
Electronic Preprint for Journal of Information Processing Vol.23 No.1

Regular Paper

Unsupervised Clustering-based SPITters Detection Scheme

Kentaroh Toyoda1,a) Iwao Sasase1,b)

Received: January 30, 2014, Accepted: September 12, 2014

Abstract: VoIP/SIP is taking place of conventional telephony because of very low call charge but it is also attractive
for SPITters who advertise or spread phishing calls toward many callees. Although there exist many feature-based
SPIT detection methods, none of them provides the flexibility against multiple features and thus complex threshold
settings and training phases cannot be avoided. In this paper, we propose an unsupervised and threshold-free SPITters
detection scheme based on a clustering algorithm. Our scheme does not use multiple features directly to trap SPITters
but uses them to find the dissimilarity among each caller pair and tries to separate the callers into a SPITters cluster
and a legitimate one based on the dissimilarity. By computer simulation, we show that the combination of Random
Forests dissimilarity and PAM clustering brings the best classification accuracy and our scheme works well when the
SPITters account for more than 20% of the entire caller.
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1. Introduction

Recently, VoIP (Voice over IP) is becoming a major tele-
phony protocol thanks to inexpensive call charge. Unfortunately,
this merit for legitimate callers is also beneficial for the caller
who merchandises goods or spreads malicious phishing call with
recorded voice or an actually human speaking. This type of un-
solicited calls is referred to as SPIT (SPam over Internet Tele-
phony) and a SPIT call or SPITters (SPIT callers) detection sys-
tem should be implemented in a SIP (Session Initiation Protocol)
server or an application server on the IMS (IP Multimedia Sub-
system).

Many researchers try to find better call behavior features, e.g.,
call frequency, average call duration, out-degree, and in-degree,
to distinguish SPITters from legitimate callers and apply this in-
formation to SPITter detection. Although there exist many fea-
tures, none of the methods employ reasonable solutions to set
the threshold and reference models in order to differentiate le-
gitimate callers and SPITters appropriately. In other words, if a
new feature is found, it is difficult to integrate the feature into
conventional SPIT detection. In addition, it is difficult to obtain
training data labeled as “SPITter” or “legitimate caller” in privacy
concerns since we have to check the content of calls to confirm
whether the caller is legitimate to obtain label. These two short-
comings motivate us to research a flexible SPITters detection ap-
proach without threshold-based detection as an unsupervised de-
tection method.

In this paper, we propose an unsupervised and threshold-free
SPITters detection scheme by using a clustering algorithm. Our
method turns complex threshold setting and training into clus-
tering the callers and identifying the SPITters cluster. We aim
to separate the inspected callers into two clusters, one is the le-
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gitimate cluster and the other is the SPITters one by using mul-
tiple features. Since our scheme leverages the features to find
dissimilarity among the callers, any complex threshold settings
and training phases can be avoided. Although clustering itself
does not give us the SPITter cluster, we identify which cluster is
the “SPITters cluster” by comparing the average of a feature e.g.,
calls per day. Since if the callers are clustered well, the callers in
one of the cluster call more frequently than the others.

The effectiveness of our scheme depends on a dissimilarity
measure and a clustering algorithm. We compare three com-
bination of dissimilarity measures and clustering algorithms,
which are (1) k-means clustering, (2) Euclidean distance + PAM
(Partitioning Around Medoids) clustering, and (3) RF (Random
Forests) dissimilarity + PAM clustering. By computer simula-
tion, we show that the combination of RF + PAM is the best
choice for SPITter detection since RF effectively finds the im-
portance of features while Euclidean distance does not. We also
show that our scheme works well when the SPITters account for
more than 20% of entire callers. We also compare our scheme
with the well-studied conventional schemes and our RF + PAM
scheme outperforms them in terms of true positive rate while
maintaining low false positive rate.

The rest of this paper is structured as follows: Section 2 de-
scribes the model of SPITters and the system model that we as-
sume in this paper. Related work is summarized in Section 3. The
proposed scheme is described in Section 4. Simulation results
and evaluation are discussed in Section 5. Finally we conclude
our discussion in Section 6.

2. System Model

2.1 SPITters Model
SPIT is voice-based spam for advertising merchandise or to

commit fraud, such as credit card fraud, to deceive someone to
deposit his/her money into their bank accounts. Many researchers
define “SPITter” as automatic computer-based SPIT calls genera-
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Fig. 1 Graphical model of SPITter with colluding accounts.

tor. The content of SPIT is pre-recorded and automatically played
when the call is successfully connected. Most works deal with
SPITters who disperse many SPIT calls and calls only victims.
However, we have to consider other models of SPITters who own
multiple accounts. By using multiple accounts, the SPITters can
lower the call frequency, compensate for short average call du-
ration, and make more human-like relationships. Figures 1 (a)
and (b) show an example of the relationship and call behavior of
SPITters with colluding accounts, respectively. In Fig. 1 (a), node
A is a SPITter and A has four colluding accounts, B, C, D, and
E. On the other hand, F, G, H, and I are victim callees. Arrows
indicate the direction of calls i.e., SPITter A and the colluding
accounts have bi-directional links but the victim callees have uni-
directional link from A. From Figs. 1 (a) and (b), we can see that
a SPITter with colluding accounts can compensate for short av-
erage call duration by occasionally calling back and forth with
colluding accounts for a certain duration. Let dcomp denote av-
erage call duration to compensate for short call duration. We
discuss how to set dcomp in the following section. By preparing
some colluding accounts, a SPITter can imitate the call behavior
of a legitimate caller. Tables 1 (a) and (b) show the call model
of SPITters with and without colluding accounts, respectively. In
the following section, we discuss how to set the parameters in
Tables 1 (a) and (b).
• call frequency (calls per day)

In order to determine the call frequency model of SPITters,
we estimate the maximum amount of SPIT calls per account.

