
IPSJ SIG Technical Report

Enumeration, Counting, and Random Generation of

Ladder Lotteries

Katsuhisa Yamanaka1,a) Shin-ichi Nakano2,b)

Abstract: A ladder lottery, known as “Amidakuji” in Japan, is one of the most popular lotteries. In this paper, we
consider the problems of enumeration, counting, and random generation of the ladder lotteries. For given two positive
integers n and b, we give algorithms of enumeration, counting, and random generation of ladder lotteries with n lines
and b bars.

1. Introduction

A ladder lottery, known as “Amidakuji” in Japan, is one of the

most popular lotteries for kids. It is often used to assign roles to

members in a group. Imagine that a group of four members A,

B, C, and D wish to determine their group leader using a ladder

lottery. First, four vertical lines are drawn, then each member

chooses a vertical line. See Fig. 1(a). Next, a check mark (which

represents an assignment of the leader) and some horizontal lines

are drawn, as shown in Fig. 1(b). The derived one is called a lad-

der lottery, and it represents an assignment. In this example the

leader is assigned to D since the top-to-bottom route from D ends

at the check mark. (We will explain about the route soon.) In

Fig. 1(b), the route is drawn as a dotted line.

Formally, a ladder lottery is a network with n ≥ 2 vertical lines

(lines for short) and b horizontal lines (bars for short) each of

which connects two consecutive vertical lines. See Fig. 2 for an

example. The top ends of the lines correspond to a permutation

π = (p1, p2, . . . , pn) of [n] = {1, 2, . . . , n}, and the bottom ends of

the lines correspond to the identity permutation ι = (1, 2, . . . , n)

and they satisfy the following rule. Each pi in π starts the top end

of the i-th line, then goes down along the line; whenever pi meets

an end of a bar, pi goes horizontally along the bar to the other end,

and then goes down again. Finally, pi must reach the bottom end

of the pi-th line. Each bar corresponds to a modification of the

current permutation by swapping the two neighboring elements.

A ladder lottery appears in a variety of areas. First, it is

strongly related to primitive sorting networks, which are deeply

investigated by Knuth [3]. Second, in algebraic combinatorics, a

reduced decomposition of a permutation corresponds to a ladder

lottery of a permutation with the minimum number of bars [4].

Third, a ladder lottery of the reverse permutation (n, n − 1, . . . , 1)

1 Department of Computer Science, Gunma University, Tenjin-cho 1-5-1,
Kiryu, Gunma 376-8515, Japan.

2 Department of Electrical Engineering and Computer Science, Iwate Uni-
versity, Ueda 4-3-5, Morioka, Iwate 020-8551, Japan.

a) yamanaka@cis.iwate-u.ac.jp
b) nakano@cs.gunma-u.ac.jp

B C D A B C D A

(a) (b)
Fig. 1 An example of a ladder lottery.

1 2 3 4 5 6

6 4 23 5 1

Fig. 2 A ladder lottery of (6,4,3,5,2,1).

corresponds to a pseudoline arrangement in discrete geome-

try [7].

In this paper we consider the problems of enumeration, count-

ing, and random generation of ladder lotteries. We propose three

algorithms for these three problems. All the three algorithms are

based on the code [1] of ladder lotteries.

2. Preliminary

Code of ladder lotteries

We review a code of ladder lotteries in [1]. Using this code, we

design three algorithms in this paper.

Let L be a ladder lottery with n lines and b bars. We first divide

each bar of L into two horizontal line-segments, called half-bars.

Fig. 3 illustrates the division of bars applied to the ladder lottery

in Fig. 2. The left half of a bar is called an l-bar (left half-bar)

and the right half of a bar is called an r-bar (right half-bar). We

regard each original bar as a pair of an l-bar and an r-bar. Thus L

has 2b half-bars. The division results in n connected components,

1ⓒ 2014 Information Processing Society of Japan

Vol.2014-AL-150 No.20
2014/11/21

IPSJ SIG Technical Report

Fig. 3 Divisions of bars.

C(1)="10" C(2)="110110" C(3)="01001100" C(4)="1100100" C(5)="010010" C(6)="000"

Fig. 4 An example of the reconstruction from the code

each of which consists of one line and some half-bars attached to

the line.

