Vol. 46 No. 1

Recommended Paper

IPSJ Journal

Jan. 2005

Spurious Timeout Detection Algorithm for Mobile Communication

with Delay Jitter

MOTOHARU MIYAKE," HIROSHI INAMURAT and OSAMU TAKAHASHI'

A spurious timeout (STO) leads to an unnecessary go-back-N retransmission and through-
put degradation, which negatively impacts the user’s TCP performance. In this paper, we
propose an STO detection and congestion window control algorithm based on the first ac-
knowledgment following an RT'O monitoring event for suppressing both the unnecessary re-
transmission and throughput degradation. This method strongly supports the enhancement
of existing mobile communications systems because it does not require additional information

or receiver modification.

1. Introduction

As mobile communications are now extremely
popular, the significance of the impact of a wire-
less network’s characteristics on TCP perfor-
mance has become of great importance. In
order to provide reliable transfer, one of the
global telecom systems for the IMT2000 3G mo-
bile communication standard, wideband code
division multiple access (WCDMA), uses ra-
dio link control (RLC), a selective repeat and
sliding window auto repeat request (ARQ)"Y
scheme. The ARQ mechanism in WCDMA sup-
ports a packet service with a negligibly small
probability of undetected errors due to RLC
frame retransmission 2. However, the delay jit-
ter caused by error recovery can lead to an un-
expected increase in round trip time (RTT). In
this event, the TCP sender experiences a re-
transmission timeout (RTO) because it has no
information about the wireless conditions. The
sender then assumes that outstanding segments
are lost, and the unacknowledged segment is re-
transmitted.

In an RTO event, the base station (BS)
keeps the original and retransmitted TCP seg-
ments until the recovery of wireless link, and
then sends them to the receiver. When the
sender does not use a TCP timestamp option,
it can not identify if the acknowledgment is in
the response to the original or the retransmit-
ted segment. This raises the retransmission
ambiguity problem?®), and the sender contin-
ues to retransmit the unacknowledged segments
in response to each acknowledgment. This

t NTT DoCoMo Inc.
11 Future University-Hakodate

211

leads to the unnecessary go-back-N retransmis-
sion, which degrades the throughput because
of the congestion window size reduction. This
RTO event is called spurious timeout (STO).
WCDMA is likely to experience such STO prob-
lems due to delay jitter (e.g., error recovery
with RLC frame retransmission or passage out-
side of the service area) V). On the other hand,
the delay jitter caused by a packet retransmis-
sion in the wireless LAN environment such as
IEEER02.11b%):%) | leads to a limited increase
even if the “Backoff Time” reaches the maxi-
mum value. Wireless LANs are not likely to
experience STO problems, so that this paper
makes no mention of them. In order to suppress
the STO problem, several algorithms based on
explicit and implicit information have been pro-
posed 3):6)~8)

We note that due to the RLC setting of per-
sistency in the BS, the ARQ may give up re-
transmission which leads to TCP segment loss.
This occurs, for example, if link layer trans-
mission does not succeed within a period of
time or a number of transmissions due to an
extreme poor wireless link ?). In this event, the
first unacknowledged segment is discarded, and
the receiver acknowledges the series of follow-
ing segments as duplicate ACKs. The conven-
tional STO detection algorithms #)®)~8) have no
means of detecting the duplicate ACKs that
follow the RTO, and they revert to the con-
ventional algorithm, even if one segment is lost
while the others have reached the receiver. In

The initial version of this paper was presented at
the 24th conference held on March 2003, which
was sponsored by SIGMBL. This paper was recom-
mended to be submitted to IPSJ Journal by the
steering member of SIGMBL.

212 IPSJ Journal

this case, the TCP sender directly enters the
conventional avoidance phase without the slow
start phase after RTO. This degrades through-
put because the sender waits for the first ac-
ceptable ACK following RTO and restarts seg-
ment transmission with a small congestion win-
dow size.

To avoid these significant TCP performance
problems, we propose an STO detection and
congestion window control algorithm that sup-
presses unnecessary retransmission and the
throughput degradation caused by STO and
duplicate ACKs following RTO arrival. It is
based on implicit information collected by mon-
itoring the first acknowledgment, such as an
earlier ACK, an acknowledgment follows the de-
layed ACK that covers 2 full-size segments and
up, and duplicate ACKs following an RTO?).
In Allman’s report, most of the acknowledg-
ments that follow the first retransmission af-
ter RTO within the period RTT;,/2 indi-
cate STO in wired networks”. In addition,
the characteristic of an acknowledgment arrival
time can distinguish the time between segment
retransmission via the slow start algorithm and
the arrival of the acknowledgment. In the case
of the first acknowledgment to cover the arrival
of 2 full-size segments, it means the response to
original outstanding segments according to the
delayed ACK 9 if the bottleneck wireless link
provides sufficient bandwidth®). Moreover, du-
plicate ACKs following the RT'O usually are the
response to the original outstanding segments
according to the expiration of ARQ retransmis-
sion.