Table 1 Parameters for SPITter model.

(a) without colluding accounts

parameter value

# of SPIT calls per day 10, 50, 100, 500, and 1,000
SPIT call duration dSPIT ∼ Exponential(µSPIT = 15 sec)
callee uniformly chosen
call back rate 0.01

(b) with colluding accounts

parameter value

# of SPIT calls per day 10, 50, 100, 500, and 1,000
SPIT call duration dSPIT ∼ Exponential(µSPIT = 15 sec)
callee uniformly chosen
call back rate 0.01
# of colluding accounts 5
compensation call duration dcomp ∼ Exponential(µcomp)

In our assumption, the upper bound of calls per day is esti-
mated under the following situation. We assume that SPIT-
ters make calls between 9 to 5. This assumption comes from
the following two reasons. The first reason is that SPITters
expect the callees to catch as many calls as possible and thus
SPIT calls are generated while the most callees are active.
The second reason is that most SPIT calls may be generated
by a corporation and traditional business hour of corpora-
tion is 9 to 5. In reality, human-based SPITter can call as
many as 1 or 2 calls per minute: therefore, estimated upper
bound per account is 500 or 1,000 calls per day. However, it
is too frequent compared with legitimate callers: thus, SPIT-
ters are easily detected by a threshold-based SPITter detec-
tion [1]. By using multiple accounts, SPITters may avoid a
threshold-based SPITter detection. Hence, we also consider
low frequency SPITter model that disperses SPIT calls to as
many as 10, 50, and 100 calls per day.

• call duration for SPIT call
For most callees, a received SPIT call must be unsolicited
and this could result in a shorter call duration than a legit-
imate one. Hence we set mean duration of SPIT call µSPIT

to be 15 secs and SPIT call duration dSPIT obeys exponential
distribution. This is the same as other related works Refs. [2]
and [3].

• callee selection
Since SPITters aim to broadcast their merchandises or de-
ceive as many victims as possible, we can assume that SPIT-
ters seldom call to the same callee again. Thus, we randomly
choose the callees.

• call back rate
We assume that callees intentionally or unintentionally call
back to a SPIT caller. The reason for intentional reason is
that a callee is simply interested in the content. On the other
hand, for unintentional calls, the reason could be that a callee
cannot catch the call and calls back later. We consider the
above cases and set the call back rate as 0.01.

• # of colluding accounts
We assume that a SPITter can prepare as many as five col-
luding accounts. This is because a SPITter can forge Strong
Ties (ST) property, which is a ratio of total call duration of
the top 5 callees to the total call time.
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• call duration for compensation call
In order to compensate for the short average call duration
and the ST property, a sophisticated SPITter can easily forge
them by calling with five colluding accounts back and forth.
A SPITter with colluding accounts makes not only SPIT
calls but also an outgoing call and an incoming call with
each colluding account once a day. Thus, if a SPITter pre-
pares five colluding accounts, he/she makes and receives as
many as five compensation calls toward/from colluding ac-
counts daily. This can be the case since the calling rate is
very low in a VoIP/SIP environment. We set the mean dura-
tion for the compensation call as follows. Let dtarget be the
target average call duration by compensation calls and dtarget

is calculated as follows.

dtarget

=
µSPIT× #(SPIT calls) + µcomp× #(compensation calls)

#(SPIT calls) + #(compensation calls)
,

(1)

where # (X) denotes the number of X. For instance, when
the dtarget is 60 secs and the number of SPIT calls is 100 calls
per day, we can calculate µcomp as follows.

60 =
15 × 100 + µcomp × 5

100 + 5
,

µcomp = 960 secs. (2)

Note that when the number of SPIT calls is very large e.g.,
1,000 calls per day, µcomp is upper bounded since the most
active time (9am to 5pm) is spent for SPIT calls. Hence the
compensation calls can be exchanged within 16 hours (5pm
to 9am) and the upper bound of µcomp is 96 mins (16 hours /
(2 × 5)). In this case, dtarget is calculated from Eq. (1) and
dtarget ≈ 44 secs. Therefore, we calculate each µcomp subject
to an upper bound of dtarget for a variable number of SPIT
calls.

2.2 System Environment
We assume that our SPITters detection system is deployed in

a VoIP/SIP service provider and our task is to identify SPITters
who belong to its own VoIP/SIP service provider. There exist as
many as Ncallers callers in the VoIP/SIP service provider and thus
we can obtain Ncallers CDR (Call Detail Records) for inspection.
We also assume that our SPITters detection scheme is executed at
regular intervals (e.g., once a day), and any calls are rejected until
the next SPIT detection phase if the caller is judged as a SPIT-
ter. This simple method avoids complicated procedures during
the call establishment and thus it does not delay the SIP connec-
tion.

3. Related Work

There exists much research to combat SPIT and recent works
have been summarized [4]. The works are mainly divided into
three research categories: (1) features-based SPITters detection
scheme e.g., Refs. [1], [3], [5], [6], [7], (2) SPITters detection
based on social network trustworthiness e.g., Refs. [8], [9], [10],
[11] and (3) content-based SPIT detection e.g., Refs. [12], [13],

[14], [15]. However, social network-based SPITter detection and
content-based detection have some limitations. In order to cal-
culate the trustworthiness of callers, most social network-based
detection schemes construct a graph whose vertices and edges
indicate callers and relationships between callers. If all callers
(vertices) are within same VoIP/SIP provider, the graph can be
constructed from their call history. However, some callers can
belong to other providers and thus the graph might be incomplete
and it might lead to insufficient trustworthiness. Also, content-
based detection schemes cannot avoid privacy concerns. On the
other hand, feature-based SPIT detection schemes are not influ-
enced by the above problems, since the features of each caller can
be calculated from its own CDR. Therefore, we summarize the
feature-based SPITters detection schemes in the following.

