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Efficient Construction of Spanners and BFS Trees for Disk
Transmission Graphs

Haim Kaplan1,a) WolfgangMulzer2,b) Liam Roditty3,c) Paul Seiferth2,d)

Abstract: Let P ⊂ R2 be a set of n points in the plane, each having an associated radius rp > 0. This induces a
directed graph T on P with an edge from p to q if and only if q lies in the disk with radius rp around p.
A t-spanner for T is sparse subgraph G of T that approximates each path: for any two vertices p, q connected in T by
a path of length l, there path in G of length at most tl. For any constant t > 1, we show how to construct a t-spanner
in time O(n(log n + log Φ)), where Φ is the spread of P (ratio of maximum to minimum pairwise distances in P) and
where the constant hidden in the O-notation depends on t. Then, for any s ∈ P, we show how to use G to construct a
BFS tree for T with root s within the same time bound.

1. Introduction
The usual way to tackle algorithmic problems on wireless sen-

sor networks is to model them as unit-disk graphs, i.e., intersec-
tion graphs of disks with radius 1. Even though this provides
a rigorous and robust approach from a mathematical and algo-
rithmic point of view, it does not cover all physical properties of
a sensor network. One major drawback is that unit-disk graphs
imply that each sensor must have the same transmission radius.
Using intersection graphs of disks with arbitrary radii is one pos-
sible model that circumvents this issue. Furthermore, intersection
graphs are undirected while in practical settings directed links
may occur. We suggest transmission graphs as another model to
address these problems: for a given set of points P ⊂ R2, each
p ∈ P having an associated radius rp, the transmission graph T
is a directed graph on P with an edge from p to q if and only
if q lies in the disk D(p) around p with radius rp. Transmission
graphs where introduced, among others, by Peleg and Roditty [9].

All three models suffer from one deficiency. Despite their
rather efficient geometric description, the resulting graphs may
have Θ(n2) edges. This slows down even basic graph algorithms,
like breadth first search (BFS), when executed on the graphs.
Thus, one often tries to approximate these graphs without explic-
itly constructing them. A natural expectation is that the geometric
properties of disk graphs allow us to do so efficiently.

One such an approximation is a t-spanner. Let T be a weighted
Euclidean graph. For any t > 1, a sparse, spanning subgraph G
of T is a t-spanner if for any path from p to q in T of length
dT (p, q), there is a p − q-path in G of length at most tdT (p, q).
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See [8] for an introduction and overview of spanners for geomet-
ric graphs. Fürer and Kasivisawnathan show how to efficiently
compute a t-spanner for unit- and general disk intersection graphs
using a variant of the Yao graph [4, 11]. In the case of transmis-
sion graphs, Peleg and Roditty give a construction for t-spanners
when the points reside in a metric space with bounded doubling
dimension [9]. However, except for the unit-disk case all the algo-
rithms have a running time dependent on the number of edges of
the intersection graph, which we try to avoid. We improve upon
this by giving a subquadratic algorithm for transmission graphs in
the special case of the Euclidean metric. Our result uses, similar
to Fürer and Kasivisawnathan, a variant of the Yao graph.

Even having a good approximation in terms of a t-spanner at
hand, we sometimes wish to obtain exact solutions for problems
on disk graphs. Cabello and Jejĉiĉ worked in this direction by giv-
ing an O(n log n) algorithm for BFS trees in unit-disk graphs [2].
Given a vertex s, their algorithm computes the BFS with root s by
exploiting a special structure of the Delaunay triangulation of the
disk centers. We show that the spanner we constructed admits the
same properties for transmission graphs as the Delaunay Triangu-
lation does for unit-disk graphs. Thus, using the same techniques,
we can also compute directed BFS trees for transmission graphs
efficiently.

2. Organization and Contribution
Let P be a point set in R2 with |P| = n. Throughout this paper

we assume that each p ∈ P has an associated radius rp > 0. Thus,
P can also be seen as a set of disks in the plane. We say that P
is a point set with with radii and denote by D(p) the disk around
p ∈ P with radius rp. The transmission graph T on P is obtained
by adding a directed edge −→pq to T for any pair of distinct points
p, q with q ∈ D(p).

