
Vol. 46 No. 2 IPSJ Journal Feb. 2005

Regular Paper

Distributed Zone Partitioning Schemes for CAN and

Its Application to the Load Balancing in Pure P2P Systems☆

Daisuke Takemoto,† Shigeaki Tagashira† and Satoshi Fujita†

In this paper, we propose several distributed zone partitioning schemes for Content-
Addressable Networks (CAN), that is known as a pure peer-to-peer system based on the
Distributed Hash Table (DHT). The main objective of the proposed schemes is to balance the
load of nodes in the CAN system, in such a way that every node receives almost the same
number of inquiries from the other nodes in the system. The result of simulations implies that,
by using the proposed schemes instead of a randomized zone partitioning scheme originally
implemented in the CAN system, we could reduce the response time for each inquiry to less
than 75%.

1. Introduction

According to the recent advancement of net-
work technologies, it emerges an increasingly
strong requirement for the high quality com-
munications over the large-scale interconnec-
tion networks. In fact, as the number of web
sites serving real-time contents increases, the
number and the size of data flows exchanged
among remote hosts also increase, and in ad-
dition, it significantly increases the complex-
ity of server procedures to keep (or often to
improve) the quality of such data streams to
be satisfactory. In general, a high complexity
of server procedures will limit the scalability
of distributed systems under the conventional
server-client model, and it motivates the study
of fully distributed systems such as grid com-
puters and peer-to-peer (P2P) systems. A P2P
system consists of a collection of host computers
called nodes or peers, and those nodes are con-
nected with each other by an interconnection
network such as the Internet. In recent years,
a lot of important services such as shared file
systems and Domain Name Systems (DNS) are
constructed over the P2P model, and they have
been used in many application fields, such as
electronic bulletin board, network auction sys-
tems, and so on.

By their logical structure, P2P systems could
be classified into two categories, i.e., hybrid
type or pure type. In hybrid P2P systems, re-
trieval of objects will be realized by sending a
query message to a dedicated server who main-
tains a set of indices to the objects in a central-
ized manner, while the actual contents of the

† Hiroshima University

objects will be maintained by each node in a
distributed manner. On the other hand, pure
P2P systems do not rely on servers, and the re-
trieval of contents will be realized by peer nodes
in a distributed manner. Examples of pure
P2P systems include Gnutella 2) and FreeNet 3),
where in Gnutella, indices of objects will be re-
trieved by using collective communications over
all nodes in the system, that severely limits the
scalability of the overall system.

Distributed Hash Table (DHT) is a common
technique to overcome such a low scalability of
the flooding-based indexing schemes, and it has
been applied to many pure P2P systems such as
Tapestry 11), Chord 10), P-Grid 1), and Content-
Addressable Network 7). For example, in the
Content-Addressable Network (CAN) proposed
by Ratnasamy et al., indices to the objects are
maintained through DHT in a fully distributed
manner. More concretely, CAN constructs a
virtual d-dimensional coordinate space as a ta-
ble of indices, and each index that should be
stored and retrieved by each node is mapped
onto a point in the space by an appropriate uni-
form hash function (a detailed explanation of
CAN will be given in Section 2). At any point
in time, the entire coordinate space is dynam-
ically partitioned among nodes in the system,
in such a way that every node locally maintains
indices contained in its individual portion of the
space called zone, and thus, the store and the
retrieval of an index will be realized by routing

☆ Earlier versions of some results contained in this pa-
per appear in D. Takemoto, S. Tagashira, S. Fujita,
“Distributed Algorithms for Balanced Zone Parti-
tioning in Content-Addressable Networks,” Proc.
10th International Conference on Parallel and Dis-
tributed Systems (ICPADS).

348

Vol. 46 No. 2 Distributed Zone Partitioning Schemes for CAN 349

an inquiry message to the corresponding point
in the coordinate space, i.e., to the node who
maintains indices corresponding to the target
point.