Shin et al. suggested Progressive Multi Gray-leveling (PMG)
which is a call frequency based SPIT caller detection [1]. They
calculate the two gray levels of callers: one for short-term gray
level and the other one for long-term gray level. Whether to con-
nect a call is decided by whether the summation of these two
levels exceeds its threshold or not. If the summation falls below a
certain threshold, the connection is made; otherwise, the connec-
tion is blocked. This scheme uses call frequency to distinguish
the SPIT callers from legitimate ones. By combining short-term
and long-term gray level, a high frequency SPIT caller remains
over the threshold and are detected as a SPIT caller. This method
needs tuning as many as five parameters.

Yang et al. proposed the supervised decision tree-based SPIT-
ters detection [16]. They used six features, which are the number
of callees it sends out, ratio of number of calls outgoing and in-
coming, number of total calls, and number of failed, canceled and
completed calls in order to classify the callers. They use labeled
training data to construct the decision tree.

Bai et al. pointed out that there is a fundamental difference
between legitimate users and spammers on making and receiv-
ing calls [5]. A legitimate caller typically makes and receives
calls, while a spammer makes a large number of calls but sel-
dom receives calls. Apparently, a small ratio of answered calls
and dialed calls can be used to distinguish a legitimate caller and
a spammer. Based on the above analysis, they propose three fea-
tures to identify spam calls, Interaction Ratio (IR), which is the
ratio of answered calls to the dialed calls, Historical Ratio (HR),
which is the ratio of repeated calls to distinct calls, and Social Ra-
tio (SR), which is the ratio of unknown callees to the total number
of callees. They set thresholds X, Y , and Z for IR, HR, and SR,
respectively. They compare each threshold with the correspond-
ing features one by one when the caller initiates a call in order to
check the legitimacy of a caller.

Bokharaei et al. proposed some features to separate unusual
callers from a real phone call dataset in North America [17]. They
show that most legitimate callers in their dataset spend most of
their talk time with only 4–5 people and they refer to this fea-
ture as the ST property. Thus, an ST property is the ratio of the
total call duration of the top 5 callees to the total call time. In
addition, for most callees, the received SPIT calls must be unso-
licited and this could result in shorter call durations than legit-
imate one. They take advantage of this feature by defining the
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Weak Ties (WT) property, which is the fraction of callees that
talk for more than 60 secs. The WT value must be very small for
SPIT callers since the estimated average SPIT call duration must
be shorter than 60 secs. By using these features, they can filter
suspicious accounts in their dataset. They introduce F (say 90%)
as the threshold against ST and WT and identify the common
outstanding callers of ST and WT property as SPITters.

Sengar et al. proposed two SPIT detection methods [3]. In the
first approach, they detect high frequency and low call durations
callers as SPITters. They prepare the common reference model of
legitimate caller whose call arrival ∼ Poisson(180 secs) and call
duration ∼ Exponential(60 secs). In this approach, they check
whether an inspected caller calls five calls within 15 min and if
true, they calculate the Mahalanobis distance of the call duration
between each inspected caller and the common reference model
using the recent n observations. If the distance deviates from
the trained threshold, the initiating call is rejected. The second
approach focuses on the entropy of the call duration aggregated
from the entire call flow. Since most callees soon hang up SPIT
calls, the call duration of a SPIT caller is skewed towards a shorter
duration and brings about low entropy. Thus, the second approach
can detect whether SPIT calls occur in the network.

Wang et al. proposed call/receive ratio and normalized call fre-
quency based features CI and FCD which are input into the k-
means clustering algorithm [6]. The scheme finds the center mass
of a legitimate callers and classifies each caller by comparing the
distance between the caller and a common reference model with
the trained threshold.

Although, we notice that there exist many features to distin-
guish SPITters, none of the methods employs reasonable solu-
tions to set the threshold and to select the reference models in
order to differentiate legitimate callers from SPITters. In other
words, if we wanted to use a newly found feature or multiple
schemes, it would be difficult to integrate the feature into SPIT
detection or combine the detection schemes since we have to in-
dividually set the thresholds or have to consider a new formula to
trap SPITters. Although Amanian et al. proposed to weigh each
feature by inferring the effectiveness of the features [18], it still
cannot avoid threshold-based detection. Classification-based ma-
chine learning approaches can deal with multiple features e.g.,
decision tree-based detection [16], and may solve the problem. In
this case, the training phase is necessary for most classification
algorithms. However, it is difficult to obtain training data labeled
as “SPITter” or “legitimate caller” due to privacy concerns since
we have to check the content of the calls to confirm whether the
caller is legitimate to obtain label. The above two shortcomings
motivate us to research a SPITters detection approach without
threshold-based detection and which is an unsupervised detection
method.

4. Proposed Scheme

Here, we propose an unsupervised and threshold-free SPITters
detection scheme by using a clustering algorithm. Our method
turns complex threshold setting and training problems into clus-
tering the callers and identifying the SPITters cluster which is
overall much easier. We try to separate the callers into two clus-

ters, one is legitimate cluster and the other is SPITters based on
multiple features. In other words, we do not use the features to
directly trap SPITters but to find the dissimilarity among callers.
This method avoids the complex threshold tuning and training
phase prevalent in conventional works. Although clustering itself
does not give us the SPITter cluster, we identify which cluster is
a “SPITters cluster” by comparing the average of a feature e.g.,
calls per day, calculated within each cluster. We know the fact
that the call duration of SPITters is relatively short compared to
legitimate ones and the call frequency of a SPITter is relatively
higher than legitimate ones.

The classification accuracy of our scheme highly depends on
the combination of dissimilarity measure and clustering algo-
rithm. We introduce three combinations, (1) k-means clustering,
(2) Euclidean distance + PAM clustering, and (3) RF dissimilarity
and PAM clustering.