The proposed algorithm requires the Reno
algorithm; the only modifications required are
to the TCP protocol stack of the sender. It
does not require any additional information
such as special bits in TCP/IP header fields.
Accordingly, it is easy to support current re-
ceiver side equipment, such as Internet access
cellular phones, PDAs, and PCs. In addition,
it can make use the Selective Acknowledge-
ment (SACK) option'?) and the duplicate se-
lective acknowledgment (DSACK) option '?) to
enhance the detection accuracy.

We implemented the proposed algorithm in
the ns2 simulator ') to confirm its performance
improvement, and show the effect of suppress-
ing unnecessary retransmission. Furthermore,
we assessed the throughput improvement by
the algorithm’s congestion window size behav-
ior. The results confirm that the proposed

Jan. 2005
Wireless Wired
network network
i~ RSt
Receiver Mobile Base Sender
station station
Fig.1 System model.
384 kbps 10 Mbps
Receiver 300ms BS 20ms Gender

'

ACK P TCP segment

L]— —[[]

Fig.2 Simulation model.

algorithm can avoid the throughput degrada-
tion more effectively than the conventional al-
gorithms.

2. System Model and STO

Figure 1 shows the system model of mo-
bile communication considered here. The TCP
sender in the wired network communicates with
the receiver in the wireless network who is us-
ing a protocol such as WCDMA. WCDMA
is likely to experience STO problems caused by
the delay jitter that accompanies error recovery
with RLC frame retransmission or passage out-
side of the service area'). Figure 2 shows the
topology used in our experiments. The sender
is connected to the BS via a 10 Mbps wired link
with a RTT of 20ms, and the receiver is con-
nected to the BS via a 384 kbps wireless link
with a RTT of 300 ms. The TCP segments are
transmitted from the sender to the receiver.

The sender measures the RTT for TCP time-
out and retransmission. This is needed for han-
dling route changes and network traffic changes,
however the sender can experience the STO
problem easily. This is because it is hard to
support unexpected RTT increments caused by
the delay jitter the accompanies error recovery
with RLC frame retransmission or passage out-
side of the service area. This means that the
sender retransmits the outstanding segments
even if the BS has enough queue depth and
has not dropped any original outstanding seg-
ments. When if a sender without timestamp
option receives an acknowledgment following
an RTO, it faces the retransmission ambigu-
ity problem?®. It assumes that outstanding
segments are lost, and retransmits unacknowl-

Vol. 46 No. 1

sequence number 0.0.0.0:0_==>_0.0.0.3:0 (time sequence graph)

300000 Acknowledgments

Original segments

200000 o
Advertised windows

R

14

Retransmitted segments
caused by RTO exponential backoff

/ Retransmitted
segments
caused by go-back-N

retransmission
100000

0
09:00:00 09:00:05 09:00:10 09:00:15 09:00:20t_
ime

Fig.3 An example of unnecessary retransmission and
throughput degradation caused by an STO.

edged segments. Moreover, the sender contin-
ues to retransmit the unacknowledged segments
in response to each of the acknowledgments
which leads to unnecessary go-back-N retrans-
mission. The STO problems during bulk data
transfer in the GPRS (General Packet Radio
Service), which has similar ARQ retransmis-
sion mechanism to the W-CDMA, is reported
in Ref. 14).

Figure 3 shows conventional TCP sender be-
havior after an STO. The graph convention
used in the time-sequence graph is similar to
that introduced in Ref. 15). The thick and thin
solid lines in Fig. 3 plot the segments, acknowl-
edgments, and advertised window size, respec-
tively. Symbol “R” shows the segment retrans-
mitted by the exponential backoff algorithm
and go-back-N retransmission. This trace was
captured by the ns2 simulator on the sender
side. The figure shows go-back-N retransmis-
sion after exponential backoff and the reduction
in the congestion window size after the RTO.
As a result, the sender performs unnecessary
retransmission and the throughput degrades.

3. Related Work

In order to suppress the STO problem, sev-
eral algorithms based on explicit information,
such as TCP options, and implicit information
have been proposed.

3.1 STO Detection Based on Explicit

Information

The Eifel algorithm® with the TCP times-
tamp option can identify if the acknowledgment
is in response to the original segment or the re-
transmitted segment. The timestamp option
is standardized as RFC1323, and it is imple-
mented in most operating systems. To use the

Spurious Timeout Detection Algorithm for Mobile Communication 213

Eifel algorithm, only the sender needs to im-
plement it. If a sender with the Eifel algo-
rithm detects STO, it reverts to the conges-
tion window (cwnd) and the slow start thresh-
old (ssthresh) to avoid unnecessary retrans-
mission and throughput degradation. Moreover
it can adjust parameters for setting the RTO,
to prevent more unnecessary RTO.

STO detection based on DSACK 9 is dis-
cussed in the Internet Engineering Task Force
(IETF). DSACK ') was originally proposed by
S. Floyd, et al. as an extension of the SACK
option 'V, The receiver reports duplicate seg-
ment information using SACK blocks, so the
sender can identify that the acknowledgment is
in the response to the retransmitted segment.
If a sender with the DSACK detects STO, it
reverts to cwnd as in the Eifel algorithm.