We can encode how half-bars are attached to the i-th line, as

follows. Let 〈b1, b2, . . .〉 be the sequence of half-bars attached to

the i-th line appearing from top to bottom. We replace bi with

0 if bi is an r-bar, and with 1 if bi is an l-bar. Then appending

a 0 to indicate the end-of-line. This results in the code of the

i-th line, which is denoted by C(i). Concatenating those codes

C(1),C(2), . . . ,C(n) results in the code C(L) for L. For example,

for the ladder lottery in Fig. 2 C(1) = “10”, C(2) = “110110”,

C(3) = “01001100”, C(4) = “1100100”, C(5) = “010010”,

C(6) = “000”, and

C(L) = “10110110010011001100100010010000” .

Since the code contains two bits for each bar and one bit for

each end-of-line, its length is n + 2b bits.

Reconstruction from the code

Now we explain how to reconstruct the original ladder lottery

from the code.

In the code, a 0 represents either an r-bar or an end-of-line.

Hence, we need to recognize the end-of-lines to partite C(L) into

C(1),C(2), . . . ,C(n). After then, it is easy to reconstruct origi-

nal bars by connecting corresponding l-bars and r-bars, since the

k-th l-bar of the i-th line and the k-th r-bar of the (i + 1)-th line

correspond to an original bar. Fig. 4 shows an example of the

reconstruction of the ladder lottery in Fig. 2 from its code.

We now explain how to recognize the end-of-lines. Since the

first line has only l-bars, the first consecutive 1s correspond to the

l-bars of the first line, so the first 0 is the end-of-line of the first

line. Now we assume that the end-of-line for the (i-1)-th line is

recognized and we are now going to recognize the end-of-line for

the i-th line. We know the number, say k, of l-bars attached to the

(i-1)-th line, and it equals to the number of r-bars attached to the

i-th line. Then the end-of-line for the i-th line is the (k+1)-th line

0 after the end-of-line for the (i-1)-th line.

Theorem 2.1 ([1]) Let L be a ladder lottery with n lines and b

bars. One can encode L into a bitstring of length n + 2b. Both

encoding and decoding can be done in O(n + b) time.

101101100100110011
00100010010000

1 0

0 0 0 0 0 0

1 0

1 0

1 0

1 0

1 0

1 0

1 0

1 0

1 0

1 0

1 0

1 0

101101100100110011
0010001001000

1 0

0 0 0 0 0 0

1 0

1 0

1 0

1 0

1 0

1 0

1 0

1 0

1 0

1 0

1 0

1

L P(L)

100

1

0 0

P(P(...P(L)...))
101101100100110011
001000100100

1 0

0 0 0 0 0 0

1 0

1 0

1 0

1 0

1 0

1 0

1 0

1 0

1 0

1 0

1

1

P(P(L))

101101100100110011
00100010010

1 0

0 0 0 0 0

1 0

1 0

1 0

1 0

1 0

1 0

1 0

1 0

1 0

1 0

1

1

P(P(P(L)))

Fig. 5 Pre-ladders derived from L.

Pre-ladder and its code

Let L be a ladder lottery with n lines and b bars, and let

C(L) be the code of L. We define a substructure of L, as fol-

lows. Let P(C(L)) be the bitstring derived from C(L) by remov-

ing the second last bit, and P(L) be the substructure of L de-

rived by “decoding” P(C(L)). Intuitively, P(L) is the substruc-

ture of L only missing either a half-bar or an end-of-line, cor-

responding to the second last bit. Similarly P(P(C(L))) is the

bitstring derived from P(C(L)) by removing the second last bit,

and P(P(L)) be the corresponding substructure of L. Similarly,

we define P(P(P(C(L)))),P(P(P(P(C(L))))), We assume that

a pre-ladder has at least two lines. See Fig. 5 for an example. In

the figure, end-of-lines are depicted as black circles except for the

end-of-line of the rightmost line, which is depicted as a white cir-

cle. We say each of those substructure (including L itself) a pre-

ladder of L, and the sequence L, P(L),P(P(L)), . . . the removing

sequence of L. A pre-ladder possibly has unmatched l-bars only

at the two rightmost lines.

