
Vol. 46 No. 2 IPSJ Journal Feb. 2005

Regular Paper

Image-Based Photorealistic 3D Reconstruction

Using Hexagonal Representation

Hidenori Sato,† Hiroto Matsuoka,† Hitoshi Kitazawa††

and Akira Onozawa†

An algorithm for reconstructing photorealistic 3D model from multiple-view images is pro-
posed. The idea is based on the surface light field approach. In the algorithm, a geometric
model is reconstructed as a visual hull using an image-based multi-pass algorithm we have
developed, then the hull is represented as a quadrilateral-meshed surface. Next, colors of
input images are assigned onto each vertex according to viewing directions using a new data
structure we have developed. The structure is a hexagonal tessellation based on expansion
and replacement of a buckyball. Finally, the hexagonal tessellation is represented as a hexag-
onal image whose pixels represent colors of corresponding input images. Experimental results
for real objects show that 3D data can be successfully generated automatically in a short time
and that photorealistic data can be viewed from arbitrary viewpoints even for objects with
reflective or translucent surfaces.

1. Introduction

With the recent advances in computer vi-
sion (CV) and computer graphics (CG) re-
search, many image-based modeling and image-
based rendering techniques have succeeded in
producing photorealistic synthetic views from
real objects.

Image-based modeling 1),2) reconstructs a
texture-mapped three-dimensional (3D) model
once, and then renders it from arbitrary view-
points. On the other hand, image-based ren-
dering 3),4) directly generates new views viewed
from various viewpoints. In addition, hy-
brid approaches that combine both a geomet-
ric model and image-based rendering have been
proposed 5)∼9). Among them, the surface light
field is a representative approach. Its data in-
clude both geometric and color data assigned
to every small region or polygon on the sur-
face. The assigned color data is a collection of
rays leaving the region in every direction. For
rendering, color from a viewing angle is selected
and rendered. Therefore, the surface light fields
can reproduce a photorealistic scene from arbi-
trary viewpoints with geometric data. Surface
light field approaches have successfully visual-
ized various types of real objects, including re-
flective or translucent ones 7)∼9).

In this paper, motivated by advances in sur-
face light field approaches, we have developed

† NTT Microsystem Integration Laboratories
†† Tokyo University of Agriculture and Technology

an algorithm to produce surface light field data
from multiple-view images. The algorithm fo-
cuses on robustness and speed because they are
important for practical use. To achieve our
goal, we have developed 1) a fast multi-pass al-
gorithm to generate a geometric model based
on the shape-from-silhouette approach, and 2)
a new data structure based on a hexagonal tes-
sellation for capturing light field data. In our
algorithm, light field data are represented as a
hexagonal image and finally stored as a 2D nor-
mal image after a simple transformation so that
conventional fast image compression algorithms
can be applied. Experimental results show the
algorithm can generate various types of data,
including reflective or translucent objects, in a
short time.

The remainder of this paper is organized as
follows. Section 2 describes related work in
more detail. Section 3 describes the overall
algorithm and the image acquisition method.
Section 4 describes the multi-pass geometry re-
construction algorithm we have developed. Sec-
tion 5 discusses the hexagonal representation
and describes the light field data assignment al-
gorithm. Section 6 describes the interpolation
algorithm. Section 7 presents some experimen-
tal results to show the effectiveness of the pro-
posed algorithm, and Section 8 concludes the
paper.