STO detection based on DSACK takes one
round trip time after the first segment of go-
back-N retransmission, because STO is identi-
fied from the information of the arrival of the
duplicate segment at the receiver. This means
that some unnecessary retransmission is un-
avoidable, so the Eifel algorithm detect STO
more rapidly than DSACK. However, the Eifel
algorithm incurs the cost of the 12 byte times-
tamps. The timestamp option occupies about
1 percent of a full-size segment, but this rises
to about 30 percent in an acknowledgment. It
is better to use the Eifel algorithm when the
unnecessary retransmission caused by STO ex-
ceeds the timestamp option’s overhead.

3.2 STO Detection Based on Implicit

Information

Allman, et al. reported an approach for STO
detection that builds on research in Internet
traffic measurements”. Most of the acknowl-
edgments that follow the first retransmission af-
ter an RTO within half of the minimum RTT
(RTTnin/2) are responses to the original seg-
ment 7). His definition, which states that ac-
knowledgment arrival within RTT,;,/2 indi-
cates the existence of STO, is implemented in
FreeBSD 4.3 and later versions. If a sender with
Allman’s algorithm detects STO, it reverts to
the original cwnd and ssthresh as in the Eifel
algorithm, however, it can work well only for
a period after the unacknowledged segment is
retransmitted.

Sarolahti, et al. proposed the forward RTO
recovery (F-RTO) algorithm®. It sends two
new segments in response to the first acceptable
ACK, and monitors the response as part of STO

214 IPSJ Journal

Jan. 2005

Table 1 Comparison between the proposed and conventional algorithms.

Algorithm Eifel DSACK Allman F-RTO Proposed
Earl ival Early arrival ACK
Detection | Timestamp | SACK block arAy armnval | and ACK 2 segments ACK
CK Duplicate ACKs
Recovery Congestion window controls
(Restore original cwnd and ssthresh)

* An acceptable ACK following 1st retransmission after a RTO only

detection. If it receives the second acknowledg-
ment as a series of acknowledgments, it posits
an STO event and reverts to the original cwnd
and ssthresh as in the Eifel algorithm. Im-
plementing the F-RTO algorithm needs only
sender side modification; no TCP options or
receiver side modifications are needed. This
means that it can support existing receiver side
equipment without any tradeoff, even if they
do not support the timestamp option, DSACK,
and so on. However, a sender using the F-
RTO algorithm can not work well given cur-
rent network problems (i.e., a duplicate ACK,
or key segments reordering, or and an acknowl-
edgment that covers all outstanding segment
arrivals 9)), and it reverts to the conventional
RTO recovery.

4. Proposed STO Detection
Algorithm

In order to avoid these significant TCP per-
formance problems, we propose an STO detec-
tion and congestion window control algorithm
that suppresses unnecessary retransmission and
the throughput degradation caused by STO and
duplicate ACKs following RTO arrival. The
differences between the proposed and conven-
tional algorithms are shown in Table 1. The
proposed algorithm monitors three type of ac-
knowledgments, early arrival ACK, an acknowl-
edgment following a delayed ACK that cov-
ers 2 (and up) full-size segments, and dupli-
cate ACKs. This allows the algorithm to avoid
the overhead problem while supporting current
equipment without any TCP option require-
ments.

4.1 STO Detection Based on Early Ar-

riving ACK

Allman’s concept of STO detection in wired
networks is based on the acknowledgments that
follow the first retransmission after an RTO
within RT Ty /2 7). We note, however, that
the sender may be forced in calling an STO
event if the BS keeps all of the outstanding
segments for a long time while waiting for the
recovery of the wireless links. When the link

sequence number 0.0.0.0:0_==>_0.0.0.3:0 (time sequence graph) R

145000 R

140000 I
ackno L

preackno [

t_rexmt(preackno)

/ t_now(ackno)

09:00:15 09:00:15.1000 09:00:15.2000

135000

time

Fig.4 The parameters for STO detection using RTT.

is cleared, the receiver acknowledges these seg-
ments one after that other, so that these ac-
knowledgments arrive at the sender within a
short time during go-back-N retransmission ?).

In order to detect STO, the proposed algo-
rithm uses two thresholds for early arriving
ACKs, (i) RTTyin/2 after the first unacknowl-
edged segment retransmission as per Allman,
and (ii) the time A during go-back-N retrans-
mission as follows:

A = t_now(ackno) — t_rexmt (preackno)
<ax RTTyin/2 (1)

where t_now(ackno) and t_rexmt (preackno)
mean the time of the last acknowledgment ar-
rival and that of the retransmitted segment,
which have sequence number “ackno” and
“preackno”, respectively. Figure 4 shows
the relationship between t_now(ackno) and
t_rexmt (preackno). The X-axis and Y-axis
plot the time and the sequence number, re-
spectively. The bold lines with “R” and thin
lines show the retransmitted segments and the
acknowledgments, respectively. Moreover, the
segment and the acknowledgment have the rela-
tionship ackno —preackno = rxmt_size where
rxmt_size means the size of the retransmitted
segments. « is a constant.