The spread Φ of P is the ratio between the pairwise maxi-
mum and minimum distances between points in P, i.e., Φ =

1ⓒ 2014 Information Processing Society of Japan

Vol.2014-AL-150 No.27
2014/11/21



IPSJ SIG Technical Report

maxp,q∈P |pq|/minp,q∈P |pq|, where | · | is the Euclidean distance.
In Section 3 we present a modification of the Yao graph that

yields a t-spanner for T . We first show that its construction can
be carried out efficiently and then prove the approximation ratio.
The running time depends logarithmically on the spread of P. In
particular, we prove the following theorem.

Theorem 2.1 Let T be the transmission graph of a two-
dimensional n-point set P with radii and let Φ be the spread of
P. Let k ≥ 14 be a constant and set

t = (1 +
√

2 − 2 cos(4π/k))/(2 cos(4π/k) − 1).

We can compute a t-spanner for T in time Ok(n(log n + log Φ)).
Here the Ok notation suppresses constant factors depending on k.
Note that t can be made arbitrarily close to 1, at the expense of a
higher running time, by increasing k. In Section 4 we give an al-
gorithm that uses this spanner to compute for a given vertex s ∈ P
the exact BFS tree for T with root s.

Theorem 2.2 Let T be the transmission graph for a two-
dimensional n-point set P with spread Φ. For every s ∈ P we can
compute a BFS tree of T with root s in time O(n(log Φ + log n)).
Our algorithm to establish this result is very similar to the one
used by Cabello and Jejĉiĉ. Nevertheless, for the sake of com-
pletness we analyze its correctness and running time in Section 4.

3. Efficient Spanner Construction
Let T be the transmission graph of a point set P ⊂ R2 with

radii. Let Φ be the spread of P. Our spanner construction cre-
ates a subgraph G of T and is similar to the Yao graph construc-
tion [11], but taking into account radii of the points. Let k ≥ 7 be
an integer and C be a set of k equally sized cones with the origin
as apex that partition the plane. We attach the cones in C to each
vertex q ∈ P. In each cone we pick the closest point to p such
that q ∈ D(p) and add the edge −→pq to G. This gives a graph with
O(kn) edges.

With the next Lemma one shows that the Yao graph is a t-
spanner, where increasing k decreases t [1].

Lemma 3.1 Let k ≥ 7 and let

t = (1 +
√

2 − 2 cos(2π/k))/(2 cos(2π/k) − 1).

For any three distinct points p, q, r ∈ R2 such that |qr| ≤ |qp| and
α = ∠pqr is between 0 and 2π/k, we have |pr| ≤ |qp| − |qr|/t.
Proving the spanning property of Yao graphs goes by induction
on the rank of the edge length. One argues that for each edge −→pq
in T , there exists a path of length at most t|pq| in G. Then, fixing
a path in G and summing up the edge lengths, one sees that each
path in T is t-approximated. The same arguments hold for our
transmission graph version of the Yao graph, as we will see.

However, we do not know how to find the closest point p in
each cone quickly when the additional constraint q ∈ D(p) comes
into play. To circumvent this issue, we use a more sophisticated
construction that gives a similar graph with the same properties.
During the construction, we need to solve efficiently the follow-
ing subproblem: given set of points Q and a set of disks R, find
for each q ∈ Q one disk of R that contains q, if such a disk ex-
ists. There is an efficient algorithm with running time linear in

|Q| when the centers of the disks in R and the points in Q are sep-
arated by a directed line ` and Q is already sorted in the direction
of `.

Lemma 3.2 Let Q,R and ` as above with |Q| = n and |R| = m.
If Q is sorted according to the direction of ` and ` separates
Q and the centers of disks in R, then we can compute in time
O(m log m + n) for each q ∈ Q one disk of R that contains q if
such a disk exists.
Proof: Consider a coordinate system whose x-axis is `. We will
use the lower envelope of the boundaries of the disks and ` w.r.t.
to the x-axis (see Fig.1). This lower envelope consists of at most
2m − 1 arcs [10]. To compute it in O(m log m) time, we use a
standard divide and conquer approach. Observe that the envelope
is monotone in ` direction: each arc and ` can be interpreted as
a function of x and the lower envelope is the minimum over all
these functions.