3. Enumeration

Let Sn,b be the set of ladder lotteries with n lines and b bars.

In this section, we design an algorithm that enumerates all ladder

lotteries in Sn,b.

Our enumeration algorithm is based on reverse search [2]. We

first define a forest structure in which each leaf one-to-one cor-

responds to some ladder lottery in Sn,b. Then, by traversing the

forest, we can enumerate all leaves of the forest, and all corre-

sponding ladder lotteries in Sn,b. We designed several enumer-

ation algorithms based on similar (but distinct) tree structures

[5], [6], [7].

Family forest

Let L be a ladder lottery in Sn,b. By merging the removing

sequence for every L ∈ Sn,b, we have the forest, called family

forest Fn,b, in which each leaf one-to-one corresponds to some

ladder lottery in Sn,b. We regard each edge corresponds to some

parent-child relation between the two pre-ladders. Each root is a

pre-ladder with exactly two lines and no half-bar attached to the

second line. See Fig. 6 for an example.

Child enumeration

We have the following lemma. See Appendix.

Lemma 3.1 Given any pre-ladder R in Fn,b, one can enumerate

all child pre-ladders of R in O(1) time for each.

By recursively enumerating all child pre-ladders of a derived

pre-ladder in Fn,b, we have the following theorem

Theorem 3.2 One can enumerate all ladder lotteries with n lines

2ⓒ 2014 Information Processing Society of Japan

Vol.2014-AL-150 No.20
2014/11/21

IPSJ SIG Technical Report

t(2,0,0,0)
01(0)0(0)

t(2,1,0,1)
011(0)

t(2,2,0,2)
0111(0)

t(2,3,0,3)
01111(0)
t(2,4,0,4)

011110(0)
t(3,4,4,0)

0111100(0)
t(3,5,3,0)

01111000(0)
t(3,6,2,0)

011110000(0)
t(3,7,1,0)

0111100000(0)
t(3,8,0,0)

10(0)
t(2,1,1,0)

100(0)
t(2,2,0,0)

101(0)
t(2,2,1,1)

1001(0)
t(2,3,0,1)

10011(0)
t(2,4,0,2)

100111(0)
t(2,5,0,3)

1001110(0)
t(3,5,3,0)

10011100(0)
t(3,6,2,0)

100111000(0)
t(3,7,1,0)

1001110000(0)
t(3,8,0,0)

1010(0)
t(2,3,0,1)

1011(0)
t(2,3,1,2)

10101(0)
t(2,4,0,2)

101011(0)
t(2,5,0,3)

1010110(0)
t(3,5,3,0)

10101100(0)
t(3,6,2,0)

101011000(0)
t(3,7,1,0)

1010110000(0)
t(3,8,0,0)

10110(0)
t(2,4,0,2)

101101(0)
t(2,5,0,3)

1011010(0)
t(3,5,3,0)

10110100(0)
t(3,6,2,0)

101101000(0)
t(3,7,1,0)

1011010000(0)
t(3,8,0,0)

10111(0) 101110(0) 1011100(0) 10111000(0) 101110000(0) 1011100000(0)
t(2,4,1,3) t(2,5,0,3) t(3,5,3,0) t(3,6,2,0) t(3,7,1,0) t(3,8,0,0)

110(0)
t(2,2,2,0)

1100(0)
t(2,3,1,0)

11000(0)
t(2,4,0,0)

11001(0)
t(2,4,1,1)

110001(0)
t(2,5,0,1)

1100011(0)
t(2,6,0,2)

11000110(0)
t(3,6,2,0)

110001100(0)
t(3,7,1,0)

1100011000(0)
t(3,8,0,0)

110010(0)
t(2,5,0,1)

110011(0)
t(2,5,1,2)

1100101(0)
t(2,6,0,2)

11001010(0)
t(3,6,2,0)

110010100(0)
t(3,7,1,0)

1100101000(0)
t(3,8,0,0)

1100110(0)
t(2,6,0,2)

11001100(0)
t(3,6,2,0)

110011000(0)
t(3,7,1,0)

1100110000(0)
t(3,8,0,0)