Our scheme is superior to conventional schemes in terms of the
following points:
• It does not suffer from complicated thresholds tuning.

As mentioned above, our scheme does not use any thresh-
olds in order to distinguish each inspected caller and thus
it is much easier to implement in testbed than traditional
schemes.

• It can easily and reasonably adopt new features into a SPIT-
ters detection system.
If a more superior feature were found, most conventional
works would tune the threshold of the feature again. In con-
trast, our scheme can easily involve such a feature since we
use the features to find the dissimilarity among callers.

• It neither changes the existing SIP message format nor the
SIP terminal at all.
Our scheme needs only the CDRs of each inspected caller
and thus it does not change any SIP format or terminal. It is
also an important point for implementation.

• It does not delay SIP connection.
Our scheme can be executed as an off-line process of the
VoIP/SIP service. A SIP server judges whether a caller is
legitimate or not by simply checking the classified list.

Our scheme consists of these three procedures and we explain
each procedure in detail in the following sections.
( 1 ) calculating features which are considered to differentiate

SPITters from legitimate callers;
( 2 ) clustering these callers into two clusters by using the dissim-

ilarity which is calculated from the features; and
( 3 ) deciding which cluster is the “SPITter cluster” by comparing

the average of a feature among each cluster.

4.1 Calculating Features
The features represent the characteristic of caller behavior and

are calculated from the CDR. Table 2 shows a simple CDR exam-
ple of a caller. We calculate as many as Nfeatures features for each
caller from the CDR for the latest Ndays days. Let f denote a fea-
ture vector of a caller. We occasionally use fi to indicate caller i’s
feature vector. In our setting, we use Nfeatures = 5 features to de-
scribe each caller i.e., f = ( fACD, fCPD, fST, fWT, fIOR) since they
are considered to be effective in distinguishing SPITters from le-
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Table 2 CDR of a caller for Ndays = 7 days.

date[dd/mm/yyyy h:m:s] caller/callee direction duration

01/01/2013 12:02:32 sip:eve@bar.com outgoing 34”
01/01/2013 13:40:21 sip:dave@foo.com incoming 45”

· · · · · · · · · · · ·
07/01/2013 21:07:35 sip:dave@foo.com outgoing 285”

Table 3 Example of feature vectors.

caller fACD fCPD fST fWT fIOR

Alice 119.65 2.86 0.69 0.61 0.72
Bob 104 6.25 0.66 0.52 0.43

Carrol 61.17 507.12 0.85 0.02 0.1

gitimate callers. Note that if an effective feature was found, it is
easily integrated into the feature vector. Table 3 shows an exam-
ple of feature vectors. Now we can express each caller’s calling
behavior as a feature vector. We cannot say that the five features
( fACD, fCPD, fST, fWT and fIOR) are sufficient to characterize each
caller’s behavior. Certainly, other features can be also considered
e.g., missed call ratio, how calls are distributed throughout the
day, and the distribution of call hour. However, the aim of our
scheme is to show how to use multiple effective features without
complex threshold tuning and any training phase. Therefore, we
use features that have already been proven to be effective in the
literature.
• average call duration (ACD)

The average call duration is a fundamental feature for the
SPITters detection. Since most SPIT calls are unsolicited,
this could result in shorter call duration than legitimate ones.
We can calculate call duration as follows:

fACD

=

∑
(duration | duration> 0 && direction== outgoing)

#(duration > 0 && direction == outgoing)
,

(3)

where (X|Y) denotes values X which satisfies conditions Y
and #(Y) denotes the number of entries which satisfies con-
ditions Y, respectively.

• call frequency (CPD: calls per day)
The call frequency is also a fundamental feature for SPITters
detection since most SPIT calls make more frequent calls
than legitimate callers. We can calculate call frequency as
follows:

fCPD =
#(duration > 0 && direction == outgoing)

Ndays
.

(4)

• ST property (ST)
The ST property characterizes the fact that most of legitimate
callers spend most of their talk time to only 4–5 people. The
ST property is the ratio of the total call duration of the top 5
callees to the total call time proposed in Ref. [17].

fST =

∑
(duration | callee == top 5 callees)∑

(duration)
, (5)

where the “top 5 callees” indicates the five most frequent
callees.

• WT property (WT)
For most callees, the received SPIT calls must be unsolicited
and this could result in shorter call durations than legitimate
calls. The WT property is the fraction of callees that talk for
more than 60 secs. The WT property must be very small for
SPIT callers since the estimated average SPIT call duration
must be shorter than 60 secs.

fWT =
#(callee | duration > 60 secs)

#(callee)
, (6)

where X denotes the average value of feature X.
• Incoming/Outgoing Ratio (IOR)

A legitimate caller typically makes and receives calls, while
a spammer makes a large number of calls but seldom re-
ceives a call. Hence, we can leverage the ratio between in-
coming calls and outgoing calls as a feature for discrimina-
tion. Although many features characterize this fact, e.g., IR,
HR, SR [5], CI [6], the ratio between outgoing and incoming
calls [16], BDR (Bi-Directional Ratio) and IOR [19], we use
IOR in this paper. Both BDR and IOR focus on “the number
of callees” instead of “the number of outgoing calls” used
in IR, HR, SR, and CI. Because of this, BDR and IOR are
more robust against colluding SPITters. In addition, we do
not have to use both BDR and IOR since these are very simi-
lar properties and we may slightly improve the classification
accuracy from the result of Ref. [19] even if we use both.
Thus we use only IOR in our scheme.

fIOR =
#(Incoming)

#(Incoming ∪ Outgoing)
, (7)

where Incoming = (callee | direction == incoming) and
Outgoing = (callee | direction == outgoing).