Figure 5 shows an example of the STO de-
tections based on the proposed algorithm us-
ing an early arriving ACK. The parameter « in

Vol. 46 No. 1

sequence number 0.0.0.0:0_==>_0.0.0.3:0 (time sequence graph)

140000 i

i
120000 !
j i}

100000 |

E{ Detection point
f 0. X RTTmin/2 or less

}
80000 | ¢

R R

1 1

60000 o

09:00:08 09:00:10 09:00:12 09:00:14
time

Fig.5 STO detection using the early arriving ACK.

Equation (1) is given by
a = 1+ (ackno — preackno)/window_size

where window_size means the receiver’s max-
imum window size. The simulation model
(ns2 version 2.1b9) is based on Fig.2; we
used MSS = 1,460 bytes and window_size =
64 kbytes. The segments retransmitted accord-
ing to the exponential backoff algorithm ar-
rive at 9:00:8.9 and 9:00:12.4, and the first
acknowledgment following the RTO arrives at
9:00:14.1 in Fig.5. The sequence number of
this acknowledgment covers the retransmitted
segment. The proposed algorithm initially can-
not identify whether the acknowledgment is
sent in response to the original segment or the
retransmitted segment. The next unacknowl-
edged segments are then retransmitted by the
slow start algorithm. Just after retransmission,
the second acknowledgment arrives after 100 ms
(< RTT,,in/2), so the proposed algorithm de-
tects STO and reverts to the original cwnd and
ssthresh. As a result, a sender with the pro-
posed algorithm can avoid unnecessary retrans-
mission; it avoids the segment retransmission
caused by the slow start algorithm and the at-
tendant throughput degradation.

4.2 STO Detection Based on ACKSs

Covering 2 or More Segments

When the wireless link recovers after experi-
encing excessive delay jitter or receiver’s move-
ment outside the service area, a series of queued
segments arrives at the receiver. If the wireless
link provides sufficient bandwidth, the receiver
sends acknowledgments that cover 2 full-size
segments in accordance with delayed ACK 10).
The delayed ACK mechanism only specifies
that an acknowledgment is generated for at
least every second full-size segment or within

Spurious Timeout Detection Algorithm for Mobile Communication 215

100
X
w2 80
£t
-
X
M)
gqm) 60
“Sz:" 40 ¢ _
25 “FreeBSD4.37 —o—
é E'j 20 + “RedHat7.2” - AN |
3 “Win2kServer” —e—
o
0 | | | | | |

100 150 200 250 300 350
Bandwidth [kbps]

Fig. 6 Relationship between bandwidth and an
acknowledgment cover 2 full-seize segments.

500 ms from the arrival of the first unacknowl-
edged segment.

For open source operating systems such as
FreeBSD and Linux, it is easy to check the de-
layed ACK implementation, but Windows OS is
a closed proprietary operating system. We used
a WCDMA emulator 19 to determine what per-
centage of acknowledgments cover 2 full-size
segments for FreeBSD 4.3, RedHat 7.2, and
Windows2000 Server. Figure 6 shows the rela-
tionship between bandwidth and the ratio of ac-
knowledgments that cover 2 full-size segments
based on the simulation model shown in Fig. 2.
The simulation results are the average of 10 tri-
als of 1 MB data transmission under 5% block
error rate wireless link conditions. It is shown
that the number of acknowledgments that cover
2 full-size segments in a connection increases
gradually with the bandwidth. If the mobile
station is connected to the BS via a 384 kbps
wireless link, it reaches 80%. As a result, it is
consider that the proposed algorithm can detect
STO events with sufficient accuracy. The pro-
posed algorithm can, moreover, detect an STO
if the acknowledgment covers some full-size seg-
ments in the same way as an acknowledgment
covers 2 full-size segments. If the acknowledg-
ment covers the arrival of 2 or more full-size
segments, the proposed algorithm reverts to the
original cwnd and ssthresh. It then uses the
fast retransmit/recovery algorithm as per the
conventional algorithm if it receives duplicate
ACKs.

Figure 7 shows an example of STO detection
based on the proposed algorithm using an ac-
knowledgment that covers 2 full-size segments
caused by the delayed ACK. The segments re-

216 IPSJ Journal Jan. 2005

sequence number

0.0.0.0:0_==>_0.0.0.3:0 (time sequence graph) N
140000 HJJF gf
i

120000 §§
§§
i

100000 |

i Detection point
The ACK covers
2 full-size segments and up

80000 i

=

R
i h - -
09:00:06 09:00:08 09:00:10 09:00:12

09:00:14
time

Fig.7 STO detection using an acknowledgment that
covers 2 full-size segments.

transmitted according to the exponential back-
off algorithm arrive at 9:00:8.9 and 9:00:12.4,
and the first acknowledgment to cover 2 full-
size segments following the RTO arrives at
9:00:14.6 in Fig.7. This acknowledgment is
the response to the original segment, so the
sender detects STO and reverts to the original
cwnd and ssthresh. As a result, a sender run-
ning the proposed algorithm can avoid unnec-
essary retransmission without experiencing the
segment retransmission demanded by the slow
start algorithm and the attendant throughput
degradation.