2. Related Work

Image-based modeling reconstructs 3D shapes
from 2D multiple-view images. Such meth-

639



640 IPSJ Journal Feb. 2005

Fig. 1 Shape-from-silhouette approach.

ods are commonly known as shape from X
methods, where X represents silhouette, shad-
ing, stereo, and so on. Among them, the
silhouette-based methods are practically usable
because of their robustness and low calculation
cost 1),2),10)∼12). The approach first extracts an
object region as a silhouette from each image,
and then back-projects the silhouettes onto a
voxel space (Fig. 1). The obtained intersec-
tion volume is the reconstructed shape, which
is called a visual hull 10). Finally, texture is as-
signed to every mesh (polygon) on the surface.
Texture assignment usually uses energy mini-
mization schemes. For example, Matsumoto, et
al. used an energy in terms of the size of poly-
gons and viewpoints of images to assign texture
onto adjacent polygons 1). Although this ap-
proach can reconstruct a geometry quickly by
using octree structure representation of a voxel
space 12), it can not reconstruct concave sur-
faces. Therefore, it is actually impossible to
assign a correct texture to a polygon on a con-
cave surface. In addition, rendered views some-
times look odd even for convex surfaces because
textures of adjacent polygons are assigned from
different images.

On the other hand, image-based rendering is
based on the idea that the appearance of an
object from an arbitrary viewpoint can be com-
pletely presented by a collection of rays through
the 3D space. A representative image-based
rendering technique is the light field one pro-
posed by Levoy, et al. 3), which assumes two
planes pass through rays from a viewpoint. All
rays are represented as a function of coordinates
of the two planes. Gortler proposed a lumi-
graph 4) based on a similar idea. The quality
of rendered views is good in practice. However,
because the views don’t use any geometric in-
formation, producing a photorealistic scene re-
quires lots of images. In addition, it’s difficult
to handle light fields in a virtual space.

More recently, Matusik, et al. have developed
a kind of hybrid approach 6). Like the light

Fig. 2 Image of generated data.

fields, this method directly render views from
multiple-view images. However, it directly es-
timates a viewed shape from a viewpoint based
on the visual hull scheme and mixes it with a
traditional image-based rendering algorithm to
obtain more accurate results.

Surface light field approaches have also been
proposed 7)∼9). The surface light fields can re-
produce a photorealistic scene from arbitrary
viewpoints using geometric data. Wood, et
al. 8) construct geometric models using a laser
digitizer, which makes it quite difficult to match
the image data and geometric data. Effective
representation of light field data is another is-
sue in surface light field approaches. Captur-
ing surface light field data involves associating
the color of a radiant ray from a surface point
with the surface position and direction of ra-
diance. In practical cases, when multiple-view
images and the geometric model are given, cap-
turing surface light fields involves assigning the
color (RGB value) of appearances (rays) of all
images to every small region or polygon of the
surface. The color is represented as a func-
tion of the viewing angles of images. Wood, et
al. used an s-times-subdivided regular octahe-
dron to assign rays 8). Compression of light field
data is also an issue. Conventional methods use
vector quantization or eigenspace, which can
achieve high quality and compression ratio 7),8).
However, this requires many input images and
much execution time for actual use.

3. Proposed Algorithm

3.1 Overview
The goal of our work is to develop an algo-

rithm that can automatically generate a pho-
torealistic 3D model from multiple-view images
of real objects.

Figure 2 shows an example of data gener-
ated using our algorithm. The data comprise
geometric data and image data. The geomet-



Vol. 46 No. 2 Image-Based Photorealistic 3D Reconstruction Using Hexagonal Representation 641

Fig. 3 Voxel suvdivision.

ric data are ordinary polygonal models and the
image data are collections of light field data
of all vertices. In the image data in Fig. 2, a
rectangular region represented by dotted lines
indicates a light field data for a corresponding
vertex. And pixel values in each rectangular re-
gion represent colors of different viewing angles.
For rendering, colors of pixels corresponding to
the nearest direction of the viewing angle are
selected. The correspondence between a pixel
and a viewing angle is determined according to
the subdivision level.

The 3D reconstruction algorithm we devel-
oped is basically as follows.

Step1. Geometry reconstruction.
Step2. Light field data assignment.
Step3. Interpolation.