After the features are calculated for all callers, we normalize
each feature in order to make the features all the same scale.
Without normalizing, relatively small feature will be ignored by
large value feature. For example, the ST range is [0, 1] but the
ACD range is [0, 1,000], as shown in Table 3. Thus the ST is
almost ignored because of the difference in magnitude.

4.2 Clustering Callers
Since we aim to separate SPITters from legitimate ones, we

cluster the inspected callers into two clusters by using cluster-
ing algorithm. Clustering algorithms bundle objects (in our case,
callers) who resemble each other. Hence, the callers who have
similar feature values resemble each other and are bundled into
the same cluster.

Although there exist mainly three major clustering algorithms,
hierarchical clustering, k-means algorithm, and k-medoids algo-
rithm, the candidates we use are k-means and k-medoids algo-
rithm. This is because most hierarchical clustering algorithms are
memory and time exhaustive (the complexities are O(N3

callers) for
agglomerative hierarchical clustering or O(2Ncallers ) for divisive hi-
erarchical clustering) thus they are not suitable for large datasets.
Note that we only have to use one of the following clustering al-
gorithms i.e., k-means or k-medoids clustering but we introduce
both for later comparison.
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Algorithm 1 k-means clustering.
1: Randomly select centroids which are two Nfeatures-dimensions points and

indicate the center of cluster 1 and 2, respectively.

2: while No centroids changed do

3: Assign each caller ( fi) to the closer centroid.

4: Recalculate the two centroids by using newly assigned callers.

5: end while

6: Assign the callers which are closer to centroid 1(2) with cluster 1(2).

Algorithm 2 PAM clustering.
1: Randomly select two callers as medoids.

2: while No medoids changed do

3: Assign each caller to the closer medoid.

4: for each medoid l ∈ {1, 2} do

5: for each non-medoid vector m do

6: Swap l and m and calculate the cost based on dissimilarity mea-

sure.

7: Select the situation with the lowest cost.

8: end for

9: end for

10: end while

11: Assign the callers closer to medoid 1(2) with cluster 1(2).

4.2.1 k-means Clustering
The simplest clustering method is k-means clustering [20]. The

algorithm we use is described as Algorithm 1.
The idea is to find two centroids which are the center points of

each cluster and to assign each caller to the nearer centroid. The
merit of k-means is fast and scalable since the calculation time is
O(kNcallers). However, at step 3 in Algorithm 1, Euclidean dis-
tance is the only choice for the dissimilarity measure since it has
to calculate the distance between callers and center “points” of
each cluster. Euclidean distance cannot weigh each feature and
thus it does not consider how each feature contribute for cluster-
ing.
4.2.2 k-medoids Clustering

PAM clustering (Algorithm 2) is the most classical implemen-
tation of the k-medoids clustering algorithm [21]. In contrast to k-
means, PAM selects a caller as the center of cluster. This enables
us to use variate dissimilarity measures other than Euclidean dis-
tance as step 6 in Algorithm 2.

Here, we introduce the other dissimilarity measure, Random
Forests (RF) dissimilarity. RF is one of the ensemble decision
tree-based classifiers [7]. The reason why we introduce RF dis-
similarity is that RF considers the importance of features during
tree construction. Although RF is originally a classification algo-
rithm, RF outputs the similarity among callers while constructing
decision trees and thus we can leverage the similarity as a dissim-
ilarity measurement. RF constructs as many as T decision trees
like Fig. 2 and uses randomly selected Mtry out of Nfeatures features
as the split criterion. The intuition of finding RF similarity is that
if the two feature vectors of caller i and caller j are input into the
root of a decision tree and both land in the same leaf node, we
can see that both are similar to a certain extent and S i, j, which is
the similarity between caller i and caller j, is increased by one.
At the end of the forest construction, the each similarity is output
and normalized by the number of trees. Thus we can obtain a

Fig. 2 Example of a decision tree.

Table 4 Outcome of clustering.

caller cluster

Alice 1
Bob 1

Carrol 2

Table 5 Labeled callers.

caller cluster

Alice legitimate caller
Bob legitimate caller

Carrol SPITter

similarity-matrix among inspected callers, and each element S i, j

takes a [0, 1] value. Then the dissimilarity among caller i and j is
obtained as

√
1 − S i, j. Since we can only obtain unlabeled data as

shown in Table 3, the problem is how to construct decision trees
without labeled data. The recent works Refs. [7] and [22] intro-
duce how to construct RF trees without labeled data. The idea is
to label given callers as class 1 and generate “synthetic” callers
from the given callers which are labeled as class 2. The synthetic
data are used to generate as many as Ncallers by randomly sam-
pling from the product of the empirical marginal distributions of
the features. In Fig. 2, the bar plots underneath the figure indicate
the ratio of the class 1 to the class 2 callers who land in the termi-
nal node. In constructing a decision tree, since the feature which
is the most distinctive split criterion is selected at each node, the
dissimilarity obtained by RF implicitly weighs each feature ac-
cording to the importance of classification.

As we described above, the merit of PAM is that any dissimi-
larity can be used for clustering. On the other hand, the complex-
ity of PAM is O(kN2

callers) and is more exhaustive than k-means.
In order to mitigate the complexity, CLARA (Clustering LARge
Application) [21] or CLARANS (CLARA based upon RANdom-
ized Search) [23] can be substituted, which are both the derivative
algorithms of PAM.

4.3 Identifying SPITters’ Cluster
After clustering the callers, we obtain the callers list labeled as

cluster 1 or cluster 2 as shown in Table 4 but we do not know
which is the SPITter cluster. So we have to identify each cluster
as shown in Table 5. Our scheme accomplishes this by compar-
ing the average value of a feature e.g., fCPD within each cluster.
Certainly, we stated that fCPD cannot be simply used to trap every
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Table 6 Conditions to identify the SPITter cluster with single feature.

feature condition

CPD If the average of CPD in cluster 1 is bigger than that in cluster
2, we can judge cluster 1 as the SPITter cluster.

