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This presentation proposes We proposes a domain-specific language (DSL), called OCommand, for exe-
cuting shell commands from within OCaml programs in a type safe way. OCommand takes a command
specification consisting of types of output columns from the command and effects of command options on the
types of the columns, and generates an OCaml module that contains a command-executing function and a set
of values representing the command options. The command-executing function takes options as arguments,
runs the command, parses the output lines, and returns them as a list of records. In order to statically-check
existence and types of fields of the output record that can be changed by command options, we used gener-
alized algebraic data type. With our implementation constructed by using Camlp4, we successfully handle

typical Unix commands like Is and ps by using OCommand.
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