EHMMIPFSHYFE 7075324 Vol.7 No.5 14 (Dec. 2014)
HREIE

OCommand : OCaml DAV ZE 4 7
YT as 5 I VIO OMEREHL S EE

WA ALY BE EELD HA HsELY

20145F6A20H %*

DIEE

OCaml 7027 F Ahh 5 v 2)V a~v v Kae R4 IZ947 3 4 720 OHEEBELSHE OCommand # $& %
954, OCommand (Z2~ Y FOMAMTH L, WIITOKEMOME a<v Y N+ T2 a i TR AL
feoftik 22 MY, I~ FEBEKE 3~ M+ 7Y 3 v 2 £ TlEHR LD OCaml EV2— L %
ES A, ERENREMIE, EHROF Ty a MEERZITFNY) a2y FEFETL, £ 7Y a3 2Bl

Taxy FHITE RS- AL TN ED 74—V F25b A5 La— FeRy., HfTLa—

FizBirs

74 =) FOBIRFAE DAL Z AT 5720, —kALUER 7 — 2 T2 Fv 7z, Camlpd & AT

FHLRHEREZHNC, TRETIC R ps BEDAY Y FERZ DI LEHED TN,

OCommand: A Domain Specific Language for

Type Safe Shell Programming in OCaml

IzuMi ASAKURAY® HIDEHIKO MASUHARAL'?) ToMoOYUKI AoTANI!:®)

Presented: June 20, 2014

This presentation proposes We proposes a domain-specific language (DSL), called OCommand, for exe-
cuting shell commands from within OCaml programs in a type safe way. OCommand takes a command
specification consisting of types of output columns from the command and effects of command options on the
types of the columns, and generates an OCaml module that contains a command-executing function and a set
of values representing the command options. The command-executing function takes options as arguments,
runs the command, parses the output lines, and returns them as a list of records. In order to statically-check
existence and types of fields of the output record that can be changed by command options, we used gener-
alized algebraic data type. With our implementation constructed by using Camlp4, we successfully handle

typical Unix commands like Is and ps by using OCommand.

ORISR R BRI
Department of Mathematical and Computing Sciences,
Tokyo Institute of Technology, Meguro, Tokyo 152-8550,
Japan

) asakura.i.aa@m.titech.ac.jp

b) masuhara@acm.org

) aotani@is.titech.ac.jp

© 2014 Information Processing Society of Japan

14