1101(0)
t(2,3,2,1)

11010(0)
t(2,4,1,1)

11011(0)
t(2,4,2,2)

110100(0)
t(2,5,0,1)

1101001(0)
t(2,6,0,2)

11010010(0)
t(3,6,2,0)

11010010(0)
t(3,7,1,0)

110100100(0)
t(3,8,0,0)

110101(0)
t(2,5,1,2)

1101010(0)
t(2,6,0,2)

11010100(0)
t(3,6,2,0) 110101000(0)

t(3,7,1,0)
1101010000(0)
t(3,8,0,0)

110110(0)
t(2,5,1,2)

1101100(0)
t(2,6,0,2)

11011000(0)
t(3,6,2,0)

110110000(0)
t(3,7,1,0)

1101100000(0)
t(3,8,0,0)

1110(0)
t(2,3,3,0)

11100(0)
t(2,4,2,0)

11101(0)
t(2,4,3,1)

111000(0)
t(2,5,1,0)

1110000(0)
t(2,6,0,0)

11100001(0)
t(2,7,0,1)

111000010(0)
t(3,7,1,0)

1110000100(0)
t(3,8,0,0)

111010(0)
t(2,5,2,1)

1110100(0)
t(2,6,1,1)

11101000(0)
t(2,7,0,1)

111010000(0)
t(3,7,1,0)

1110100000(0)
t(3,8,0,0)

111001(0)
t(2,5,2,1)

1110010(0)
t(2,6,1,1)

11100100(0)
t(2,7,0,1)

111001000(0)
t(3,7,1,0)

1110010000(0)
t(3,8,0,0)

1110001(0)
t(2,6,1,1)

11100010(0)
t(2,7,0,1)

111000100(0)
t(3,7,1,0)

1110001000(0)
t(3,8,0,0)

11110(0)
t(2,4,4,0)

111100(0)
t(2,5,3,0)

1111000(0)
t(2,6,2,0)

11110000(0)
t(2,7,1,0)

111100000(0)
t(2,8,0,0)

111100000(0)
t(3,8,0,0)

Fig. 6 The family forest F3,4.

3ⓒ 2014 Information Processing Society of Japan

Vol.2014-AL-150 No.20
2014/11/21

IPSJ SIG Technical Report

and b bars in O(n+ b) time for each. Our algorithm uses O(n+ b)

space.

4. Counting

In this section we consider a counting problem. Given two pos-

itive integers n ≥ 2 and b ≥ 0, we wish to count the number of

ladder lotteries with n lines and b bars. Using the enumeration

algorithm in the previous section, we can count such ladder lot-

teries one by one, but very slowly. This method takes Ω(|Sn,b|)

time, which may be exponential on n and b. In this section, we

propose an efficient counting algorithm. Our algorithm does not

count ladder lotteries one by one, but counts each “type” of pre-

ladders all together, and runs in polynomial time.*1

We now define the type for each pre-ladder. A pre-ladder R is

type t($, h, p, q) if R satisfies the following conditions:

(a) R contains $ ≥ 2 lines;

(b) R contains h ≥ p + q half-bars (Each bar is counted as two

half-bars);

(c) p unmatched l-bars are attached to the ($-1)-th line; and

(d) q unmatched l-bars are attached to the $-th line.

For example, the pre-ladder P(L) in Fig. 5 is type t(6, 25, 1, 0).

Note that any ladder lottery with n lines and b bars is type

t(n, 2b, 0, 0). We denote by T ($, h, p, q) the set of pre-ladders of

type t($, h, p, q). We give a useful recurrence for |T ($, h, p, q)|.

We have the following four cases.

Case 1: h < p + q or $ < 2.

|T ($, h, p, q)| = 0 holds, since h ≥ p + q and $ ≥ 2 hold for any

pre-ladder.

Case 2: $ = 2, q = 0, and h = p

Clearly such pre-ladder is unique, so |T ($, h, p, q)| = 1 holds.

Case 3: h ≥ p + q and q = 0.