In this paper, we focus on the zone parti-
tioning problem in the CAN system. Although
CAN could realize a scalable access to the con-
tents of the objects 7), the load of nodes would
not be well balanced when the spatial distri-
bution of the mapped indices is not uniform
and/or the access to the indices is not uniform.
In this paper, we will measure the load of nodes
in terms of the number of received inquiries;
i.e., it is assumed to be proportional to the
access frequency to the indices maintained by
the node. We propose three schemes for solv-
ing the load balancing problem. The first one
collects an accurate load information from all
nodes in the system by using an expensive col-
lective communication (as in Gnutella), the sec-
ond one collects merely local information that
is less accurate but much cheaper than the first
one, and the third one collects an accurate in-
formation by using a distributed heap, that is
an extension of a scheme for realizing a dy-
namic set in distributed networks 4). Note that
the first two schemes are based on a technique
that is commonly used in the field of paral-
lel computing, and for those schemes, there is
a trade-off between the accuracy and the cost
for acquiring an appropriate load information.
The proposal of the third scheme is intended
to overcome such a trade-off point; i.e., it in-
tends to acquire an accurate load information
with a low communication cost. The proposed
schemes are evaluated and compared by simu-
lation. The result of simulations implies that,
when the number of peers is 64, the second and
the third schemes exhibit almost the same per-
formance, and by using those schemes instead
of a randomized scheme that is originally im-
plemented in the CAN system, we could reduce
the response time for each inquiry to less than
75%.

The remainder of this paper is organized as
follows. Section 2 describes an outline of CAN,
and shows the result of our preliminary exper-
iments to demonstrate the spatial imbalance
of the mapped points by typical uniform hash
functions. Section 3 proposes three zone parti-
tioning schemes. The effectiveness of the pro-
posed schemes in terms of the response time
to inquiries is evaluated in Section 4. Finally,
Section 5 concludes the paper.

2. Content-Addressable Network

2.1 Overview
CAN provides a mechanism for managing and

retrieving objects distributed over the network,
in a fully distributed manner. Consider a P2P
system consisting of several nodes, and suppose
that each node locally stores a set of objects.
Each object has a name that will be referred to
as the key of the object in what follows. The
index of an object stored in a node is repre-
sented as a key-value pair (K1, V1), where K1 is
the key of the object and V1 is the unique name
(e.g., IP address) of the node. The basic idea
of CAN is to construct a table of indices to all
of the objects stored in the system. The table
is realized as a virtual d-dimensional Cartesian
coordinate space on a d-torus, where in the fol-
lowing, we fix d to two for simplicity; i.e., we
represent each point in the space by a pair of
its X- and Y -coordinate values. At any point
in time, the entire coordinate space (i.e., the
entire index table) is dynamically partitioned
into zones, and those zones are assigned to the
nodes in the system in such a way that every
node locally maintains all indices contained in
its individual zone.

The store of an index (K1, V1) to the coordi-
nate space (i.e., index table) is realized as fol-
lows: It first maps key K1 onto a point in the
space by using a uniform hash function. It then
stores the index to the node corresponding to
the zone containing the target point. The re-
trieval of an index could be done in a similar
manner; that is, to retrieve an object with key
K1, it applies the same hash function to map
the key onto a point, and then retrieves indices
from that point.

If the calculated target point is maintained
by the requesting node, the access to the in-
dex can be locally done. However, if it is not
the case, a request for accessing the index must
be routed through the CAN infrastructure un-
til it reaches the node who maintains it. Each
node in CAN is designed to learn and main-
tain its neighboring nodes with respect to their
associated zone. This set of immediate neigh-
bors serves as a coordinate routing table that
enables routing between arbitrary points in the
coordinate space. See Fig. 1 for illustration.

