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Abstract. We present performance result of LU -
factorization on Cypress GPU architecture. Our cur-
rent implementation of LU-factorization achieves 379
Gflop/s (67 % of the peak).

1 Introduction

LU-factorization is an important part in many practi-
cal problems, which are based on the solution of sys-
tem of linear equations. It is well known that the most
intensive part of LU-factorization is General Matrix
Multiply (GEMM). To speed-up LU-factorization, it
is important to accelerate GEMM.

Multicore architectures such as GPU specializes
for computing. There are various works to speed-up
GEMM on multicore architectures. Cypress GPU can
compute 1600 fused multiply-add (FMA) operations
per cycle in single precision and 320 FMA operations
per cycle in double precision.

There are various works which speed-up LU-
factorization by tuning GEMM on GPU. Nath et
al [1] reported DGEMM and one-sided factorization
on Fermi GPU. Their LU-factorization achieved 224
Gflop/s. Rohr et al [2] present their implemen-
tation of combined CPU/GPU DGEMM and LU-
factorization on Cypress GPU. Their system used 24
cores CPU and AMD GPU achieved 563.2 Gflop/s for
LU-factorization.

In this paper we presents LU-factorization on Cy-
press GPU. We implemented blocked right-looking al-
gorithm. Our algorithm have four parts, panel factor-
ization, solving triangular system of equations, swap-
ping, and DGEMM. We ported solving triangular sys-
tem of equations to GPU.

2 Implementation

In this section, we describe three different task distri-
bution to port computation on GPU. We used blocked
right-looking algorithm [3]. In our implementation
the size of inital matrix is n X n. Initial matrix is
divided into N x N blocks where N = n/b and b is
the block size. It is stored as column-major order.

Pseudocode is described as Algorithm 1. This algo-
rithm factorizes block Ak k at first on each iteration
(line 2). This part includes pivoting. Trailing matrix
of K-th column and K-th row is expressed as triangu-
lar system (lines 4 and 7). Each of them is computed
by solving triangular system using L x and Uk k.
We call solving these triangular systems as L-block
update and U-block update. Finally trailing matrix
is updated (lines 9-13).
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Algorithm 1 LU-factorization
1: for K=1:N do

2:  panel factorization Ax x = Li x X Uk i
3: for/=K+1:N do

4: L[)K = AI,K X U;(}K

5. end for

6: forj=k+1:Ndo

7 UK,J = LI_{lK X AK,J

8: end for '

90 for/=K+1:Ndo

10: for J=K+1:N do

11: Arg=Arg—Lixk xUk s
12: end for

13:  end for

14: end for

We made three different implementations depend-
ing on task distribution between CPU and GPU. For
all implementations, panel factorization (line 2) is
computed by DGETRF routine and updating trail-
ing matrix (lines 9-12) is computed DGEMM routine.
Differences in implementation are how we do L-block
update, U-block update, and pivoting.

For the first implementation, L-block update is
computed by DGETRF. It includes partial pivoting,
which choose a pivot from Ay, x.n. U-block update is
solved by DTRSM routine. For the second implemen-
tation, U-block update is computed on GPU. Before
computation on GPU, inverse of Lk i is computed
by TRTRI routine and then matrix multiplication is
computed on GPU by DGEMM routine. For the third
implementation, L- and U- block update is computed
on GPU by using inverse of matrix. In this implemen-
tation, only one block matrix is factorized and pivot is
chosen from Ag.x. This implementation is expected
to be less stable than others. These differences are
shown in Table 1.

L-block update U-block update pivoting
(1) | DGETRF DTRSM Ak K:N
(2) | DGETRF DTRTRI+DGEMM | Ag k.n
(3) | DTRTRI+DGEMM | DTRTRI+DGEMM | Ag i

Table 1: Differences between three implementations

3 Performance Evaluation
In this section, we present performance evaluation
of LU-factorization. We used Intel Core i7 920

Copyright ©2011 Information Processing Society of Japan.

All Rights Reserved.



TR AL B2 28 73 [ 2 E R

(2.67GHz) as CPU. The peak performance for CPU
is 42.72 Gflop/s. Radeon HD5870 is used as GPU.
The peak performance for GPU is 544 Gflop/s.

BLAS routines except DGEMM are computed
by GotoBlas2 version 1.13 [4]. We modified fast
DGEMM kernel which computes C «— C 4+ AT x
B on Cypress GPU implemented by Nakasato [5].
DGEMM kernel requires transposing matrix which is
faster than using C' + C + A x B kernel. We chose
b = 1792 as the block size in this research because
it is optimal size for our current implementation of
DGEMM [6]. The peak performance of DGEMM is
450 Gflop/s.

The performance, as the function of matrix size
n, is shown in Fig 1. The maximum performance
for three implementations is 262 Gflop/s (44% of
the peak), 282 Gflop/s (48 % of the peak), and 379
Gflop/s (67% of the peak) respectively. The second
and the third implementation require more operations
than the first implementation but performance is bet-
ter. A large speed-up was obtained by porting solving
triangular systems on GPU.

The breakdown of run-time of four parts are shown
in Fig 2. The effect of porting only U-matrix update
is not so big. There is a big difference whether port-
ing both L- and U- matrix update. In this research,
the peak performance for CPU is quite lower than
GPU. Therefore computation on CPU becomes bot-
tleneck. By comparing our work with Rohr et al [2],
we suppose the difference in performance comes from
the peak performance of CPU.
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Figure 1: Performance of LU-factorization (see also
Table 1)

4 Conclusion

We have presented three implementations of blocked
right-looking algorithm. By porting both L- and
U- matrix update to GPU we can speed-up LU-
factorization because the peak performance of CPU
is much lower than GPU in our system. However this
implementation is expected to introduce problem in
numerical stability.
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Figure 2: Breakdown of run-time (see also Table 1)

Future work includes futher optimization for LU-
factorization and implementing other algorithms to
solve system of linear equations such as QR factor-
ization.
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