Step1 reconstructs a geometric model of an
object based on the shape-from-silhouette ap-
proach. It is an octree-based hierarchical-
subdivision similar to Szeliski’s 12). The basic
idea of subdivision is as follows. For each hi-
erarchy, voxels are classified through an inter-
section test, which estimates whether they are
projected on the border of the silhouette or not.
Then, only voxels correspond to the border are
further subdivided into eight equal-sized vox-
els (Fig. 3). The voxel subdivision is iterated
until voxel size is as small as the specified size.
In this paper, we call this voxel subdivision pro-
cedure from coarse to the finest resolution a
pass. Our algorithm is an iteration of a pass
using a simple and quick intersection test. Fi-
nally, a quadrilateral-polygonal surface of the
object is obtained by connecting central points
of neighboring voxels. The polygonal surface is
a geometric data.

Step2 assigns colors of images onto all ver-
tices of the reconstructed surface using the
hexagonal image representation discussed in
Section 5. Because the assignment uses the
same-size hexagonal image and a common look-
up table determined once, the calculation cost

is much reduced compared to calculating vertex
by vertex. This also reduces rendering costs.
Then, colors of all uncolored hexagons are inter-
polated in Step3. Next, all images are merged
into one image and stored as normal image
data. The image is a light field data.

3.2 Image Acquisition
To acquire multiple-view images, we used the

3D capturing system 13). The system has a PC-
controlled robot arm and a turntable, and it can
capture images from arbitrary viewing points of
almost all of the upper half of a target object
placed on a turntable. Although we don’t de-
scribe the system in detail, we mention that
the system can capture multiple-view images
that involve a 256-scaled multi-level silhouette
so that it indicates an opaque region of an ob-
ject.

To extract a silhouette, we set a threshold
to the multi-level silhouette. Although this
thresholding yields some segmentation errors in
practice, the reconstructed geometries look cor-
rect as shown in Fig. 9. We think this is because
the shape-from-silhouette approach regards an
intersection volume of back-projection lines as a
reconstructed shape; the intersection voxel was
carved unless all images have common errors.

4. Geometry Reconstruction

This section describes the detail of the geom-
etry reconstruction algorithm.

4.1 Intersection Test for Voxel Classi-
fication

First, we discuss our intersection test. Voxels
in the same hierarchy are classified into three
types based on the intersection test results:

white: a voxel whose vertices are projected
on the silhouettes of all input images.

black: a voxel whose vertices are projected on
the backgrounds of all input images.

gray: other voxels.

That is, a gray is a voxel whose vertices are
projected on the borders of silhouettes (Fig. 4).
In our algorithm, only grays are subdivided
into lower levels.

The intersection test is simpler and faster
than Szeliski’s, which makes an approximate
bounding box of intersection points. Ours uses
only positions of intersection points. Moreover,
just when two kinds of vertices, those lying on
a silhouette and on a background, are found,
the calculation of intersection points is stopped



642 IPSJ Journal Feb. 2005

Fig. 4 Image of intersection test detected as gray.

Fig. 5 Example of failed voxel.

and the voxel is classified as a gray.
4.2 Multi-Pass Subdivision Algorithm
The above intersection test fails in some ac-

tual cases because of its simplicity. For ex-
ample, if a voxel is projected on a narrow tip
of a silhouette so that avoiding all intersec-
tion points, it would be classified as a black
even though it is actually a gray (Fig. 5). To
overcome this problem, we have developed the
multi-pass subdivision algorithm. The algo-
rithm iterates the following procedure as long
as failed voxels are found.

Step1.1 Subdivide an initial voxel space or
failed voxels into a lower level by force.

Step1.2 Apply above voxels for a pass algo-
rithm.

Step1.3 Detect failed voxels.

The algorithm is based on the idea that the
generated surface must be closed. In Step1.1,
initial voxels are subdivided into eight voxels
in the first pass. After subsequent passes, re-
maining failed voxels are subdivided. Step1.2
divide above voxels recursively with the single-
pass procedure using the intersection test.

In Step1.3, grays of the finest resolution
are found based on the octree-structure based
search 14) and adjacent grays are connected.
Here, detected grays shape the surface of a re-
constructed geometry. In addition, if there is
a hole on the reconstructed surface, the coarse
voxel on the corresponding coordinates will be
searched. This is a failed voxel.