2.2 Observation on the Zone Partition
As described above, in CAN, the entire co-

ordinate space is divided into small portions
called zones, and those zones are assigned to

350 IPSJ Journal Feb. 2005

Fig. 1 A retrieval of index in CAN; 1) When C requires
content 6, it sends an inquiry to a node who
maintains the index to the content via routing
mechanism; 2) Upon receiving the inquiry, D
returns the name of the peer who maintains the
content to C.

the nodes that are currently participating to
the system in a one-to-one manner. To allow
CAN to grow incrementally, a new node join-
ing the system must be assigned its own por-
tion of the coordinate space, by splitting a zone
maintained by an existing node to a half. More
concretely, such a splitting proceeds as follows:
(1) The new node u finds a bootstrap node

v that already exists in the CAN. In
what follows, we refer to node v as the
requester.

(2) Node v locates another node w whose
zone will be split into two subzones.

(3) Node w splits his zone into two subzones
by using an appropriate coordinate, and
assigns one subzone to the new node u.
It then notifies the fact to all neighbors
of the split zone to keep the consistency
of the CAN routing table.

In the method shown in the original paper 7),
the locating of a target node in the second step
is conducted in a random manner. More con-
cretely, the requester randomly chooses a point
in the space and sends a JOIN request destined
for the point, that will eventually be received by
the node who maintains indices corresponding
to the point. In the following, we refer to this
simple method as Random. As was mentioned
previously, it is important to balance the load
of nodes, that is assumed to be proportional to
the access frequency, to realize a quick response
to each inquiry. In Random, however, such
a load balancing could be achieved merely in
an “expected” sense, and there remains a non-
negligible deviation on the number of received
inquiries that would significantly increase the
response time of the system, in the worst case.

To verify the above conjecture, we conducted
a preliminary experiment to evaluate the spa-
tial imbalance of the mapped points under typ-

Fig. 2 Distribution of the number of keys in each zone
(the total number of zones is 214 and total num-
ber of keys is 230,000).

ical CAN settings. In the experiment, we first
extract 230,000 words from English dictionary
as a set of keys, and map them into the 2-
dimensional space by using a hash function that
is a function actually used in JXTA 5). We then
partition the entire space into 214 small zones
of an equal size, and count the number of keys
mapped onto each zone. The result is summa-
rized in Fig. 2, where the horizontal axis repre-
sents the number of keys associated with a zone,
and the vertical axis represents the number of
such zones containing given number of keys.

As is shown in the figure, the minimum and
the maximum number of keys in a zone are two
and 34, respectively, i.e., a zone contains 17
times more keys than another zone, although
every zone has an equal size in the given co-
ordinate space. A similar result could be ob-
served when we replace the hash function by
other ones such as SHA-1 ☆. Hence, we can con-
clude that although it might balance the load
of nodes in an expected sense, there remains a
non-negligible deviation (17 times, in the above
case) even when each zone has an equal size and
each key is accessed with the same frequency (as
will be shown in Section 4, an imbalance of ac-
cess frequency freqeucntly occurs if there is an
access locality to the stored keys). The above
observations justify the importance of the prob-
lem of load balancing to realize a quick retrieval
of indices, since an overloaded node would be-
come a bottleneck, and it can easily degrade the
overall performance.

☆ SHA-1 is a hash function commonly used for au-
thentification and digital signature 6).

Vol. 46 No. 2 Distributed Zone Partitioning Schemes for CAN 351

3. Quick Location of Target Node

In this section, we propose three node locat-
ing schemes to find a target node in the zone
partitioning scheme. All the schemes proposed
here try to collect load information distributed
over the CAN system. The first and the third
schemes collect a global information (i.e., global
maxima), whereas the second one tries to col-
lect merely local information (i.e., local max-
ima). The difference of the first and the third
ones is the access time and the time lag be-
fore reflecting the change of load status to the
global information; i.e., in the first scheme, it
takes a time proportional to the diameter of
CAN to find a target node, although the change
of status immediately reflects to the global in-
formation. On the other hand, in the third
scheme, both of the update and the retrieval
of the global information take relatively short
time, that is O(log n) in an amortized sense.