Now, let S be the points at which the arcs change. We merge
Q and S in time O(m + n) and sweep over Q ∪ S in ` direction to
compute the point-disk incidences for Q and R. We initialize D
to be the disk belonging to the first arc and q to be the first point
of Q. Whenever we reach a point in p ∈ S ∪ Q, we update D or
q, depending on whether p ∈ S or p ∈ Q. In the former case, we
set D to be the disk of the new arc. In the latter one, we first set
q = p and then check if q ∈ D. If so, we associate D to q. This
sweep can be done in O(m + n) time. By the monotonicity of the
lower envelope, it is sufficient to check for each q ∈ Q only the
disk of the arc intersected by the line through q orthogonal to `.
Exactly this is done during the sweep. �

3.1 The Construction
Let an integer k ≥ 14 be given and let c = c(k) be a constant

to be determined later. Since we assume the spread of P is Φ, we
can construct a quadtree for P with depth O(log Φ): scale every-
thing, so that the closest pair in P has distance c. We choose an
integer L and an axis-parallel square � with diameter 2L that con-
tains all points of P. *1 Since c is constant and P has spread Φ,
L ∈ O(log Φ). Furthermore, we set all radii rp > 2L to be exactly
2L without changing the graph T . Our quadtree Q is a sequence
(Q0, . . . ,QL), where Qi is a set of disjoint squares with diameter
2i that we call cells of Qi. We construct Q recursively by parti-
tioning each non-empty cell of Qi into four smaller cells of Qi−1

with diameter 2i−1. We start with QL = {�}. The cells in Q are
axis-parallel and the scaling ensures that each cell of Q0 contains
at most one point. A cell has level i if it is contained in Qi and
the distance dQ(�,�′) between the two cells � and �′ is defined
to be the minimum |pq| with with p ∈ � and q ∈ �′. We compute
various additional information for each cell � ∈ Qi: a list N(�)
of all cells �′ of the same level with dQ(�,�′) ∈ [(c− 2)2i, c2i+1),
i.e., all cells near to �; the points R� ⊆ P in � with radius in
[(c−2)2i, (c + 1)2i+1), i.e., all these disks may intersect N(�); and
the point m� ∈ P with the maximum radius.

Recall that we have k congruent cones partitioning the plane.
The following is done for each cone C ∈ C Fix one and let Cq be

*1 Don’t worry! The � is neither an error of your PDF reader nor related to
missing fonts. It is a commonly used notation for a cell (or a square) of
a quadtree or a grid. See, e.g., [5]
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`

Fig. 1 The lower envelope and S (orange), with the points Q (red), and the centers of R (blue).

the cone with apex q obtained by translating C.
We process the quadtree level by level in increasing order, start-

ing with Q0. The goal is to select for each q ∈ P an ingoing edge
−→pq with p lying in Cq, q ∈ D(p), and |pq| being minimal. Since we
do not know how to find the minimal p efficiently, we also select
some additional ingoing edges for q. In doing so, each point can
be in one of three states: white, gray or black. In the beginning,
all points are white and we select only ingoing edges for white
and gray points. Once the first ingoing edge for q is selected, say
at level i, q becomes gray. After we finished processing level i+1,
q becomes (and remains) black. It will never be considered again
for an ingoing edge.

We perform three steps for each i, 1 ≤ i ≤ L: 1) preproccesing
the points; 2) handling for each non-empty cell � ∈ Qi the disks
with large radius, for which we can be sure that they completely
contain �; 3) handling the disks with small radius which may
intersect �.

Step 1) (Preprocessing) Let � ∈ Qi be a non-empty cell. We
sort the points in � in x and y direction by merging the
appropriate lists from the four children of �. Then, for
each gray point that became gray in level i−2, we color
it black.