4.3 Extended STO Detection Based

on Duplicate ACK

This section describes an extension of the
proposed STO detection algorithm to handle
the duplicate ACKs that follow an RTO. The
duplicate ACKs are caused by the expiration
of ARQ retransmission; link layer transmission
does not succeed for a period of time or for
a number of transmissions. The conventional
STO detection algorithms):9)~®) have no func-
tion to detect these ACKs, and they revert to
conventional retransmission, even if only one
segment is lost while the others have been ac-
cepted by the receiver. Moreover, these algo-
rithms do not work well even if the receiver use
the SACK option and the duplicate ACKs con-
tain SACK blocks. In this case, a sender with
the conventional algorithm, directly enters the
conventional avoidance'?) phase, not the slow
start phase, after the RTO, so that it needs ad-
ditional time to cut cwnd to half of its previous
value which leads to a throughput degradation.

The proposed algorithm monitors duplicate
ACKs following the RTO, and controls both
cwnd and ssthresh, because these acknowl-

sequence number

300000 0.0.0.0:0_==>_0.0.0.3:0 (time sequence graph)

Acknowledgments

200000 1 Original segments

Advertised windows

100000

Retransmitted segments

01
09:00:00 09:00:05

09:00:10 09:00:15 09:00:2
time

Fig. 8 An example of duplicate ACK arrival after an
RTO using the conventional algorithm.

edgments are the response to the original seg-
ments. When the number of duplicate ACKs
reaches the duplicate acknowledgment thresh-
old (DupThresh), the proposed algorithm en-
ters the fast retransmit/recovery algorithm di-
rectly. DupThresh is currently specified as the
fixed value of three for the fast retransmit al-
gorithm '?). Moreover, the proposed algorithm
with the SACK option can retransmit lost seg-
ments accurately. By using acknowledged se-
quence numbers and received sequence numbers
as SACK blocks, the SACK information shows
the unacknowledged holes; this allows the pro-
posed algorithm to respond effectively after an
RTO similar to conventional SACK recovery.

Figure 8 shows an example of an RTO with
segment loss behavior of the conventional al-
gorithm. The symbol “3” shows the arrival
of the third duplicate ACK at the sender. In
this case, the sender does not transmit any seg-
ments even if it receives duplicate ACKs fol-
lowing the RTO. It then enters the congestion
avoidance phase directly, so that it takes a long
time to cut cwnd to half of its previous value.
On the other hand, Figs.9 and 10 show an
example of an RTO with the segment loss be-
havior of the proposed algorithm using dupli-
cate ACK monitoring. It reverts to the original
cwnd and ssthresh, and enters the fast retrans-
mit/recovery algorithm. As a result, the sender
starts the congestion avoidance phase at half of
the previous value when it receives the accept-
able ACK, i.e. advances the acknowledged se-
quence number. It is clear that the proposed al-
gorithm can avoid unnecessary cwnd reduction
and throughput degradation more often than
the conventional algorithm.

Vol. 46 No. 1

sequence number

300000

200000

Fast retransmit
100000
R

Retransmitted segments

0{e

09:00:00 09:00:05 09:00:10 09:00:15 09:00:2
time

Fig.9 An example of duplicate ACKs arrival after a
RTO using the proposed algorithm.

sequence number

140000 1}

Fast recovery algorithm after
120000 the proposed algorithm

100000 3
i Fast retransmit algorithm
§§ after the proposed algorithm

80000 { §

09:00:08 09:00:10 09:00:12 09:00:14 "
i

Fig. 10 An example of the fast retransmit/recovery al-
gorithm after an RTO using the proposed al-
gorithm.

4.4 STO Detection Steps

Figure 11 shows the STO detection steps in
the proposed algorithm using acknowledgment
monitoring and congestion control.

At the beginning, the sender stores cwnd,
ssthresh, and the highest sequence number
(send_high) when the sender has an RTO. Ac-
cording to the exponential backoff algorithm,
an unacknowledged segment is retransmitted
(step 1). When the first acceptable ACK or du-
plicate ACK following the RTO arrives at the
sender, the sender chooses an action in step 2.
Step 3 is chosen if the Nth (IV > 1) acceptable
ACK or duplicate ACK arrives at the sender.

The duplicate ACKs in step 2 (a) and 3 (a)
are the response to an original segment that
is one of the outstanding segments. When the
3rd duplicate ACK arrives, the sender enters
the fast recovery/retransmit algorithm (Sec-
tion 4.3). Steps 2(b) and 3(b) evaluate an
early arrival ACK as per Allman’s report (Sec-

Spurious Timeout Detection Algorithm for Mobile Communication 217

Step 1. RTO timer expires:
Store send_high (highest sequence number),
cwnd_ < cwnd (congestion window size),
ssthresh_ « ssthresh (slow start threshold)
Retransmit the 1st unacknowledged segment

Step 2. 1st acknowledgment arrival:
Evaluate the acknowledgment sequence number
(a) Duplicate ACK
Proceed step 3
(b) Advance the 1st unacknowledged segment
Evaluate the time A between the retransmitted
segment and this acknowledgment
IF A < RTTmin/2 THEN Proceed step 4
ELSE Proceed step 3
(c) Above the 1st unacknowledged segment and
below the value of send_high
Proceed step 4
(d) Acknowledge all segments up to send_high
IF DSACK carries THEN Proceed step 4
ELSE Proceed step 5