3.1 Multicast-Discover Method
The first method is based on the flooding of

inquiry messages to the all nodes in the system.
In Ref. 8), a multicast protocol for CAN is pro-
posed and evaluated. In our first method, called
Multicast-Discover method (MD), a global load
information is collected by using this multicast
protocol, and a node with a heaviest load is
selected as the target node. A requester who
wants to find a target node broadcasts an in-
quiry message to all the other nodes by using
the multicast protocol given in Ref. 8). Upon
receiving an inquiry message, each node returns
its access frequency to the requester by using
the broadcast route in the reverse direction. Af-
ter collecting them, the requester identifies a
node with a heaviest load, and selects it as the
target zone to be split into two halves.

The multicast protocol given in Ref. 8) pro-
ceeds as in a simple X-Y routing in the 2-
dimensional case; i.e., the requester sends a
message to two neighbors in X-dimension, that
will be forwarded to the succeeding ones until
they meet with each other at the opposite side
of the torus; and after receiving a message via
X-dimension, it sends copies of the message to
two neighbors in Y-dimension until they meet
with each other. Thus, it takes a time propor-
tional to the diameter of CAN and the total
number of exchanged messages is proportional
to the number of nodes in the system, although
it could always find a node with a heaviest load,
at the time when the inquiry message is received

by the node.
3.2 Gradient Method
The second method, called Gradient Method

(GR), is a quasi-optimal scheme based on the
hill climbing method; i.e., the requester tries
to find a local maxima in terms of the access
frequency by using a local search method. Let
next be a local register to point a node with a
high access frequency (note that each node has
its own next register). The landscape for the
hill climbing is constructed as follows: 1) every
node exchanges its local information with its all
neighbors for every T seconds; and 2) if none
of the neighbors have a higher access frequency
than itself, then it sets next to point itself, and
otherwise, to a neighboring node with a highest
access frequency. In the following, we denote
the GR with maintenance interval T seconds as
GR(T).

Figure 3 illustrates an outline of the retrieval
of a target node under GR. The retrieval is con-
ducted based on the collection of next registers
that are locally and asynchronously updated by
each node. More concretely, the requester is-
sues an inquiry message, and the message will
be handled by each intermediate node in the
following manner:
• If the next register of the current node

points itself and those of all neighbors point
to the current node, the current node is se-
lected as the target node, and thus, it di-
rectly sends back its IP address to the re-
quester.

• Otherwise, it forwards the received inquiry
to a neighbor as follows:

Fig. 3 Overview of the Gradient Method.

352 IPSJ Journal Feb. 2005

– If the next register does not point it-
self, then it forwards the message to
the node pointed by the register.

– Otherwise, it forwards the message to
the node pointed by a neighbor node
that does not point to the current
node.

The time required for finding a target node un-
der GR depends on the spatial distribution of
heavily loaded nodes; i.e., it takes a constant
time in the best case, and it takes a time pro-
portional to the diameter of CAN in the worst
case.

3.3 Distributed Heap Method
The third method, called Distributed Heap

method (DH), is based on a distributed realiza-
tion of self-adjusting heaps, that is well known
as an efficient data structure to find an item
with a maximum key in an ordered set. In par-
ticular, we will adopt top-down skew heap 9) as
the underlying data structure for DH because
of its simplicity ☆. Recall that the design of DH
is intended to realize a quick locating of a node
with a highest access frequency, with a low com-
munication cost.

Top-down skew heap is a data structure that
supports the following six operations 9):
• Makeheap(h): Create a new, empty heap,

named h.
• Insert(i, h): Insert item i into heap h, not

previously containing i.
• Deletemax(h): Delete and return an item of

maximum key from heap h; if h is empty
return null.

• Findmax(h): Return but do not delete an
item of maximum key from heap h; if h is
empty return null.

• Delete(i, h): Delete item i from heap h.
• Meld(h1, h2): Return the heap formed by

taking the union of disjoint heaps h1 and
h2. This operation destroys h1 and h2.