Finally, a closed surface constructed from
only grays can be obtained, although it re-
quires multiple passes and the octree structure
must be kept to find failed voxels. In addition,
it is not guaranteed that our algorithm is the-
oretically faster than Szeliski’s. However, ex-
perimental results show that more than around
90% of voxels are generated in the first pass
and the first pass accounts for most of the to-
tal execution time. Therefore, we believe our
algorithm is effective for almost all real data.

5. Hexagonal Image Representation

In this section, we first show that a hexago-
nal tessellation is effective to capture the color
of rays from multiple-view images by applying
a simple transformation. Then, we describe
Step2 in Section 3.

5.1 Generation of Hexagonal Tessella-
tion from Buckyball

To capture data from multiple-view images,
we use a buckyball. The buckyball is a trun-
cated icosahedron. It consists of 12 regular pen-
tagons and 20 regular hexagons so that each
pentagon adjoins 5 hexagons and each hexagon
adjoins three hexagons and three pentagons
[Fig. 6 (a)]. It is inscribed in a sphere, and it
can also represent every direction as surface po-
sitions because omni-directional rays incident
to it’s center can be mapped onto the surface
positions one to one. In addition, the buck-
yball can be expanded on a 2D plane with-
out overlaps [Fig. 6 (b)]. A hexagonal tessel-
lation is obtained by replacing all pentagons
with hexagons. Thus, every direction can be
represented as 2D positions on the hexagonal
tessellation shown in Fig. 6 (c) without loss of
connectivity. The hexagonal tessellation can
be regarded as a hexagonal image having 32
hexagonal pixels if one color is assigned to each
hexagon. This means if one of the rays inter-
secting each polygon on a buckyball surface is
selected and if it’s color is assigned to the poly-
gon, the ray can be represented as a color of a
hexagonal pixel.

On the other hand, it is impossible to repre-
sent a sphere approximately as a normal square
organized image (square image) without over-
laps of adjacent pixels. Therefore, assigning
each color of a ray to only one squared pixel
is difficult.

In addition, it is well known that a hexago-
nal tessellation has higher symmetry and con-
nectivity than a square tessellation. Actually,



Vol. 46 No. 2 Image-Based Photorealistic 3D Reconstruction Using Hexagonal Representation 643

Fig. 6 Buckyball expansion.

a hexagonally organized image (hexagonal im-
age) has been compared to the square image in
image processing research 15). Snyder proposed
a coordinate transformation for representing a
general pattern of a hexagonal tessellation in a
2D Cartesian coordinate system 16).

To store the regular pattern of the hexagonal
tessellation as a hexagonal image, we have de-
veloped a method for transformation from (c)
to (d) in Fig. 6. In the figure, hexagons in (c)
and squares in (d) with the same number cor-
respond to each other. The method is based
on transformation of each column of the hexag-
onal tessellation so that adjacent columns will
be side by side in the square tessellation.

Note that, like the coordinate system trans-
formation in Ref. 16), the transformation is per-
formed without loss of connectivity. When stor-
ing an image, we moved hexagons 31 and 32
to the upper right and lower right pixels re-
spectively to prevent the image from generat-
ing too many vacant pixels. At the same time,
one vacant pixel is generated between them
[Fig. 6 (e)]. Finally, we can store the omni-
directional light field data as a 2D image by ap-
plying conventional fast compression algorithm.

5.2 Light Field Data Assignment
Step2 uses the hexagonal representation dis-

cussed in the previous section and it con-
sists of two consecutive sub-steps, Step2.1 and
Step2.2.

In Step2.1, a buckyball is placed at the cen-
ter of the reconstructed model first. Then, the
data structure of the hexagonal image is de-

termined as described later, and a look-up ta-
ble is generated simultaneously using the algo-
rithm described in the next section. The look-
up table shows the correspondence between in-
put images and hexagonal pixels and is used as
a common table in Step2.2.