Step 3. Nth acknowledgment arrival:
Evaluate the acknowledgment sequence number
(a) Duplicate ACK
IF 3rd duplicate ACK THEN
Restore cwnd <+ cwnd_, ssthresh <« ssthresh_
Shift fast retransmit/recovery
ELSE Remain step 3
(b) Below the previous unacknowledged segment
Evaluates the time A
IF A < aRTTmin/2 THEN Proceeds step 4
ELSE Retransmit next segments according
to the slow start and Proceeds step 3
(¢) Above the previous unacknowledged segment
and below the value of send_high
Proceed step 4
(d) Acknowledge all segments up to send_high
Proceed step 5

Step 4. Label spurious:

Recover cwnd < cwnd_, ssthresh < ssthresh_

-3

Release send_high and transmit new segments

Step 5. Label spurious with a possibility of segments
loss:
Recover ssthresh «— ssthresh_/2,
cwnd < ssthresh +3MSS

Transmit new segments

Fig.11 The proposed algorithm steps for the STO
detection and congestion control.

218 IPSJ Journal

tion 4.1). Step 2(c) observes an acknowledg-
ment that covers 2 or more full-size segments
caused by delayed ACKs (Section 4.2). If the
sender has multiple connections, all of which are
equally and perfectly filled with segments, the
sender may not receive acknowledgments that
cover 2 or more full-size segments and so may
shift to step 3 in accordance with the slow start
algorithm. In the case of step 2(d), the sender
reverts to the original cwnd, and ssthresh as
in the fast retransmit algorithm using step 5
because of the indication of segment loss.

If the sender detects an STO event, it
changes cwnd_ and ssthresh_ to the new cwnd
and ssthresh, and transmits new segments
in accordance with step 4. The fast retrans-
mit/recovery algorithm is still available when
the 3rd duplicate ACK arrives after step 4.
Since the Reno fast retransmit algorithm leads
to the retransmission of only a single data
packet, NewReno!”) or the selective acknowl-
edgement (SACK) option V) is required to re-
cover multiple packets that have been dropped
in a single window. If a retransmission time-
out occurs due to the loss of an entire window
of segments and the acknowledgments are de-
layed, the proposed algorithm may experience
a misunderstanding. However, it is designed
to realize the same congestion window control
as the conventional method without aggressive
segment transmission, even if it experiences the
false-positive condition (see Appendix A.1).

5. Performance Evaluation

In Section 4, we showed that the STO detec-
tion algorithm observes early arriving ACKs,
acknowledgments that follow a delayed ACK
that covers 2 or more full-size segments, and
duplicate ACKs. In the case of STO detection,
it reverts to the original cwnd and ssthresh to
avoid unnecessary retransmission and through-
put degradation as a form of congestion window
control. However, the proposed and conven-
tional algorithms show improvement only for
corner cases. That is, if an STO does not occur
or duplicate ACKs do not arrive, these algo-
rithms are not triggered and so provide no im-
provement in the connection’s throughput. It is
difficult to define a realistic wireless communi-
cation models that includes STO and duplicate
ACK arrival for throughput evaluations '®. Ac-
cordingly, this paper examined cwnd behavior
in the face of an STO and the arrival duplicate
ACKs arrival following an RTO.

Jan. 2005
Normal
cwnd congestion . DupACKs
(packets) avoidance spurious arrival
timeout after RTO
A A
!]]
0 1 2 3 4 5

Normal
cwnd congestion
(packets) avoidance
cycle

Time (W/2 x RTT)
Fig.12 Performance loss approximation of the
normal TCP sender.

DupACKs
Spurious arrival
timeout after RTO

4
Time (W/2 x RTT)
Fig.13 Performance loss approximation of the sender
with conventional STO detection algorithms.

Normal
cwnd congestion i DupACKs
(packets) avoidance SPUrious apriyal
cycle timeout after RTO

Time (W/2 x RTT)
Fig.14 Performance loss approximation of the sender
with the proposed STO detection algorithm.

Figures 12, 13, and 14 show cwnd behavior
with bulk data transfer. The maximum win-
dow value is W and cwnd shifts W/2 following
the definition of congestion avoidance!?). We
assume a network limited TCP connection in

Vol. 46 No. 1

steady state that has only a single traffic source;
packet loss is random with constant probability.
Moreover, the increase in cwnd is taken as lin-
ear during the slow start phase to simplify the
analysis. Given these assumptions, the figures
show the performance loss evaluations caused
by the decrease in cwnd. Without any STO
detection algorithm, the sender has no func-
tion to alter cwnd, which leads to the through-
put degradation seen in Fig.12. With an STO
detection algorithm (e.g., Eifel, DSACK, All-
man’s, and F-RTO), on the other hand, the
sender can avoid the slow start phase if it de-
tects the STO in Fig. 13. However, these algo-
rithms does not have congestion window control
mechanism that can handle the arrival of dupli-
cate ACKs after an RTO, and so they suffer a
throughput degradation. In order to avoid the
slow start phase, the proposed algorithm has
a detection mechanism that can handle RTO
events and the arrival of duplicate ACKs. This
means it can effectively avoid the unnecessary
reduction in cwnd and maintain the window size
even if STO occurs or duplicate ACKs are re-
ceived following the RTO as shown in Fig. 14.