Step 2) (Handling large disks) Let � ∈ Qi be a cell with white
or gray points. For each �′ ∈ N(�) let Q be the white
and gray points of � whose cone intersects �′, i.e.,
Cq ∩ �

′ , ∅ for all q ∈ Q (see Fig. 2). If the largest
disk D(m�′ ) of �′ contains �, then we add all edges −→mq
for q ∈ Q and color q gray (if necessary). Otherwise,
we proceed with Step 3).

Step 3) (Handling small disks) Consider the set R�′ . First, we
check if there is an r ∈ R�′ whose disk contains �. If
so, similar to Step 2), we add all edges −→rq for q ∈ Q and
color q gray if necessary. Otherwise, we use Lemma 3.2
to compute for all q ∈ Q one r ∈ R�′ whose disk con-
tains q if such an r exists. As separating line ` we take
a line supporting one of the four sides of �. Since � is
axis-parallel, ` is either parallel to the x- or the y-axis
and we sorted the points in Q as needed for the lemma
in Step 1). As usual, we add all edges −→rq we computed
and set each q to gray if necessary.

3.2 The Resulting Graph is a t-Spanner
First, we argue that the construction gives O(kc2) ingoing edges

for each point q and thus O(kc2n) edges in total. Let � be the level
i cell of q and note that |N(�)| = O(c2). To see this, consider the
annulus A centered at the center of � with inner radius (c − 2)2i

and outer radius (c + 1)2i+1. A contains all cells of N� and the
area of A is O(2ic2). Thus, it can be covered by O(c2) cells with
diameter 2i. During the construction we add for each of the k
cones ingoing edges for q in at most two consecutive levels, since
after the second one q is black. In each level we add |N(�)| edges,
which is O(kc2) in total. The claim follows.

Next we show that every path in T is approximated well in G
if c is a sufficiently large constant.

Lemma 3.3 Let t = (1+
√

2 − 2 cos(4π/k))/(2 cos(4π/k)−1).
If c > max{2 + (t + 1)/(t − 1), 5}, then G is a t-spanner for T .
Proof: First, by induction on the rank of the length of the edges,
we show that for each edge −→pq in T there is a p-q-path of length
at most t|pq| in G. Then we show that this holds for paths, too

For the base case consider the shortest edge −→pq and let Cq

be the cone containing p. Furthermore, let i be the level at
which the cells �,�′ of q and p, respectively, have a distance
in [(c − 2)2i, c2i+1). Note that by our choice of this interval, such
an i exists for any edge. Also note that Cq intersects �′ and there-
fore, if q is not black, we select an ingoing edge for q from �′.
Indeed, q cannot be black at level i. Otherwise, there would be
an ingoing edge for q at level at most i − 2. By construction, this
edge has length at most (c + 1)2i−1. But this cannot be, since −→pq
is the shortest edge and has length at least (c − 2)2i > (c + 1)2i−1

for c > 5. Thus, one ingoing edge for q is selected from a point
in �′. This point must be p since its is the only point in �′: every
other point r would form an edge −→pr shorter than −→pq. Hence, −→pq
is an edge in G.

For the induction step, consider an arbitrary edge −→pq together
with the cone Cq containing p and again let i be the level where
the distance between � and �′ is in [(c − 2)2i, c2i+1). We distin-
guish two cases, depending on whether q is black at level i or is
not (see Fig. 3).
Case 1: q is not black. Therefore, since q ∈ D(p) and Cq inter-
sects �′, we select one ingoing edge for q from a point in �′. If
this point is p, we are done. Thus, assume we select the edge −→rq
with r , p. Since |pr| < 2i, we inductively assume a path from p
to r in G of length at most t2i. Using this, we estimate the length
d(p, q) from p to q in G by

d(p, q) ≤ t2i + |rq| ≤ t2i + |pq| + 2i = |pq| + (1 + t)2i,

where the second inequality is due to triangle inequality. The
lower bound |pq| > (c − 2)2i gives

|pq| + (1 + t)2i ≤ (1 + (1 + t)/(c − 2))|pq|, (1)

which less than t|pq| for c > 2 + (1 + t)/(t − 1).
Case 2: q is black. Therefore, there is an edge −→rq that was se-
lected for q in a level j ≤ i − 2. Let �′′ be the cell of r at level j.
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Fig. 2 The cell � right and the cell �′ left. The set Q are the red points in �. Since the largest disk D(m)
(black) does not contain �, we need to do step 3) with ` as separating line.

q

≤ 2i
≥ (c− 2)2 i

r

p

q

≥ (c− 2)2 i

r

p

≤ (c + 1)2j+1 ≤ (c + 1)2i−1

Fig. 3 The two cases of Lemma 3.3. The cells of level i are dashed green
and the cells of level j are green.