Step2.2 allocates hexagonal images for all
vertices first. Then, using the look-up table,
the RGB value of the intersection point of each
image and it’s line of sight is assigned to a cor-
responding hexagonal pixel as light field data.
For each vertex, only the color of input images
that are visible from the vertex are mapped on
pixels using the z-buffer algorithm.

5.3 Extension to Multiple Views
Although producing a photorealistic view re-

quires lots of images, the hexagonal image gen-
erated from a buckyball can capture rays from
at most 32 images. Regarding the hexagonal
tessellation as level 1, we have developed a hi-
erarchical subdivision algorithm that can be ap-
plied for making the look-up table in Step2.1.
The algorithm is as follows.

Step2.1.0. Position a buckyball inscribed in
a unit sphere.

Step2.1.1. Calculate all intersection points of
the buckyball surface and lines of sight of
input images in a 3D coordinate system.

Step2.1.2. Expand the buckyball with all in-
tersection points.

Step2.1.3. Convert all coordinates to a 2D
coordinate system.

Step2.1.4. Iterate the following sub-steps for
subdivision until the specified level is
achieved (Fig. 7).
Step2.1.4.1. Subdivide every hexagon so

that a quarter-size regular hexagon will
be surrounded by six equal-size trape-
zoids.

Step2.1.4.2. Merge two adjacent trape-
zoids whose bases are common so that
they will be a quarter-size regular
hexagon.

Step2.1.5. For every hexagon, choose the in-
tersection point nearest the center of the
hexagon if it contains more than two inter-
section points.

The subdivision doesn’t rotate any hexagons
around the symmetry axis level by level, and
also doesn’t create any spaces or overlaps be-
tween hexagons on the same level. Thus, the
hexagonal tessellation of each level contains all



644 IPSJ Journal Feb. 2005

Fig. 7 Subdivision of hexagonal tessellation.

Fig. 8 Data structure for hexagonal image.

intersection points in it. In addition, we have
to consider hexagons on borders for subdivi-
sion. We solved this problem by adjoining vir-
tual trapezoids adaptively as shown in Fig. 7.

On the other hand, we represented a hexag-
onal image using two types of data structures.
One is a square image whose pixels represent
the color of hexagonal pixels. The other is a
list that represents six adjacent hexagonal pix-
els for every hexagonal pixel. An image of our
data structure is shown in Fig. 8. In the figure,
a gray pixel indicates a target pixel and pixels
through which the broken line passes indicate
pixels adjacent to the target pixel. The list is
used to find adjacent pixels for interpolation.

In the actual implementation, we prepared
the square image shown Fig. 6 (e) and a corre-
sponding list for adjacency for level 1 as ini-
tial data. Then, the data for the specified level
were generated by subdividing the structure by
maintaining the adjacency level by level. Here,
we set the adjacent pixels for a vacant pixel as
the adjacent pixels in a corresponding square
image. The structure requires more memory
and calculation in order to generate and main-
tain both a look-up table and hexagonal im-
ages. However, calculation cost for adjacent
pixel search is almost the same as that for a
square image.

Finally, every resulting hexagon has at most
one intersection point because of calculating in

the 2D coordinate system. And we can also gen-
erate a look-up table that associates hexagons
with input images one by one because one inter-
section point corresponds to one input image.
As for storing, the size of an image will be 7×24,
including nine vacant pixels, for level 2, while
it will be 3× 11, including one vacant pixel, for
level 1.

6. Interpolation

In Step2, some pixels might be uncolored
because of a lack of images and visibility. In
Step3, colors of uncolored pixels are deter-
mined by a linear interpolation approach. The
algorithm for one hexagonal image is as follows.

Step3.1 Produce a queue of uncolored pixels
according to the number of adjacent col-
ored pixels.

Step3.2 Calculate the color of the pixel at the
top of the queue as a mean of the colors of
adjoining colored pixels.

