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1 Background

Hardness amplificationis a method for turning a func-
tion that is somewhat hard to compute into one that
is very hard to compute against a given class of adver-
saries. The existence of many objects in average-case
complexity and cryptography, such as hard on average
NP problems and one-way functions, rely on unproven
assumptions. In many cases, hardness amplification
allows us to prove that if weakly hard versions of such
objects exist, then strongly hard ones exist as well.

In settings where complexity lower bounds are
known, applications of hardness amplification are not
so common. Nevertheless, the method can sometimes
be used to turn unconditional weak lower bounds
into strong ones. Viola and Wigderson [7] showed
an XOR lemma that amplifies the hardness of func-
tions f : Fn

2 → F2 against low-degree polynomials
over finite fields. There are many examples of weakly
hard functions for this class of adversaries. The result
of Viola and Wigderson allows us to turn these into
functions of related complexity that are very hard to
approximate (in terms of approximation accuracy) by
polynomials of the same degree.

Low-degree polynomials are fundamental objects
in theoretical computer science, with applications in
error-correcting codes, circuit complexity, probabilis-
tically checkable proofs, and so on. Applications often
require the use of polynomials over fields larger than
F2. In some cases results about polynomials over F2

can be easily extended to other finite fields, but in
other cases different ideas are required for binary and
non-binary fields.

2 Our Results

In this work, we generalize the XOR lemma of Vi-
ola and Wigderson [7] to arbitrary prime fields. We
prove the following. Here, Fq is a finite field of prime
order q, and δd(f) = minp of degree d Prx[f(x) ̸= p(x)],
that is the distance between f and its nearest degree-d
polynomials.
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Theorem 1. Let q be a prime number, and f : Fn
q →

Fq be a function such that δd(f) ≥ q
(d+1)2d+1 . If
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where f+t : (Fn
q )t → Fq is the sum over Fq of t inde-

pendent copies of f .

Since δd(f) ≤ q−1
q for any function f , Theorem 1

allows us to construct functions that are arbitrar-
ily close to having optimal hardness against degree-d
polynomials over Fq, by choosing t = t(d, q, ε) suffi-
ciently large.

Applying our argument, we obtain an explicit func-
tion that is very hard to approximate by polynomials
of degree d:

Theorem 2. Let d ≥ 0 be an integer and m
be an integer coprime to q, where m < q, and
MODm(x1, ..., xn) := x1 +x2 + · · ·+xn mod m, where
+ is the addition over Fq. Then,
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Hardness of modulo functions for low-degree poly-
nomials for different settings of parameters has been
studied in several works. Directly applying our hard-
ness amplification to a function f(x) = x mod m,
we would prove the hardness of another modulo
function as an explicit function, similarly to Theo-
rem 2. However, q and d are then forced to satisfy
δd(f) ≥ q

(d+1)2d+1 , and moreover, the obtained bound
is weaker than that of Theorem 2.

3 Our proof

We generalize the proof of Viola and Wigderson [7]
over F2. Their argument makes use of the Gow-
ers d-norm ∥ · ∥Ud [4, 5]. Starting from a function
f : Fn

2 → F2 that is mildly far from degree-d poly-
nomials over F2, Viola and Wigderson reason as fol-
lows: (1) From the low-degree test analysis of Alon
et al. [1], we know that if f is mildly far from degree-
d polynomials, then ∥f∥Ud+1 is bounded away from
one. (2) By the multiplicativity of the Gowers norm,
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∥f+t∥Ud+1 = ∥f∥t
Ud+1 , so ∥f+t∥Ud+1 is close to zero

for t sufficiently large. (3) For any polynomial p of
degree d, ∥f+t − p∥U1 ≤ (∥f∥2d+1

Ud+1)t, so ∥f+t − p∥U1

must be close to zero as well. The last quantity sim-
ply measures the correlation between f+t and p, so p
must be far from all degree-d polynomials over F2.

Step (2) of this analysis extends easily to prime
fields; step (3) requires some additional but standard
technical tools. However, step (1) relies on the anal-
ysis of the low-degree test of Alon et al., which was
designed specifically for the binary field. Our main
technical contribution is the extension of this test (in
fact, a slight variant of it) to arbitrary fields. We be-
lieve that our presentation of this test is also simpler
and more modular.

Our test, which we call the Gowers test, works as
follows: Given a function f : Fn

q → Fq, choose a ran-
dom set of points x, y1, . . . , yd+1 ∈ Fn

q , and query f at
all inputs of the form x+a1y1 + · · ·+ad+1yd+1, where
(a1, . . . , ad+1) ranges over {0, 1}d+1. If the evalua-
tions are consistent with a degree-d polynomial ac-
cept, otherwise reject.

Let us call the collection of queries {x + a1y1 +
· · · + ad+1yd+1 : (a1, . . . , ad+1) ∈ {0, 1}d+1} a subcube
of Fn

q . In the case q = 2, something special happens:
With high probability, a subcube of Fn

q coincides with
a rank d + 1 affine subspace of Fn

q . This fact plays
a crucial property in the analysis of Bhattacharyya
et al. [2], who obtain tight lower bounds (within a
constant factor) on the rejection probability of the
Gowers test over F2.

The low-degree test of Kaufman and Ron [6] over
general fields also works by choosing a random affine
subspace of appropriate dimension and checking that
the restriction of f on this space is a polynomial of
degree d. Their work suggests that the proper way
to generalize the Gowers test to larger fields is by
viewing it as a random subspace test, and not a ran-
dom subcube test. However, we do not see how the
Kaufman-Ron test can be used to argue hardness am-
plification. Unlike the Gowers test, their test does not
seem to be naturally related to the Gowers norm or
any other measure on functions that is multiplicative
and bounds the correlation with degree-d polynomi-
als, and so we cannot proceed with steps (2) and (3)
of the Viola-Wigderson argument.

We show that if f is δ-far from a degree-d polyno-
mial, then the Gowers test performs 2d+1 queries and
rejects f with probability min{δ/q, 1/(d + 1)2d+1}.
The Gowers test has higher query complexity than
the Kaufman-Ron test.∗ However, its rejection prob-
ability is closely related to the Gowers norm over Fq,
and we can conclude the proof.

Our analysis of the Gowers test is a generalization
of the linearity test analysis of Blum, Luby, and Ru-

∗The Kaufman-Ron test makes qℓ queries, where ℓ = ⌈(d +
1)/(q − q/p)⌉ and q = pk for a prime p and integer k and has
rejection probability about min{Ω(δd(f)qℓ), 1/(ℓqℓ+1)}.

binfeld [3]. Given a function f : Fn
q → Fq that the test

accepts with high probability, they define a function
g : Fn

q → Fq that is close to f , and then they argue
that g must be linear. The linearity of g is proved
using a self-reducibility argument, which relates eval-
uations of g at arbitrary inputs to evaluations at ran-
dom inputs, where the identity g(x)+g(y) = g(x+y)
holds with high probability.

We proceed along the same lines: Given f , we de-
fine a function g that is close to f , and then argue that
g must be a degree-d polynomial. To argue the second
part, we use a self-reducibility argument that relates
evaluations of g at arbitrary subcubes to evaluations
at random subcubes.

The reason why we suppose prime fields in our re-
sults is that the characterization of polynomials used
in the Gowers test makes sense only over prime fields.
We need to discover a new characterization of polyno-
mials over non-prime fields connected to the Gowers
norm for further generalization.
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