6. Conclusions

In this paper, we proposed an STO detec-
tion and congestion control algorithm. The pro-
posed algorithm can detect an STO from ei-
ther early arriving ACKs, an acknowledgment
that covers 2 full-size segments, or the arrival
of ACKs following the RTO. In response, it
controls the congestion window to improve the
throughput. ns2 simulations demonstrated its
correct behavior under data transfers. More-
over, we evaluate its ability to minimize cwnd
reduction and so enhance performance. Sim-
ulations showed that the proposed algorithm
can maintain the congestion window size even
if STO occurs or duplicate ACKs are received
following an RTO. Therefore, it can avoid un-
necessary retransmission and cwnd reduction,
and effectively maintain the throughput.

Acknowledgments Acknowledgments The
authors would like to thank Reiner Ludwig,
Markku Kojo, and Daikichi Osuga for several
useful discussions and comments.

References

1) Inamura, H., Montenegro, G., Ludwig, R.,
Gurtov, A. and Khafizov, F.: TCP over Sec-
ond (2.5G) and Third (3G) Generation Wire-
less Networks, RFC3481 (2003).

Spurious Timeout Detection Algorithm for Mobile Communication 219

2) 3GPP: 3G TS 25.322 v.3.5.0, RLC Protocol
Specification (2000).

3) Ludwig, R. and Meyer, M.: The Eifel Detec-
tion Algorithm for TCP, RFC3522 (2003).

4) ANSI/IEEE Std 802.11: Wireless LAN
medium access control (MAC) and physical
layer specifications, 1999 Edition (1999).

5) ANSI/IEEE Std 802.11b: Wireless LAN
Medium Access Control (MAC) and Physi-
cal Layer (PHY) specifications, Higher-Speed
Physical Layer Extension in the 2.4 GHz Band,
1999 Edition (1999).

6) Blanton, E. and Allman, M.: Using TCP Du-
plicate Selective Acknowledgement (DSACKs)
and Stream Control Transmission Proto-
col (SCTP) Duplicate Transmission Sequence
Numbers (TSNs) to Detect Spurious Retrans-
missions, RFC3708 (2004).

7) Allman, M. and Falk, A.: On the Effec-
tive Evaluation of TCP, SIGCOMM Computer
Communication Review, Vol.29, No.5 (1999).

8) Sarolahti, P., Kojo, M. and Raatikainen,
K.: F-RTO: An Enhanced Recovery Algo-
rithm for TCP Retransmission Timeouts, ACM
SIGCOMM Computer Communication Review,
Vol.33, No.2 (2003).

9) Miyake, M., Inamura, H. and Takahashi,
O.: An Efficient Spurious Timeout Detection
Scheme for Mobile Communication, Multime-
dia, Distributed, Cooperative and Mobile Sym-
posium, DICOMO2003, pp.205-208 (2003).

10) Allman, M., Paxson, V. and Stevens, W.: TCP
Congestion Control, RFC2581 (1999).

11) Mathis, M., Mahdavi, J., Floyd, S. and Ro-
manow, A.: TCP Selective Acknowledgment
Options, RFC2018 (1996).

12) Floyd, S., Mahdavi, J., Mathis, M. and
Podolsky, M.: An Extension to the Selective
Acknowledgement (SACK) Option for TCP,
RFC2883 (2000).

13) The Network Simulator — ns-2: http://www.isi.
edu/nsnam/ns/ (ns 2.1b9).

14) Gurtov, A.: Effect of Delays on TCP Perfor-
mance, Proc. IFIP Personal Wireless Confer-
ence (2001).

15) Hoe, J.: Improving the Start-up Behavior of
a Congestion Control Scheme for TCP, ACM
SIGCOMM (1996).

16) Inamura, H., Ishikawa, T., Atsumi, Y. and
Takahashi, O.: Evaluation of Link ARQ and
TCP over W-CDMA Network, IPSJ Transac-
tions, Vol.43, No.12, pp.3859-3868 (2002) (in
Japanese).

17) Floyd, S. and Henderson, T.: The NewReno
Modification to TCP’s Fast Recovery Algo-
rithm, RFC2582 (1999).

18) Ludwig, R. and Katz, R.H.: The Eifel Algo-

220 IPSJ Journal

Transmitted Received ACK cwnd ss cwnd_

Segment Segment Sent thresh
1: 500-999 (data packet dropped) 4 44 -
2: 1000-1499 (delayed) 4 44 -
3: 1500-1999 (data packet dropped) 4 44 -
4: 2000-2499 (delayed) 4 44 -
5: (timeout)
6: 500-999(R) (delayed) 1 2 4
7: 1000-1499 500 1 2 4
8: 2000-2499 500 1 2 4
9: 500-999(R) 1500 5 44 4
10: 2500-2999 2500-2999 1500 5 44 4
11: 3000-3499 3000-3499 1500 5 44 4
12: 3500-3999 3500-3999 1500 5 44 4
13: 1500-2000(R) 1500-2000 4000 5 2 4
14: 4000-3499 4000-4499 4500 2 2 4
15: 4500-3999 4500-4999 5000 2 2 4

Fig.15 An example of an ACK covers 2 full-size
segments arrival after a RTO.

rithm: Marking TCP Robust Against Spurious
Retransmission, SIGCOMM Computer Com-
munication Review, Vol.30, No.1 (2000).