Step3.3 Mark the pixel as a colored pixel.
Step3.4 If uncolored pixels remain, go to

Step3.1.

In Step3, we take the connectivity of pixels
on borders into account by virtually adjoining
pixels. For example, at level 1 hexagon 22 and
hexagon 28 in Fig. 6 (c) are treated as adjoined
in Step3.1 and Step3.2.

7. Results

We implemented the proposed algorithm in
VC++ on a PC/AT computer (Windows XP
Xeon, 1.7 GHz with 4 GBytes of memory).

Before capturing images, we calibrated the
3D capture system from the same positions
as those we took using a calibration pattern.
Then, we obtained 83 images of each of ten real
objects, which included objects with reflective
and translucent surfaces under normal fluores-
cent light. For each set of data, viewing angles



Vol. 46 No. 2 Image-Based Photorealistic 3D Reconstruction Using Hexagonal Representation 645

of the images were assigned uniformly to almost
the entire upper half of the object. We gener-
ated reconstructed data as geometric data of 1-
mm resolution so that the geometric data would
be almost the same as that of input images and
light field data with rays of 159 directions for
level 2. Finally, we successfully obtained 3D
data without manual adjustment or improve-
ment of input data.

Table 1 shows results of geometry recon-
struction for a “shoe”, a “PET bottle” and a
“teapot”. In the table, “total” in execution
time means the time to execute all passes, and
“failed” means the time to execute the second
and later passes. The results show that most of
the shape was determined after the first pass.

Table 2 also shows the total execution times,
including geometry reconstruction, and the
properties of the reconstructed data. As for
the light field data, we show the amount of
data in PNG-compressed and JPG-compressed
formats. The maximum memory consump-
tion during execution was about 500MBytes for
both sets of data. As shown in Table 2, the data
were generated around 4 minutes or less.

The rendered views of generated data are
shown in Fig. 9 and Fig. 10. In Fig. 9, in-
put images, rendered results of reconstructed
wire frames, and rendered results for PNG-
compressed and JPG-compressed light field
data from the same viewing points are shown
for each data. The rendered results for an
interpolated-angle view are shown in Fig. 10.
Here, note that PNG compression is loss-
less. For both sets of data, photorealistic
rendered views were obtained, although there
is some blurring of images obtained for the
interpolated-angle view and the JPG com-
pressed data. Especially, noteworthy is that the

Table 1 Results of geometry reconstruction.

execution # of generated
Data time (s) voxels

total failed total failed
“shoe” 17.4 0.3 100,418 1,288

“PET bottle” 22.1 2.1 116,553 13,207
“teapot” 16.6 2.8 62,745 4,193

Table 2 Final results.

Execution geometric data light fields data
Data time total amount # of vertices PNG JPG

(Mbyte) (Mbyte) (Mbyte)
“shoe” 4m 00 s 1.1 98,102 44.3 8.5

“PET bottle” 4m 01 s 0.9 77,443 34.0 5.6
“teapot” 2m 35 s 0.7 60,259 25.2 4.5

lining of the “shoe” can be viewed, although the
lining is on a concave surface. In addition, the
reflective or transparent part of the objects are
also well reconstructed.

8. Discussions and Conclusions

We have developed an algorithm for gener-
ating a surface-light-field data from multiple-
view images. In the algorithm, geometric data
are reconstructed as a visual hull using the fast
multi-pass algorithm we have developed. In ad-
dition, we also have developed a new data struc-
ture based on a hexagonal tessellation gener-
ated from a buckyball for capturing light field
data. The experimental results show the al-
gorithm yields the surface light field data in a
short time for various types of real objects and
that photorealistic data can be viewed from ar-
bitrary viewpoints.