In the application to our load balancing prob-
lem, we may associate each item in the heap

☆ We could not find any other data structure suitable
to our purpose in the literature; e.g., d-heap, that is
based on the balanced d-ary trees, fixes the number
of items in advance, and does not support “meld-
ing” of two disjoint heaps, that will be required in
distributed environments since links in the heap are
expected to be disconnected frequently due to un-
expected faults of nodes and communication links.
On the other hand, in Fibonacci heap and the other
variants of binomial heaps, we must keep an “un-
bounded” number of children in each vertex, that is
very expensive in general.

to a node in CAN and a key attached to the
item to the access frequency of the correspond-
ing node (recall that we are trying to find a
node with a highest access frequency). Since
the top-down skew heap is an out-tree with out-
degree at most two, the (static) structure of the
heap could be relatively easily realized in a dis-
tributed manner by preparing two local regis-
ters, say left and right, to store the pointer to
the left and the right children in the tree, re-
spectively.

Let U be the set of root vertices of the current
heaps. Since the above six operations always
start from the root of a heap, in DH, we prepare
another data structure to maintain set U in a
distributed manner, that has been proposed by
the authors in Ref. 4). Note that dynamic set
is a data structure that supports the following
three operations; i.e., Find that finds a node
in set U , Insert that inserts the caller to set U ,
and Delete that deletes the caller from set U . In
Ref. 4), we proposed a distributed algorithm to
realize such a dynamic set, that is based on the
technique of path compression and lazy eval-
uation, and showed that it completes each of
the above three operations in O(log N) time in
an amortized sense, where N is the number of
nodes in the system.

By using the above two data structures, the
load balancing under DH proceeds as follows:
• When a node newly joins the CAN system,

it first inserts itself to the data structure for
the dynamic set by setting the next pointer
of the node to any node contained in the
data structure 4). Note that this step can
be omitted if the node has been in the sys-
tem in the past.

• It then executes Find to locate the root of
a heap; and executes Deletemax to locate
and delete a node with a heaviest load in
the heap (see Fig. 4 for illustration).

• After being associated with a split zone,
the new and the located nodes execute In-
sert to insert themselves to the heap, with a
key corresponding to the access frequency
of their newly associated zone.

• The node located by the requester (i.e., the
node with a heaviest load) executes Delete
to delete itself from U , and a node who
becomes the new root of heap h executes
Insert to insert itself to U .

• Finally, when a node leaves the CAN, it
deletes itself from the heap by executing
Delete.

Vol. 46 No. 2 Distributed Zone Partitioning Schemes for CAN 353

Fig. 4 Overview of the Distributed Heap method.

As was mentioned previously, an amortized
cost for finding a node in the dynamic set could
be bounded as O(log N) 4); in addition, we can
complete each heap operation in O(log N) time
in an amortized sense 9), as well. Hence, in DH,
the locating and the splitting of a zone with a
heaviest load takes O(log N) time, in an amor-
tized sense. In the following, in order to re-
duce the maintenance cost, we suppose that
each node flushes the change of its load sta-
tus for every T seconds (i.e., each node repeats
deletion and insertion to the heap for every T
seconds), and denote the resulting scheme as
DH(T).

4. Simulation

In this section, we evaluate the performance
of the proposed schemes by simulation. In par-
ticular, we measure the response time required
for accessing the index of a requested object,
that will be referred to as the access time
hereafter, and the overall communication cost
including the maintenance cost. Note that the
access time is the summation of the turn around
communication time to the target node main-
taining the requested index, and the transaction
time of the inquiry, including the waiting time
in the ready queue.

Recall that for the first two schemes MD and
GR, there is an apparent trade-off between the
accuracy and the cost for acquiring an appro-
priate load information, and the proposal of the
third scheme DH was intended to overcome such
a trade-off point. The main objective of simula-
tion is to examine the impact of such a trade-off

to the access time, and to verify that the com-
munication cost for DH could be bounded by a
small value compared with other schemes.