By construction, the cone Cq either contains or intersects �′′. If
it only intersects �′′, Cq must not necessarily contain r. To over-
come this technicality, we double the angle of Cq from 2π/k to
4π/k. We show in Obs. A.0.1 that Cq now contains �′′ and thus
r. Now, since |rq| ≤ (c + 1)2i−1 < (c − 2)2i ≤ |pq|, we can use
Lemma 3.1 to deduce that

d(p, q) ≤ t|pr| + |rq| ≤ t(|qp| − |rq|/t) + |rq| = t|qp|.

To finish the proof, let π = (p1, . . . , pl) be a directed path in T
with length |π|. Then there is a path from p1 to pl in G with
length d(p1, pl) =

∑l−1
i=1 d(pi, pi+1) ≤ t

∑l−1
i=1 |pi pi+1| = t|π|. �

3.3 Running Time of the Construction
We prove the following lemma.
Lemma 3.4 The construction of the spanner G of T takes

Ok(n(log Φ + log n)) time.
Proof: Since c depends only on k, the quadtree can be computed
in time Ok(n log Φ) [3]. In the same time, we can compute the ad-
ditional information N(�),R� and m� for each cell of Q. The only
non-obvious one is N(�): for this, fix some � ∈ Qi. There are
O(c2) level i cells �′ ∈ Qi with dQ(�,�′) < c2i+1. To find them,
we do a post-order traversal of Q, starting from QL. We stop if
we either reach level i or the current cell exceeds the maximum
distance to �. For N(�) we keep only those cells with distance at
least (c − 2)2i to �. Since each cell in N(�) can be connected by
a path of length O(log Φ) to QL in the quadtree Q, we can find all
lists in time Ok(n log Φ).

For Step 1) we need O(n) time at each level: let P� be the
points in a cell � ∈ Qi. We can sort P� in x and y-directions
O(|P�|) time, assuming the points in the four children are already
sorted. Thus, we need O(n) time for sorting at each level. Color-
ing the points takes also O(n) time. Hence, since the depth of Q
is Ok(log Φ), we need Ok(n log Φ) time for Step 1) in total.

Consider a cell � ∈ Qi that we process at Step 2). For each
�′ ∈ N(�), we compute the set Q�,�′ ⊆ P� of points whose cone
intersects �′ in O(|P�|) time. Since the P� partition P, we spend
O(n) time at each level for this. Furthermore, checking if D(m�′ )
contains � needs O(1) time. Hence, since there are O(n) cells in
Qi, Step 2) takes Ok(n log Φ) time.

For Step 3) the crucial observation is that each radius partici-
pates only in O(c2) executions of the algorithm from Lemma 3.2.
Let � ∈ Qi and let �′ ∈ N(�). Recall that R�′ are the points
in �′ with radius in [(c − 2)2i, (c + 1)2i+1). Checking if the disk
of an r ∈ R�′ contains � is dominated by the algorithm from
Lemma 3.2. Thus, the total time spent for Step 3) is

L∑
i=1

∑
�∈Qi

∑
�′∈N(�)

O(|R�′ | log |R�′ | + |Q�,�′ |) =

L∑
i=1

∑
�′∈Qi

∑
�∈N(�)

O(|R�′ | log |R�′ | + |P�|),

where equality holds by using |Q�,�′ | ≤ |P�| and rearranging the
sum. Since L = O(log Φ), |N(�)| = O(c2) and there are O(n) cells
at each level, splitting the sum and bounding log |R�′ | by log n
gives

Ok(n log Φ) + Ok(log n)
L∑

i=1

∑
�′∈Qi

O(|R�′ |).