ACD If the average of ACD in cluster 1 is less than that in cluster
2, we can judge cluster 1 as the SPITter cluster.

ST If the average of ST in cluster 1 is less than that in cluster 2,
we can judge cluster 1 as the SPITter cluster.

WT If the average of WT in cluster 1 is less than that in cluster 2,
we can judge cluster 1 as the SPITter cluster.

IOR If the average of IOR in cluster 1 is less than that in cluster 2,
we can judge cluster 1 as the SPITter cluster.

type of SPITters but it does not mean that all SPITters call less
frequently. In most cases, there exist (traditional) high frequency
SPITters: thus a hypothesis that SPITters call more frequently
than legitimate callers may still hold. In other words, if the clus-
ters are successfully made, the tendency that SPITters call more
frequently than legitimate callers may be observed even though
some SPITters are low frequent SPITters. For this reason, we
judge the higher fCPD cluster as the SPITter cluster. This way
solves the problem of complex threshold tuning, as found in con-
ventional works. Here we introduce fCPD as the representative
feature to identify the SPITters cluster. Equation (8) denotes the
average fCPD in cluster k.

fCPD
(k)
=

1
Nk

Nk∑

i=1

f (k)
CPD,i, (8)

where Nk denotes the number of callers in cluster k. For instance,
if fCPD

(1)
is larger than fCPD

(2)
, we identify cluster 1 as the SPIT-

ter cluster. Although we use fCPD as the feature to identify the
cluster, other features can also do the job. Table 6 shows each
condition of feature to identify the SPITters cluster. In order to
confirm the legitimacy of our idea, we compare the classification
accuracy by changing the feature to identify the SPITters cluster
in Section 5.3.1.

After the above steps, we obtain the callers list whose entries
are labeled as “SPITter” or “legitimate caller” as shown in Ta-
ble 5. Finally, the list is disseminated to its own SIP servers and
is used for deciding if the call should be established.

5. Evaluation

We evaluate the classification accuracy against the dataset
which consists of real legitimate caller’s call logs and self-
generated SPIT caller’s call data. Classification accuracy has two
factors, TP (True Positive rate) and FP (False Positive rate). TP
denotes the ratio of correctly identified SPITters and FP rate is
the ratio of mistakenly identified legitimate callers as SPITters,
respectively. As we mentioned above, there are three combina-
tions of dissimilarity and clustering algorithm, (1) k-means clus-
tering, (2) Euclid. + PAM: Euclidean distance as the dissimilar-
ity with PAM clustering, and (3) RF + PAM: RF dissimilarity
with PAM clustering. In the following, we show classification
accuracy against Ndays and compare them against conventional
schemes. In addition, we inspect in detail how robust our scheme
is when we vary the ratio of SPITters to the entire caller, how
correctly each SPITter model is identified, how each feature af-
fects the classification accuracy, and calculation time spent in our

method to check scalability.
We assume the following condition: we have the latest Ndays =

3, 5, 7, 9, or 11 days call logs of the inspected callers and our task
is to classify each caller into “SPITter” or “legitimate caller” in an
off-line fashion: thus, we do not simulate actual VoIP/SIP mes-
sages. We use R version 3.0.2, the randomForest package [24]
to execute the Random Forests classifier and the PAM cluster-
ing package [25] to implement our scheme. All simulations are
executed on an off-the-shelf computer which has 3.4 GHz quad
cores CPU and 16 GB RAM. Each result is obtained by repeated
simulation with as many as 100 trials.

5.1 Dataset
We use the Reality Mining dataset as the legitimate caller’s call

data, which includes 94 callers’ call data as collected by the MIT
Media Lab [26]. In the dataset, 68 were colleagues working in
the building on MIT campus (90% graduate students, 10% staff)
while the remaining 26 callers were incoming students at the uni-
versity’s business school. Although there exist two other call log
datasets [27], [28], MIT Media Lab’s Reality Mining dataset is
the best choice for evaluation. In Ref. [27], the datasets are based
on anonymized Call Detail Records (CDR) of phone calls and
SMS exchanges between five million of Orange’s customers in
Ivory Coast between December 1, 2011 and April 28, 2012. How-
ever the dataset is available for the NetMob *1 conference and
cannot be used for other purposes. The other one, Nodobo [28],
consists of smartphone usage logs of 27 students in a Scottish
state high school but 27 persons’ data are too small to evaluate
the performances of our schemes. Although the Reality Mining
dataset is not VoIP call logs but on mobile phone call logs, we as-
sume that VoIP takes place in a conventional telephony network
and thus call characteristics of VoIP call is the same as that of
mobile phone telephony. On the other hand, to the best of our
knowledge, no SPITter’s dataset is publicly disclosed. Hence we
artificially generate SPITters call logs from the model described
in Section 2 and then we mix them with the legitimate callers
dataset for evaluation.

We randomly choose 100 callers (including both legitimate
callers and SPITters) in the simulation except for Section 5.4.
Let RSPITters denote the ratio of SPITters to all callers. We set
RSPITters = 0.2. Therefore, we randomly select 80 legitimate
callers and 20 SPITters. It is a similar setting to Ref. [11] which
considers 25% of all callers as SPITters. It seems to excessive to
consider the cost to obtain SIP addresses. However, nowadays,
many SIP service providers emerge that offer free SIP accounts
e.g., Call Centric *2, Voiptalk *3 and Onsip *4. In addition, as the
cost of obtaining E-mail accounts has dropped in the last decade,
the cost of obtaining VoIP/SIP accounts might drop due to price
competition in the near future. Therefore, there can be the case
that SPITters account for 20% of all callers. However, since no
VoIP/SIP calls/callers statistics are publicly available, we cannot
guess how many SPITters account for all callers and thus we can-

*1 http://www.netmob.org/
*2 http://www.callcentric.com/
*3 https://www.voiptalk.org
*4 http://www.onsip.com/about-voip/sip/sip-account
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not conclude whether the setting we choose i.e, RSPITters = 0.2,
is reasonable. Therefore, we vary RSPITters from 1% to 50% and
evaluate the classification accuracy in Section 5.3.3.