4.1 Simulation Environment
Let V = {v1, v2, . . . , vN} be the set of nodes

to be considered in the simulation. In this pa-
per, we consider a situation in which: 1) the
CAN system initially contains a single node in
V called anchor, and 2) the other nodes in V
repeat JOIN and LEAVE operations in a dy-
namic and concurrent manner, where LEAVE
is an operation executed when a node wants to
leave CAN. In addition, each node participating
with CAN repeatedly tries to access an object
stored in the system, and issues an inquiry mes-
sage to find the index of the object accordingly.

More concretely, a node who is not contained
in CAN issues a JOIN message according to
a Poisson distribution with mean λjoin, that
will be varied from 50 to 250 seconds, and the
time duration before issuing a LEAVE message
follows an exponential distribution with mean
λhold, that will be fixed to 200 seconds in the
simulation. Note that it corresponds to a sit-
uation in which each node issues JOIN and
LEAVE operations very frequently (i.e., zone
partitioning takes place frequently), and it in-
tends to clarify the difference of maintenance
costs incurred by the node locating schemes. In
addition to that, each node who is participating
with the CAN system issues an inquiry message
according to a Poisson distribution with mean
λaccess, that is fixed to 3 seconds to realize a
heavily loaded situation.

We suppose that each node in V stores indi-
vidual objects. The number of objects held by
a node is assumed to follow a normal distribu-
tion with mean 20 and distribution 2. Each
object stored in a node is associated with a
key, and the association (i.e., the binding of a
name to the object) is carried out only when the
holder of the object issues its first JOIN mes-
sage. Keys and their access probability are de-
termined as follows. First, we randomly extract
100,000 words from English dictionary ☆. Let
D = {w1, w2, . . . , w|D|} be the set of extracted
words. We then associate an access probabil-
ity to each word in D, according to Zipf’s first
law 12); i.e., the ith word wi in D is associ-
ated with an access probability pi = 1/(i × Q),
where Q

def=
∑|D|

i=1(1/i). In the experiments, we

☆ We used an online version of Webster’s Second In-
ternational containing 234,936 words.

354 IPSJ Journal Feb. 2005

Fig. 5 Average access time of an object under each
scheme (|V | = 64, λhold = 200, and λaccess =
3).

used an arbitrary order of words in set D. Note
that

∑|D|
i=1 pi = 1 holds by definition.

We use the same hash function with Sec-
tion 2.2, where the range of the function is fixed
to 256 × 256. In addition, to clarify the differ-
ence of node locating schemes, we assume that
the message transmission between any pair of
nodes takes 1 second, and the transaction of
an inquiry takes 1 second on any node. The
proposal and evaluation of a zone partitioning
scheme taking into account the heterogeneity
of the underlying physical network is left as a
future problem.

4.2 Effect of Load Balancing
In this subsection, we evaluate the perfor-

mance of the proposed schemes by varying the
frequency of JOIN messages. More concretely,
we measure the access time, load distribution,
and the overall communication cost by varying
mean arrival time λjoin from 50 to 250 seconds.
The other parameters are fixed as |V | = 64,
λhold = 200 [sec] and λaccess = 3 [sec].

4.2.1 Access Time
Figure 5 summarizes the average access time

under each scheme. As is shown in the figure,
the average access time monotonically decreases
as increasing the mean arrival time λjoin, and
the access time under Random could be reduced
to about 75% by using the proposed schemes;
i.e., we can really observe the effect of load bal-
ancing by the schemes. In addition, MD ex-
hibits a slightly worse performance than the
other two schemes, and the difference of the
maintenance interval T in GR and DH does not
significantly affect the average access time.

4.2.2 Load Distribution
Clearly, a main reason of the above phenom-

Fig. 6 Distribution of access frequency under each
scheme (|V | = 64, λhold = 200, and λaccess =
3).

ena is due to the effect of the load balancing.
See Fig. 6. This figure illustrates the distribu-
tion of access frequency when λjoin is fixed to
150, where the horizontal axis represents the
number of accesses and the vertical axis rep-
resents the number of zones that receives the
given number of accesses during the simulation.
As is shown in the figure, a broad distribution in
Random can really be concentrated to a narrow
area by taking into account the load balancing;
e.g., by using DH(50) instead of Random, the
standard deviation of the distribution reduces
from 22.94 to 8.08, and in addition, the ratio of
the maximum to the minimum number of ac-
cesses reduces from 176 (=176/1) to 2.76 (=
80/29). However, we could not find a signifi-
cant difference among proposed schemes from
the figure at least in the sense of the access
distribution, that would require another reason
for the explanation of the phenomena shown in
Fig. 5.

