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Abstract. We present performance result of LU -
factorization on Cypress GPU architecture. Our cur-
rent implementation of LU-factorization achieves 379
Gflop/s (67 % of the peak).

1 Introduction
LU-factorization is an important part in many practi-
cal problems, which are based on the solution of sys-
tem of linear equations. It is well known that the most
intensive part of LU-factorization is General Matrix
Multiply (GEMM). To speed-up LU-factorization, it
is important to accelerate GEMM.

Multicore architectures such as GPU specializes
for computing. There are various works to speed-up
GEMM on multicore architectures. Cypress GPU can
compute 1600 fused multiply-add (FMA) operations
per cycle in single precision and 320 FMA operations
per cycle in double precision.

There are various works which speed-up LU-
factorization by tuning GEMM on GPU. Nath et
al [1] reported DGEMM and one-sided factorization
on Fermi GPU. Their LU-factorization achieved 224
Gflop/s. Rohr et al [2] present their implemen-
tation of combined CPU/GPU DGEMM and LU-
factorization on Cypress GPU. Their system used 24
cores CPU and AMD GPU achieved 563.2 Gflop/s for
LU-factorization.

In this paper we presents LU-factorization on Cy-
press GPU. We implemented blocked right-looking al-
gorithm. Our algorithm have four parts, panel factor-
ization, solving triangular system of equations, swap-
ping, and DGEMM. We ported solving triangular sys-
tem of equations to GPU.

2 Implementation
In this section, we describe three different task distri-
bution to port computation on GPU. We used blocked
right-looking algorithm [3]. In our implementation
the size of inital matrix is n × n. Initial matrix is
divided into N × N blocks where N = n/b and b is
the block size. It is stored as column-major order.

Pseudocode is described as Algorithm 1. This algo-
rithm factorizes block AK,K at first on each iteration
(line 2). This part includes pivoting. Trailing matrix
of K-th column and K-th row is expressed as triangu-
lar system (lines 4 and 7). Each of them is computed
by solving triangular system using LK,K and UK,K .
We call solving these triangular systems as L-block
update and U-block update. Finally trailing matrix
is updated (lines 9-13).

Algorithm 1 LU-factorization

1: for K = 1 : N do

2: panel factorization AK,K = LK,K × UK,K

3: for I = K + 1 : N do

4: LI,K = AI,K × U−1

K,K

5: end for

6: for j = k + 1 : N do

7: UK,J = L−1

K,K ×AK,J

8: end for

9: for I = K + 1 : N do

10: for J = K + 1 : N do

11: AI,J = AI,J − LI,K × UK,J

12: end for

13: end for

14: end for

We made three different implementations depend-
ing on task distribution between CPU and GPU. For
all implementations, panel factorization (line 2) is
computed by DGETRF routine and updating trail-
ing matrix (lines 9-12) is computed DGEMM routine.
Differences in implementation are how we do L-block
update, U-block update, and pivoting.

For the first implementation, L-block update is
computed by DGETRF. It includes partial pivoting,
which choose a pivot from Ak,k:N . U-block update is
solved by DTRSM routine. For the second implemen-
tation, U-block update is computed on GPU. Before
computation on GPU, inverse of LK,K is computed
by TRTRI routine and then matrix multiplication is
computed on GPU by DGEMM routine. For the third
implementation, L- and U- block update is computed
on GPU by using inverse of matrix. In this implemen-
tation, only one block matrix is factorized and pivot is
chosen from AK:K . This implementation is expected
to be less stable than others. These differences are
shown in Table 1.

L-block update U-block update pivoting
(1) DGETRF DTRSM AK,K:N

(2) DGETRF DTRTRI+DGEMM AK,K:N

(3) DTRTRI+DGEMM DTRTRI+DGEMM AK,K

Table 1: Differences between three implementations

3 Performance Evaluation
In this section, we present performance evaluation
of LU-factorization. We used Intel Core i7 920

Copyright     2011 Information Processing Society of Japan.
All Rights Reserved.1-205

4J-4

情報処理学会第73回全国大会



(2.67GHz) as CPU. The peak performance for CPU
is 42.72 Gflop/s. Radeon HD5870 is used as GPU.
The peak performance for GPU is 544 Gflop/s.

BLAS routines except DGEMM are computed
by GotoBlas2 version 1.13 [4]. We modified fast
DGEMM kernel which computes C ← C + AT

×

B on Cypress GPU implemented by Nakasato [5].
DGEMM kernel requires transposing matrix which is
faster than using C ← C + A × B kernel. We chose
b = 1792 as the block size in this research because
it is optimal size for our current implementation of
DGEMM [6]. The peak performance of DGEMM is
450 Gflop/s.

The performance, as the function of matrix size
n, is shown in Fig 1. The maximum performance
for three implementations is 262 Gflop/s (44% of
the peak), 282 Gflop/s (48 % of the peak), and 379
Gflop/s (67% of the peak) respectively. The second
and the third implementation require more operations
than the first implementation but performance is bet-
ter. A large speed-up was obtained by porting solving
triangular systems on GPU.

The breakdown of run-time of four parts are shown
in Fig 2. The effect of porting only U-matrix update
is not so big. There is a big difference whether port-
ing both L- and U- matrix update. In this research,
the peak performance for CPU is quite lower than
GPU. Therefore computation on CPU becomes bot-
tleneck. By comparing our work with Rohr et al [2],
we suppose the difference in performance comes from
the peak performance of CPU.
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Figure 1: Performance of LU-factorization (see also
Table 1)

4 Conclusion
We have presented three implementations of blocked
right-looking algorithm. By porting both L- and
U- matrix update to GPU we can speed-up LU-
factorization because the peak performance of CPU
is much lower than GPU in our system. However this
implementation is expected to introduce problem in
numerical stability.

Figure 2: Breakdown of run-time (see also Table 1)

Future work includes futher optimization for LU-
factorization and implementing other algorithms to
solve system of linear equations such as QR factor-
ization.
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