We believe our algorithm is very practical for
it’s speed, quality, and wide applicability for
various types of objects. However, there are
some remaining problems. One is the frame
rate for rendering. The actual frame rate was
about 8 ∼ 12 fps with the NVIDIA GeForce4
video-card, because of the large scale geomet-
ric models and rendering method. In our cur-
rent rendering program, we use vertex coloring
instead of texture mapping because our algo-
rithm assigns colors vertex by vertex. We think
rendering speed will be improved by combining
our data with conventional polygonal simplifi-
cation algorithm so that the simplified polygon
has multiple-view textures that are collection of
colors of original vertices like in Wood’s render-
ing algorithm 8).

Another problem is the interpolation. As
shown in Fig. 10, the interpolated views we ob-
tained were blurred. To improve the quality, we
have to make input images denser or use more
correct and stricter calibration and segmenta-
tion results, but this would reduce the robust-
ness of the algorithm. So we plan to develop
different algorithms to improve the quality of
interpolation views. Another problem concerns
the lighting condition and an effective compres-



646 IPSJ Journal Feb. 2005

Fig. 9 Rendered views for “shoe”, “PET bottle” and “teapot”.

Fig. 10 Interpolated views for “shoe” and “PET bottle”.



Vol. 46 No. 2 Image-Based Photorealistic 3D Reconstruction Using Hexagonal Representation 647

sion algorithm. Our current algorithm doesn’t
take lighting conditions into account. Basically,
it regenerates views of input images with recon-
structed geometry. The simplest and most in-
tuitive way to consider the lighting conditions
is to obtain input images under various light-
ing conditions and store all of them, extending
the idea of the hexagonal representation. How-
ever, it would be better to develop compression
algorithm that makes more effective use of the
hexagonal image representation.

Acknowledgments The authors would
like to acknowledge to members of the Home
Communication Research Group at NTT for
helpful discussions.

References

1) Matsumoto, Y., Terasaki, H., Sugimoto,
K. and Arakawa, T.: A Portable Three-
dimensional Digitizer, Proc. Recent Advances
in 3-D Digital Imaging and Modeling, pp.197–
204 (1997).

2) Niem, W. and Wingbermühle, J.: Automatic
Reconstruction of 3D Objects Using a Mobile
Monoscopic Camera, Proc. Recent Advances in
3-D Digital Imaging and Modeling, pp.173–180
(1997).

3) Levoy, M. and Hanrahan, P.: Light Field Ren-
dering, SIGGRAPH ’96 Proceedings, pp.31–42
(1996).

4) Gortler, S., Grzeszczuk, R. and Szeliski, R.:
The Lumigraph, SIGGRAPH ’96 Proceedings,
pp.43–54 (1996).

5) Debevec, P.E., T. C.J. and Malik, K.: Mod-
elling and Rendering Architecture from Pho-
tographs: A hybrid geometry- and image-based
approach, SIGGRAPH ’96 Proceedings, pp.11–
20 (1996).

6) Matusik, W., Buehler, C., Rasker, R., Gorter,
S. and McMillan, L.: Image-based Visual
Hulls, SIGGRAPH ’00 Proceedings, pp.369–
374 (2000).

7) Nishino, K., Sato, Y. and Ikeuchi, K.: Eigen-
Texture Method: Appearance compression and
synthesis based on 3D model, Proc. CVPR ’99,
Vol.1, pp.618–624 (1999).

8) Wood, D.N., Azuma, D.I. and Aldinger, K.:
Surface Light Fields for 3D Photography, SIG-
GRAPH ’00 Proceedings, pp.287–296 (2000).

9) Chen, W.-C., Bouguet, J.-Y., Chu, M.H. and
Grzeszczuk, R.: Light field mapping: efficient
representation and hardware rendering of sur-
face light fields, SIGGRAPH ’02 Proceedings,
pp.447–456 (2002).

10) Laurentini, A.: The Visual Hull Concept for
Silhouette-Based Image Understanding, IEEE

PAMI, Vol.16, No.2, pp.150–162 (1994).
11) Wingbermühle, G.E.J. and Niem, W.: Shape

Refinement for Reconsructing 3D-Objects Us-
ing Analysis-Synthesis Approach, Proc. ICIP
2001, Vol.3, pp.903–906 (2001).