4.2.3 Hop Counts
Another possible explanation could be that

by the number of hops that must be traversed
before an inquiry reaching the target node.
Figure 7 compares the average number of hops
under each scheme. As is shown in the figure,
the number of hops under MD is greater than
that under the other methods, and it well ex-
plains the increase of the access time under MD.
In MD, a node with a heaviest load will always
be selected as the zone to be split. Hence, a
subregion with higher access frequency will be
partitioned into smaller zones, whereas a sub-
region with lower access frequency will be par-
titioned into larger zones (recall that there is
a non-negligible imbalance on the spatial local-
ity of mapped points as is shown in Fig. 2). In

Vol. 46 No. 2 Distributed Zone Partitioning Schemes for CAN 355

Fig. 7 Average number of hops to the target node.

Fig. 8 The total size of the transmitted data.

addition, since the actual splitting of the se-
lected zone can take place only after collecting
the load information from the all nodes in the
system under MD, there is a very long time lag
before reflecting the decision to the global state;
i.e., a heavily loaded node will be split by many
requesters that would eventually generate many
zones with unnecessarily small sizes. Such an
unnecessary imbalance of zone sizes will signif-
icantly increase the average access time, since
we are assuming that the partitioning is con-
ducted based on the access frequency, and a
region split into many small zones will be ac-
cessed with a high probability. It should be
worth noting that such an imbalance will be re-
laxed under the other two schemes GR and DH,
that is probably due to the low communication
cost to find a target node to be split into sub-
zones.

4.2.4 Communication Cost
Finally, we evaluate the overall communica-

tion cost under each scheme. Figure 8 summa-
rizes the result. The horizontal axis of the fig-
ure represents parameter λjoin and the vertical

axis represents the total size of the exchanged
messages. Note that since the length of each
message could be bounded by a fixed value,
the figure indicates the difference of exchanged
number of messages, as well.

From the figure, we can observe that the com-
munication cost for Random is bounded by a
very small value, that is clearly because of the
low maintenance cost of the scheme. In con-
trast, MD requires much more communications
compared with the other methods (more than
two times when λjoin = 50). The communica-
tion cost for GR and DH depends on the mainte-
nance interval, the cost for GR reduces to a half
by increasing the interval from 10 seconds to
50 seconds, whereas the cost for DH reduces to
95% by a similar reduction. This phenomenon
implies that the maintenance cost of DH is rel-
atively small compared with GR; i.e., the cost
for inquiry and zone partitioning dominates the
overall cost of the scheme.

5. Concluding Remarks

In this paper, we studied the zone partition-
ing problem in the Content-Addressable Net-
work, and proposed three schemes MD, GR, and
DH for solving the problem. The performance
of the schemes is evaluated by simulation. The
result of simulations implies that, when the
number of peers is 64, GR and DH exhibit al-
most the same performance, and by using those
schemes, we could reduce the access time of the
original scheme to less than 75%. In addition,
although we could not demonstrate the supe-
riority of DH to GR, we could verify that the
communication cost under DH is bounded as
small as that under GR.

The access time of indices in CAN depends
on several factors in addition to the accuracy
of load information that has been considered in
this paper. Such factors include the heterogene-
ity of the underlying physical network, routing
protocols, the performance of local caching pro-
tocols, and so on. Hence, as a future work,
we should extend the proposed schemes to in-
clude those factors, after examining the effect of
the schemes under more realistic environments,
such as P2P systems consisting of more than
10,000 nodes and physical networks with a het-
erogeneous structure.