Finally, we can use that at level i we consider only radii in
[(c − 2)2i, (c + 1)2i+1) and therefore each radius is in at most two
levels. Thus, the last double sum sums up to O(n) and the total
running time for Step 3) is Ok(n(log Φ + log n)) as well.

We need to repeat all steps for k cones, but the total running
time still is Ok(n(log Φ + log n)). �

Theorem 2.1 follows by combining Lemmas 3.3 and 3.4.

4. From Spanners to BFS Trees
In this section we show how to compute BFS trees for a trans-

mission graph T . Assume that the underlying point set has spread
Φ. Let the desired root s ∈ P be given.

4ⓒ 2014 Information Processing Society of Japan

Vol.2014-AL-150 No.27
2014/11/21



IPSJ SIG Technical Report

To compute the BFS tree with root s we apply a technique used
by Cabello and Jejĉiĉ in the case of unit-disk graphs [2]. De-
note by dh(s, p) the BFS distance (also known as hop distance)
from s to p in T and let Wi be the set of vertices p ∈ P with
dh(s, p) = i. Assume we already computed W0, . . . ,Wi. Cabello
and Jejĉiĉ showed that the Delaunay triangulation can be used to
efficiently identify Wi+1. We prove that our t-spanner from The-
orem 2.1 provides the same properties for transmission graphs as
the Delaunay triangulation does for unit disk graphs.

Lemma 4.1 Let G be the t-spanner for T from Theorem 2.1
with k = 14 and let v ∈ Wi+1. There exists a u ∈ Wi and a path
u = q1, . . . , ql = v in G with dh(s, q j) = i + 1 for 1 < j ≤ k.
Proof: Since dh(s, v) = i + 1, there is a w ∈ Wi with v ∈ D(w),
i.e., T has an edge −→wv. Assume this edge is not in G, otherwise
we are done by setting u = w. We construct iteratively, back-
wards, a path from some u ∈ Wi to v, s.t. (i) each inner vertex
is contained in D(w); (ii) has BFS distance i + 1 to s; and (iii)
we have |wq j| < |wq j+1|. By our assumption, this is true for v.
Assume we constructed q j+1, . . . , ql = v. We choose a vertex q j

as follows: consider the cone Cq j+1 used by the construction of
G (see Section 3) that contains w. If −−−−→wq j+1 is an edge of G, we
set u = q j = w and we are done. Otherwise, let C′ be the cone
obtained by doubling the angle of Cq j+1 . By Obs. A.0.1 and the
way we constructed G, there must be at least one ingoing edge
for q j+1 contained in C′. We set q j = p s.t. p minimizes |wp| and
the edge −−−−→pq j+1 is contained in C′.

We argue that this choice of q j guarantees |wq j| < |wq j+1|, and
therefore, since q j+1 ∈ D(w), we also have q j ∈ D(w). Consider
the quadtree Q from the spanner construction algorithm and let
i∗ be the smallest integer such that the cells � of w and �′ of
p j+1 have distance in [(c − 2)2i∗ , c2i∗+1). There are two reasons
for −−−−→wq j+1 not being an edge: either q j+1 is white/gray at level i∗

and another edge is chosen or q j+1 is black and not considered
for incoming edges anymore. These are exactly the two cases we
considered in the proof of Lemma 3.3, where in both it turned out
that |wq j| < |wq j+1|.

Furthermore, we now know that dh(s, q j) is either i or i + 1:
since q j ∈ D(w) we get dh(s, q j) ≤ i+1 and since dh(s, p j+1) = i+1
we have dh(s, p j) ≥ i. If it is i, we set u = q j and we are done.
Otherwise, we proceed choosing the next edge as above. Since
the distance to w decreases in each step and since T is finite, this
process eventually stops and the lemma follows. �

To compute the BFS tree with root s, assume we computed ev-
erything up to level Wi. By Lemma 4.1, Wi+1 can be reached by
Wi in the subgraph induced by Wi ∪ Wi+1. This suggest the fol-
lowing approach to compute Wi+1: start a BFS search in G from
each vertex in Wi. Every time we encounter a vertex we have
not visited yet, check if it contained in one of the disk of Wi.
If so, we add to Wi+1, if not, we stop the search. To efficiently
check whether a point is contained in a disk of Wi, we use the
power diagram. This weighted version of the Voronoi Diagram
represents the union of the |Wi| disks as planar subdivision, can
be computed in time O(|Wi| log |Wi|) and can be augmented by a
point location structure to support the following queries in time
O(log |Wi|): given a point p, return a disk in Wi that contains p or

nothing if no such disk exists [6, 7].
The complete algorithm starts with W0 = {s} and computes the

BFS tree level-wise. The running time of O(n log n) follows by
observing that each edge −→pq of G is considered at most twice by
this procedure, and each time we need do to query a power dia-
gram with q (taking O(log n) time). Since G is sparse, this takes
O(n log n) in total.

The details can be found in Algorithm 1. It is similar to the one
used by Cabello and Jejĉiĉ [2].

Data: spanner G and s ∈ P
1 W0 ← {s}; dist[s] = 0; π[s] = s; i = 0 ;
2 for p ∈ P do
3 dist[p] = ∞; π[p] = NIL
4 while Wi , ∅ do
5 compute power diagram with point location structure PDi of Wi ;
6 Queue Q← Wi ;
7 Wi+1 ← ∅ ;
8 while Q , ∅ do
9 p← pop(Q);

10 foreach edge −→pq of G do
11 u← PDi(q) ; /* query PDi with q */
12 if q ∈ D(u) and dist[q] = ∞ then
13 push(Q, q); dist[q] = i + 1; π[q] = u; add q to Wi+1

14 i← i + 1
Algorithm 1: Compute the BFS tree for T with root s using G.

4.1 Correctness
We prove correctness of the algorithm by induction on the level

of the BFS . Clearly, level 0 consists only of s, as set in the algo-
rithm. Assume we computed correctly W0, . . . ,Wi. We show that
the algorithm computes Wi+1 = {q ∈ P | dh(s, q) = i + 1}. Since it
checks in line 12 that each vertex we add to Wi+1 is a neighbor of
a vertex in Wi in T and has not been added to some previous level
yet (dist[q] = ∞), we get Wi+1 ⊆ {q ∈ P | dh(s, q) = i + 1}.

For the other direction, let v be a vertex with distance dh(s, v) =

i + 1. By Lem. 4.1 there exists a vertex u ∈ Wi and a path
u = q1, . . . , ql = v in G with dh(s, q j) = i + 1 for 1 < j ≤ l.
We argue that we discover all vertices of this path in iteration i of
the inner while loop. Since we know that u ∈ Wi, we add u = q1

to Q in step 6 and because q2 is a neighbor of q1 in G, we will
discover q2 in the for loop of line 10. Since dh(s, q2) = i + 1, both
checks in line 12 will be true and q2 is added correctly to Wi+1.
But at the same time we also add q2 to Q and we can inductively
follow that we discover to whole path up to ql = v and add it to
Wi+1. Hence, also Wi+1 ⊇ {q ∈ P | dh(s, q) = i + 1} and the
algorithm correctly computes Wi+1.

4.2 Running Time
The spanner G for T can be computed in time O(n(log Φ +

log n)) by Theorem 2.1. Computing the power diagram together
with a point location data structure for a fixed Wi in step 5 takes
O(|Wi| log |Wi|) time [6, 7]. Since the Wi partition P, this step
needs O(n log n) time in total.

Now fix p ∈ Q and let q be a neighbor of p in G. Step 11–13
can be done in O(log n) for q: we need to do a point location in a
power diagram at step 11 and the remaining steps need O(1) time.
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Thus the for loop at step 10 needs degG(p)O(log n) for a fixed p,
where degG(·) is the outdegree of p in G. We observe that each
point p is added at most twice to Q. When we discover p the first
time at level i, we add it to Q and to Wi+1. However, we also set
dist[q] = i + 1 and thus never discover it again, since the check
at step 12 will always fail. Adding p to Wi+1 causes it to be in Q
one more time at the next iteration. For the total running time of
the outer while loop we get∑

p∈P

2 degG(p)O(log n).