5.2 Parameter Tuning for RF
Before our simulations, we tune the two parameters Mtry and T

to find the RF dissimilarity and use them for the following evalu-
ation. In this setting, we use 7 days’ worth of call logs.

We first tune Mtry under the situation of T = 25 which is the
recommended choice for tuning T [7]. Figure 3 (a) shows clas-
sification accuracy versus Mtry. Since we use five features, Mtry

can take on the value 1 through 5. From Fig. 3 (a), we can see
that both TP and FP get slightly better as Mtry gets larger. In our
situation, the number of features is relatively small and thus we
use Mtry = 5 in the following simulation.

We also tune T , which is the number of generated trees.
Figure 3 (b) shows the classification accuracy versus T . From
Fig. 3 (b), we can see that both TP and FP get better as T get larger
and that we achieve TP = 0.95 and FP = 0.014 when T = 500 but
both TP and FP are consistent when T ≥ 500. Figure 3 (c) shows
the calculation time to find dissimilarities among callers versus
log-scaled T . From Fig. 3 (c), we can see that the calculation time
linearly increases when T gets larger. From these results, we do
not have to use T > 500 by considering the balance between cal-
culation time and accuracy: therefore, we use T = 500 in the
following simulation.

5.3 Classification Accuracy
5.3.1 Classification Accuracy versus Chosen Feature to

Identify the SPITter Cluster
In Section 4.3, we stated that any feature can be used to iden-

tify the SPITter cluster after clustering. In order to clarify this
notion, we compare the classification accuracy versus the feature
used to identify the SPITter cluster in Fig. 4. We use the RF +
PAM scheme where T = 500 and Mtry = 5, Ncallers = 100, and
RSPITters = 0.2 and follow the condition of each feature to iden-
tify the SPITter cluster in Table 6. From Fig. 4, our scheme can
achieve nearly the same TP and FP regardless of the chosen fea-
ture and thus any feature can be used to identify the SPITter clus-
ter. From this result, we can say that the SPITter cluster can be
identified by comparing the average of any single feature if the
clustering is successfully done.
5.3.2 Classification Accuracy versus Ndays

We compare our methods with LTD [17] and PMG [1]. The
reason why we chose LTD and PMG for comparison is be-
cause both methods are well-studied works and the authors gave
clear descriptions for deciding the threshold setting and algo-
rithm. Although there exist many other feature-based SPIT de-
tection methods e.g., Refs. [3], [5], [6], and [16], they give am-
biguous setting for the threshold, reference model, or training
method: thus, we do not compare them in order to avoid inac-
curate comparisons. Both LTD and PMG need threshold tun-
ing. Although LTD needs one parameter F and F = 0.9 is sug-
gested in their original work, we use F = 0.7 which give more
accurate detection against our dataset. For PMG, five parame-
ters T L1, T L2, C1, C2, and T need to be tuned. Two settings

Fig. 3 Parameters tuning for RF + PAM.

for the parameters are suggested in their work [1]. Setting 1 is
(T L1,T L2,C1,C2,T ) = (1 min, 1 hour, 3, 1, 1,000) and setting 2
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Fig. 4 Classification accuracy versus chosen feature to identify the SPITter
cluster.

Fig. 5 TP and FP versus Ndays.

is (10 mins, 1 day, 1, 1, 1,000), respectively. Note that since PMG
tries to detect SPIT calls and not callers when the call is going to
be established, we regard a caller as a SPITter once PMG detects
a SPIT call.

Figure 5 (a) shows the TP with varying collection periods
(Ndays). From Fig. 5 (a), we can see that TP slightly and gradually
improves as Ndays becomes longer, regardless of schemes. This
result is intuitive and understandable since it has more chance
to trap SPITters as the collection period gets longer. We also
find that RF dissimilarity gives better TP than Euclidean distance

by comparing RF + PAM, Euclid. + PAM and k-means. This is
because Euclidean distance does not consider the importance of
features in finding dissimilarity. Also the performance of PMG,
which is a threshold-based scheme, is sensitive to threshold set-
tings. Since PMG has to select as many as five thresholds and
parameters, it is very difficult to obtain the optimal setting. LTD
achieves nearly 50% TP when Ndays = 7 and does not improve
anymore. This is because LTD detects the callers whose ST and
WT both deviate from normal and thus it cannot detect the SPIT-
ters with colluding accounts since they try to approach the values
of ST which are close to those of legitimate callers.

Figure 5 (b) shows FP with varying collection period Ndays.
From Fig. 5 (b), we can see that PMGs, especially setting 2, get
worse as the collection period gets longer. This is because we
judge callers as SPITters once a call is judged as SPIT and thus it
bring about FP as Ndays becomes longer. It is also found that the
FP of our scheme gradually decreases. In contrast to PMG, the
longer the collection period gets, the more accurate classification
can be executed in our scheme. This is the same reason why the
TP of our scheme gets better.