12) Szeliski, R.: Rapid Octree Reconstruction
From Image Sequences, CVGIP: Image Under-
standing, Vol.58, No.1, pp.23–32 (1993).

13) Matsuoka, H., Onozawa, A., Sato, H. and
Nojima, H.: Regeneration of Real Objects in
the Real World, SIGGRAPH ’02, Sketch and
Applications (2002).

14) Chen, H.H. and Huang, T.S.: A Survey of
Construction and Manipulation of Octrees,
Computer Vision, Graphics, and Image Pro-
cessing, Vol.43, pp.409–431 (1988).

15) Kamgar-Parsi, B., Kamgar-Parsi, B. and
Sander, III, W.A.: Quantization Error in Spa-
tial Sampling: Comparison between Square and
Hexagonal Pixels, Proc.CVPR ’89, pp.604–611
(1989).

16) Snyder, W.E., Qi, H. and Sander, W.: A coor-
dinate system for hexagonal pixels, Proc. SPIE
Medical Imaging 1999, Vol.3661, SPIE, pp.716–
727 (1999).

(Received April 19, 2004)
(Accepted November 1, 2004)

(Online version of this article can be found in
the IPSJ Digital Courier, Vol.1, pp.36–45.)

Hidenori Sato Senior Re-
search Engineer, Ubiquitous In-
terface Laboratory, NTT Mi-
crosystem Integration Laborato-
ries, NTT Corporation. He re-
ceived the B.S. and M.S. degrees
in physics from Tohoku Univer-

sity, Sendai, Japan, in 1987 and 1989, respec-
tively. In 1989, he joined NTT LSI Labora-
tories, Kanagawa, Japan, where he worked on
LSI CAD. His current research interests are in
computer vision, computer graphics, and hu-
man computer interaction system. Mr. Sato is
a member of IEICE, IPSJ, ITE, and IEEE.



648 IPSJ Journal Feb. 2005

Hiroto Matsuoka Research
Engineer, Ubiquitous Interface
Laboratory, NTT Microsystem
Integration Laboratories, NTT
Corporation. He received the
B.S. degree in electrical and
electronic engineering from

Ritsumeaikan University, Kyoto, Japan in 1989.
From 1989 to 1992, he had worked at NEC
Kansai. He received the M.S. degree from
Graduate School of Information Science of Nara
Institute of Science and Technology, Nara,
Japan, in 1995. In 1995, he joined NTT,
where he researched circuit designs for micro-
wave equipment. His current research inter-
est is three-dimensional computational graph-
ics, especially for modeling and rendering algo-
rithms. Mr. Matsuoka is a member of IPSJ and
IEICE.

Hitoshi Kitazawa received
his B.S., M.S. and Ph.D. de-
grees in electronic engineering
from Tokyo Institute of Tech-
nology, Tokyo, Japan, in 1974,
1976 and 1979, respectively. He
joined the Electrical Communi-

cation Laboratories, Nippon Telegraph and
Telephone Corporation (NTT) in 1979. Since
2002, he is a professor at Tokyo University of
Agriculture and Technology. His research in-
terests are in VLSI CAD algorithm, Computer
Graphics and Image Processing. Dr. Kitazawa
is a member of IPSJ, IEICE and IEEE.

Akira Onozawa Senior Re-
search Engineer, Supervisor,
Ubiquitous Interface Labora-
tory, NTT Microsystem Integra-
tion Laboratories, NTT Corpo-
ration. He received his B.E.
in 1983 and M.E. in 1985 both

in Electronic Communication Engineering and
Ph.D. in 2002 in Information and Computer
Science all from Waseda University, Tokyo,
Japan. He joined NTT in 1985 where since then
he had been working for the research and de-
velopment of LSI CAD algorithms and systems.
His current interests include HCI, CV and CG.
Dr. Onozawa is a member of ACM, IEEE,
IEICE and IPSJ.