We use that the spanner G has only O(n) edges to conclude Al-
gorithm 1 runs in time O(n log n). The above discussion with the
analysis of the correctness gives Theorem 2.2.

5. Concluding Remarks
We showed how to construct a t-spanner for disk transmission

graphs. The running time depends on Φ, the spread of the under-
lying point set. An obvious improvement one can ask for is: can
we relax (or even get rid of) this dependency. Let us denote by Ψ

the ratio of the largest and smallest radius of the points in P. First
note that Φ bounds Ψ: all radii larger then the diameter of P can
be set to be exactly the diameter. This does not change the graph
T . Let x be the distance of the closest pair. Then every radius
smaller than x can be set to, say, x/2. Then we have Ψ = O(Φ)
without changing the graph.

However, the reverse is not true in general, but for case of our
spanner construction we can establish a similar result. To sketch
the idea, assume we scaled everything such that the smallest ra-
dius is 1 and the largest M. Then Ψ = M. Note that the log Φ

factor in the running time is only due to the depth of the quadtree.
We want to replace this by log Ψ. First consider the grid Q0 and
observe that all points in one cell of Q0 form a clique in T . Thus,
we can forget about the radii among these points and treat them
with a spanner algorithm for the complete Euclidean graph (see
e.g. [8]). Next we want to decompose P such that each part can
be enclosed by a bounding box with diameter polynomial in n
and M. To do so, consider the grid G10nM whose cells have di-
ameter 10nM. For each non-empty cell �, let P� be the points
in � together with the points in the eight cells surrounding �.
Since the largest radius is M, there cannot be any path from a
point in � to a point outside P�. We use the algorithm from Sec-
tion 3 for P�, for each non-empty �. In doing so, each point
takes part in O(1) executions of the algorithm. This adds O(1)
additional edges to each point and the total running time does not
increase. By the choice of G10nM , the depth of the quadtree be-
comes O(log nM) = O(log n+log Ψ) and the desired running time
follows. We defer the details to the full version.

It is still open whether can tweak our construction to become
independent of both, the spread of the points and the ratio of the
radii at the same time, or if a different approach is required to
solve the problem in its full generality.

Another open problem is how to compute BFS trees for (undi-
rected) disk intersection graphs that are not unit-disk graphs. The
spanner constructed by Fürer and Kasivisawnathan is very similar
to ours and thus we expect an analogues result to Lemma 4.1 (us-

ing slightly more sophisticated arguments) to hold there as well.
Then the framework from Cabello and Jejĉiĉ used in Algorithm 1
can be applied there, too. The main problem is that the spanner
construction of Fürer and Kasivisawnathan uses the adjacency list
of the intersection graph, i.e., they construct the graph explicitly
which results in a running time of Ω(n2). To improve upon this,
we suggest a similar construction as used in Section 3. Providing
a new version Lemma 3.2 for the case of disk intersection graphs
is the main hurdle one has take. We believe this can be done by
computing the power diagram of the disks and then “walking”
through it in a direction of the separation line `.
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Appendix
Observation A.0.1 Let Q0 be a grid with cell diameter 1 and

k ≥ 14 be a constant. Let Cp be a cone with apex q and an-
gle 2π/k. Let N be the cells of Q0 intersected by the bounding
rays of Cq that have distance at least c − 1 from q for a constant
c > 2 + 1/(sin 2π/k). Then the cone C′ obtained from C by dou-
bling its angle to 4π/k contains all cells of N.
Proof: Let � ∈ N be such a cell. Let x be the first point where a
ray r of Cq intersects �. Consider the disk D with radius 1 cen-
tered at x and note that D contains �. We show that the new cone
contains D and therefore �. Let r′ be the ray corresponding to r
and let y be the orthogonal projection of x onto r′. By definition
of sine and since |qx| ≥ c − 1 we get

|xy| ≥ (c − 1) sin π/k ≥ 1,

for c > 1 + 1/ sin π/k. Thus, r′ does not intersect D and the ob-
servation follows. �
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