19) Mathis, M., Semke, J., Mahdavi, J. and Ott,
T.: The Macroscopic Behavior of the TCP Con-
gestion Avoidance Algorithm, Computer Com-
munications Review, Vol.27, No.3 (1997).

Appendix

A.1 Misunderstanding in
False-Positive Condition

If a retransmission timeout is caused by the
loss of an entire window of segments and the
acknowledgments are delayed, the proposed
method may experience a misunderstanding.
Figure 15 shows a sequence graph on the
sender and receiver sides. The first and last
three columns show the data segment transmis-
sion and parameters on the receiver. The sec-
ond and third columns show the data segment
arrival and ACK transmission on the receiver,
respectively.

In Fig. 15, the beginning and third of the four
outstanding segments are lost, and the retrans-
mitted segment raised by RTO is transmitted
at the 6th line. Next, an acknowledgment that
covers 2 full-size segments arrives at the sender
at the 9th line. According to the STO detection
procedure proposed in Section 4.2, the sender
detects the STO and changes cwnd_ to cwnd.
After that it transmits the next three segments
at the 10-12th lines even though the STO has
not happened. When the third duplicate ACK
arrives, the sender allows the transmission of

Jan. 2005

the first unacknowledged segment at the 13th
line, because of the release of send_high in
accordance with step 4. The sender then re-
duces the cwnd and ssthresh, and recovers
against the segment loss as in the usual con-
gestion control procedure. If some outstanding
segments are lost, it is better for the sender to
use the proposed algorithm with the SACK 'V
or NewReno '7) algorithm for effective segment
loss recovery. Consequently, the proposed al-
gorithm can realize the same congestion win-
dow control results as the conventional method
without aggressive segment transmission, even
if it experiences the false-positive condition.
(Received December 26, 2003)
(Accepted October 4, 2004)
(Online version of this article can be found in
the TPSJ Digital Courier, Vol.1, pp.15-25.)

Editor’s Recommendation

Wireless communications using TCP lead to
experience spurious timeout (STO) problems
due to an unexpected increase in round trip
time (RTT). In this case, the TCP sender as-
sumes that outstanding segments are lost, and
it retransmits unacknowledged segments even
if they don’t need to be transmitted. It is im-
portant to suppress such unnecessary retrans-
mission, because these retransmitted segments
affect the throughput, and they are charged in
packet cellular systems. So, the authors pro-
pose a spurious timeout detection algorithm ef-
fective in wireless communications, and con-
firm its performance improvement using sim-
ulations.

The STO detection algorithms have been pro-
posed, and implemented in some OSs. However
they are not sufficient to use for wireless com-
munications because of the detection period’s
restriction and additional information’s require-
ment in the TCP header. Therefore, the pro-
posed algorithm in this paper based on both an
ACK arrival time after a retransmission time-
out and the sequence number monitoring only
needs the sender side modification and avoids
additional information. These features are use-
ful for applications in packet cellular systems,
so this algorithm can expect the utilization to
mobile communications.

(Steering member of SIGMBL
Tadanori Mizuno)

Vol. 46 No. 1

Motoharu Miyake was born
in 1973. He received the B.S.
= and M.S. degrees in electronic
% . engineering from Tokyo Uni-
- versity of Engineering, Tokyo,
‘ Japan in 1995 and 1997, respec-
LA tively. He received the Ph.D.
degree in electrical and electronic engineering
from Tokyo Institute of Technology, Tokyo,
Japan in 2000. Since 2000, he has been working
in Multimedia Laboratories at NTT DoCoMo,
Inc., Yokosuka, Japan. His current research in-
terest is transport protocol for wireless commu-
nication. He is a member of IEICE.

Hiroshi Inamura was born
in 1965. He received B.S. and
M.S. degree in Keio University,
Japan, in 1998 and 1990, respec-

=2 tively. He joined NTT in 1990
A\V)I/h and working in the area of dis-
a tributed systems and especially
distributed file systems. From 1994 to 1995, He
was a visited researcher in the Department of
Computer Science, Carnegie Mellon University.
From 1999 he worked for Multimedia Laborato-
ries at NTT DoCoMo, Inc. His research inter-
ests are on transport protocol issues and their
solutions for wireless. He is a member of IPSJ,
IEICE and ACM.

Spurious Timeout Detection Algorithm for Mobile Communication 221

Osamu Takahashi was born
in 1951. He received the
B.E. and the M.E. degrees from
Hokkaido University, Sapporo,
Japan, in 1973 and 1975, respec-
tively. He received the Ph.D. de-

& gree from Shizuoka University,
Shizuoka, Japan, in 2003. From 1975 to 1999,
he was with NTT. From 1999 to 2004, he was
with NTT DoCoMo, Inc. working on protocols
and services of mobile multimedia communi-
cations. He is currently a professor of Future
University-Hakodate, engaging in the research
on mobile computing, ubiquitous networking
and internet protocols.