Acknowledgments This research was par-
tially supported by Grant-in-Aid for Scientific
Research (C) 13680417, and Priority Areas
(B)(2) 14085204.

356 IPSJ Journal Feb. 2005

References

1) Aberer, K.: P-Grid: A Self-Organizing Access
Structure for P2P Information Systems, Proc.
6th Int’l Conf. on CoopIS 2001, pp.179-194
(Sept. 2001).

2) Gnutella. http://gnutella.wego.com/
3) Clarke, I., Sandberg, O., Wiley, B. and Hong,

T.W.: Freenet: A Distributed Anonymous In-
formation Storage and Retrieval System, ICSI
Workshop on Design Issues in Anonymity and
Unobsevability, pp.46–66 (July 2000).

4) Fujita, S. and Yamashita, M.: Maintaining a
Dynamic Set of Processors in a Distributed
System, Distributed Algorithms, Proc. 10th
International Workshop, WDAG ’96, LNCS,
Vol.1151, pp.220–233 (1996).

5) Gong, L.: ProjectJXTA: A Technology Over-
view, Sun Microsystems Inc (Apr. 2001).

6) U.S. Department of Commerce. Secure Hash
Standard. FIPS PUB 180-1, 17 (Apr. 1995).

7) Ratnasamy, S., Francis, P., Handley, M.,
Karp, R. and Shenker, S.: A Scalable Content-
Addressable Network, Proc. SIGCOMM 2001,
pp.161–172 (Aug. 2001).

8) Ratnasamy, S., Handley, M., Karp, R. and
Shenker, S.: Application-level multicast using
content-addressable networks, Proc. 3rd Int’l
Workshop on Networked Group Communica-
tion, pp.14–29 (Nov. 2001).

9) Sleator, D.D. and Tarjan, R.E.: Self adjusting
heaps, SIAM J. on Computing, Vol.15, No.1,
pp.52–69 (Feb. 1986).

10) Stoica, I., Morris, R., Karger, D., Kaashoek,
F. and Balakrishnan, H.: Chord : A Scalable
Peer-to-peer Lookup Service for Internet Ap-
plications, Proc. SIGCOMM 2001, pp.149–160
(Aug. 2001).

11) Zhao, B., Kubiatowicz, J. and Joseph, A.:
Tapestry : An Infrastructure for Fault-tolerant
Wide-area Location and Routing, Technical
Report, UCB/CSD-01-1141 (2000).

12) Zipf, G.K.: Human Behavior and Principle of
Least Effort, Addison-Wesley, Boston (1949).

(Received May 13, 2004)
(Accepted November 1, 2004)

(Online version of this article can be found in
the IPSJ Digital Courier, Vol.1, pp.54–62.)

Daisuke Takemoto received
the B. Eng. degree from
Hiroshima University, Japan, in
2003. He is currently work-
ing towards the M.E. degree in
Hiroshima University. His cur-
rent research interests include

peer-to-peer system and network architecture.

Shigeaki Tagashira received
the B. Eng. degree from Ryukoku
University, Japan, in 1996; and
the M. Eng. and D. Eng. degrees
in Information Science from
Nara Institute of Science and
Technology (NAIST), Japan, in

1998 and 2000, respectively. Since 2000 he has
been a research associate of Information Science
at Hiroshima University, Japan. His current re-
search interests include mobile computing and
system software. He is a member of Institute of
Electrical and Electronics Engineers Computer
Society (IEEE CS).

Satoshi Fujita received the
B.E. degree in electrical engi-
neering, M.E. degree in systems
engineering, and Dr.E. degree
in information engineering from
Hiroshima University in 1985,
1987, and 1990, respectively. He

is an Associate Professor at Graduate School
of Engineering, Hiroshima University. His re-
search interests include communication algo-
rithms on interconnection networks, parallel al-
gorithms, graph algorithms, and parallel com-
puter systems. He is a member of IEICE, SIAM
Japan, IEEE Computer Society, and SIAM.