From Figs. 5 (a) and (b), we can say that our scheme tries to
separate legitimate callers and SPITters by dissimilarity and that
it works well even though there exist low-frequency SPITters or
SPITters with colluding accounts.
5.3.3 Classification Accuracy versus RSPITters

In this section, we show the classification accuracy against
RSPITters. Since our methods rely on how legitimate callers and
SPITters resembles each other, classification accuracy depends
on how much SPITters accounts for inspected callers. In addi-
tion, as we stated before, the exact ratio of SPITters to inspected
callers cannot be expected. Azad et al. vary RSPITters = 10%, 20%
and 30% in Ref. [11] while Chaisamran et al. vary RSPITters from
1% to 10% in Ref. [29]. In order to clarify the classification ac-
curacy against RSPITters, we vary RSPITters from 1% to 50% and
evaluate the classification accuracy. In this evaluation, we use not
only the Reality Mining dataset but also the Nodobo dataset [28]
which consists of 27 students’ smartphone call logs in a Scottish
state high school. This is because we cannot evaluate the classi-
fication accuracy when RSPITters < 10% since the Reality Mining
dataset involves only 90 callers’ log. Therefore, we randomly
sample 100(1−RSPITters) legitimate callers out of 117 (= 90+ 27)
persons from both datasets. Figures 6 (a) and (b) show TP and
FP versus RSPITters, respectively. From Figs. 6 (a) and (b), we can
see that the classification accuracy of our schemes gets better
as RSPITters increases and the classification accuracy with RF +
PAM outperforms when RSPITters ≥ 20%. On the other hand, for
RSPITters < 15%, TP in our schemes get worse as RSPITters becomes
lower. From Fig. 6 (b), the tendency can be also seen for FP. We
consider there are two reasons why our schemes get worse against
low RSPITters. The first reason is that classification itself cannot
cluster well since the most of callers are legitimate when RSPITters

is low. The second reason is that the representative feature mis-
takenly identifies the SPITter cluster when the chosen SPITters
are only sophisticated SPITters and this brings about severe TP
and FP. This situation can occur when both Ncallers and RSPITters

are too low or few. When RSPITters = 0.01, only one SPITter ex-
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Fig. 6 TP and FP versus RSPITters.

ists in the inspected callers since we use Ncallers = 100. We cannot
conclude whether our scheme is robust against low RSPITters and
bigger Ncallers since we do not have a sufficient number of legiti-
mate callers’ call log.
5.3.4 Classification Accuracy versus SPITter Types

We assume ten SPITter types discussed in Section 2, which
consists of low-rate SPITters (as low as 10 calls per day) to high-
rate SPITters (as much as 1,000 calls per day) and with collu-
sions or without collusions. We clarify how our scheme identifies
each SPITter model. In this simulation, we use RF + PAM as
the core algorithm. Figure 7 indicates TP versus each SPITter
model. In Fig. 7, we merged the result of seven types as “oth-
ers.” which are SPITters without collusions and high call rate
SPITters ( fCPD ≥ 500) with collusions, since they are correctly
identified without fail. On the other hand, low-rate SPITters
( fCPD ∈ [10, 100]) with colluding accounts are difficult to be de-
tected as SPITters but the TP gradually improves as time goes
on.
5.3.5 Effectiveness of Each Feature

We clarify how each feature affects the ability to classify legit-
imate callers and SPITters. In order to clarify the effectiveness
of each feature, we only use single features to represent callers.
We choose k-means as the core algorithm. Figure 8 shows the

Fig. 7 TP versus SPITter types.

Fig. 8 Classification accuracy with single feature.

classification accuracy with each single feature. We look into the
classification accuracy of each feature. Although fACD traps most
SPITters, it traps legitimate callers as well. From this result, we
can say that most legitimate callers do not call for a long enough
duration to clearly separate SPITters. fCPD and fST are less effec-
tive to detect SPITters but they bring very low FP. This is because
they both represent the characteristics of ordinary people. Ordi-
nary callers do not call so frequently and fST characterizes that
legitimate ones spend most of their talking time with intimates.
We show that sophisticated SPITters can imitate the ST property
but it does not mean that the actual legitimate callers are not iden-
tified correctly as well. Finally we discuss the results of fIOR and
fWT. They give us similar characteristics: both identify SPIT-
ters without fail but mistakenly identify 20% of legitimate callers
as SPITters. This is because they represent the characteristic of
SPITters as opposed to fCPD and fST. From Fig. 8, we can see that
good classification accuracy cannot be achieved with only a sin-
gle feature and thus this can be the reason why multiple features
have to be considered.

5.4 Calculation Complexity
We finally discuss the calculation time in our methods. In this

evaluation, we vary Ncallers between 100 and 100,000 and measure
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Table 7 Required time in our methods.

Dissimilarity Clustering

# of callers RF Euclid. PAM k-means

100 1.6E−1 s 2.4E−4 s 8.7E−4 s 6.4E−4 s
1,000 3.1 s 6.7E−3 s 5.3E−2 s 1.5E−3 s
10,000 1.5E+2 s 8.3E−1 s 6.6 s 9.8E−3 s

100,000 9.4E+4 s 1.2E+1 s 4.6E+2 s 1.2E−1 s

the consumed time in calculating the dissimilarity and clustering.
Our algorithms mainly consume the most of time to calculate dis-
similarity and clustering. Table 7 shows the calculation time of
our scheme. From Table 7, we can see that the required time
follows the time complexity for PAM (O(N2

callers)) and k-means
(O(Ncallers)), respectively. In addition, RF has the highest calcula-
tion time and takes about three order of magnitude than Euclidean
distance calculation. RF takes about three hours to find the dis-
similarity among 100,000 callers. This might be a problem and
we have to consider a calculation reduction algorithm if we con-
sider a larger VoIP/SIP service provider.

6. Conclusion

In this paper, we have proposed an unsupervised SPIT callers
detection with a clustering algorithm. Our method turns complex
threshold setting and training problems into clustering the callers
and identifying the cluster. In contrast to conventional schemes,
we use the features to find the dissimilarity among callers and
this avoids threshold tuning and the training phase. By computer
simulation, we show that our scheme using RF dissimilarity and
PAM clustering outperforms the conventional schemes by means
of classification accuracy when SPITters account for more than
20% of inspected callers accuracy against our dataset. We also
show that our scheme can tolerate as many as 100,000 callers us-
ing an off-the-shelf computer.
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