′)) =

δR(V (aj , t
′)). Then we have

∆S(t) = p×∆R(t) + (1− p)×∆F (t),
for

∆F (t) =
2
N


 ∑

j s.t. δS(V (aj ,t′))∈GS0

V (aj , t)

−
∑

j s.t. δS(V (aj ,t′))∈GS1

V (aj , t)




in which δS(V (aj , t
′)) �= δR(V (aj , t

′)).
Under above notations, AR is defined as a

ratio of ∆R(t) and ∆S(t) at t = t′ by
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AR =
∣∣∣∣
max ∆S(t′)
max ∆R(t′)

∣∣∣∣

≈
∣∣∣∣p + (1− p)× max ∆F (t′)

max ∆R(t′)

∣∣∣∣ . (2)

Note that the spike appears at t = t′, and p rep-
resents the probability decided by the attacker’s
guess of an intermediate value of the target de-
vice at t = t′, which is evaluated with the data
entropy of the countermeasure. That is, p is
in inverse propotion of the product of the inde-
pendent random number size of the plural coun-
termeasures. By the definition, AR is between
0 and 1. When it is likely to δS(V (aj , t

′)) =
δR(V (aj , t

′)) for many t′s, AR will be near to
1 (weak countermeasures). On the other hand,
when δS(V (aj , t

′)) �= δR(V (aj , t
′)) for almost

every t′s, AR will be 0 (strong countermea-
sures).

Theoretical evaluation of (2) differs between
DDPA and ADPA because of the difference
of ∆F (t). In DDPA, ∆F (t) will be 0, since
δR(V (aj , t

′)) �= δS(V (aj , t
′)) and there is no

relation between GSx and GRy (x, y = 0, 1).
Hence we have ARd = |p|. On the other hand,
in ADPA, possible values of δR, δS are lim-
ited to 2 patterns. Thus δR �= δS implies that
GS0 = GR1, GS1 = GR0. Consequently, we
have ∆F (t) = −∆R(t) and ARa = |2p − 1|.
When no ADPA-countermeasure is used, we
have p = 1 and ARa = 1. On the other hand,
when ADPA-countermeasures work ideally, the
probability p will be 1/2 and we have ARa = 0.
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