Let R be a pre-ladder of type t($, h, p, q). The second last bit

of C(R) is always 0. (Otherwise, $-th line has an l-bar, a con-

tradiction.) The second last bit 0 in C(R) represents either an

r-bar of $-th line or the end-of-line of ($-1)-th line. For the for-

mer case P(R) is type t($, h − 1, p + 1, 0). For the latter case P(R)

is type t($ − 1, h, 0, p). For any distinct R1 and R2 of t($, h, p, q)

with h ≥ p + q and q = 0, P(R1) and P(R2) are distinct. Thus

|T ($, h, p, 0)| = |T ($, h − 1, p + 1, 0)| + |T ($ − 1, h, 0, p)| holds.

Case 4: h ≥ p + q and q > 0.

Let R be a pre-ladder of type t($, h, p, q). The second last bit

in C(R) is either 0 or 1. If the second last bit of C(R) is 0, then

it represents an r-bar attached to $-th line. Thus, P(R) is type

t($, h−1, p+1, q). Otherwise, the second last bit of C(R) is 1, then

it represents an l-bar attached to $-th line. Hence, P(R) is type

t($, h − 1, p, q − 1). Thus |T ($, h, p, q)| = |T ($, h − 1, p + 1, q)| +

|T ($, h − 1, p, q − 1)| holds.

For example, Fig. 7 shows the recurrence for |T (3, 8, 0, 0)|. By

the recurrence, we have the following lemma.

Lemma 4.1 For four non-negative integers $, h, p, and q,

*1 We assume that n and b are coded in unary codes.

Algorithm 1: DP-Count(n, b)

1 for $ = 2 to n do
2 for h = 0 to 2b do
3 for p = 0 to h do
4 for q = 0 to h do
5 if h < p + q then
6 |T ($, h, p, q)| = 0
7 else if $ = 2, q = 0, and h = p then
8 |T ($, h, p, q)| = 1
9 else if q = 0 then

10 |T ($, h, p, q)| =
|T ($, h − 1, p + 1, 0)| + |T ($ − 1, h, 0, p)|

11 else if q > 0 then
12 |T ($, h, p, q)| =

|T ($, h − 1, p + 1, q)| + |T ($, h − 1, p, q − 1)|

|T ($, h, p, q)| =











































































0 if h < p + q or $ < 2

1 if $ = 2, h = p and q = 0

|T ($, h − 1, p + 1, 0)| + |T ($ − 1, h, 0, p)|

if h ≥ p + q and q = 0

|T ($, h − 1, p + 1, q)| + |T ($, h − 1, p, q − 1)|

if h ≥ p + q and q > 0

Based on the recurrence above, Algorithm 1 computes the

number of ladder lotteries with n lines and b bars. Algorithm 1

is a dynamic programming algorithm on the table of types. The

number of entries is nb3, and each entry is calculated in constant

time, so the total running time is O(nb3). As a byproduct the num-

ber of ladder lotteries with every n′ ≤ n lines and every b′ ≤ b

bars are also computed.

Theorem 4.2 The number of ladder lotteries with every n′ ≤ n

lines and every b′ ≤ b bars can be calculated in O(nb3) time in

total.

5. Random generation

In this section we consider random generation of ladder lot-

teries. The recurrence in Lemma 4.1 generates a tree structure

among the types (see an example in Fig. 7), in which each path

from the root to a leaf one-to-one corresponds to some ladder

lottery of type t(n, 2b, 0, 0). The choice of i-th generation type

decides the meaning of the i-th second last bit of the code. (Here

the root belongs the first generation.)

The table generated by Algorithm 1 tells us the number of

leaves in the subtree rooted at each type. We can choose a ran-

dom path from the root to some leaf, by repeatedly choosing some

child of the current type so that each leaf has an equal chance to

be reached. Thus we can generate ladder lotteries, uniformly at

random.

Our algorithm is shown in Algorithm 2. Suppose that

we are now at a type T ($, h, p, q) in the tree structure, and

T ($1, h1, p1, q1) and T ($2, h2, p2, q2) are the two child types of

T ($, h, p, q). Algorithm 2 computes a random value, say x, in

[1, |T ($, h, p, q)|] uniformly at random, chooses T ($1, h1, p1, q1) if

x ≤ |T ($1, h1, p1, q1)| and T ($2, h2, p2, q2) otherwise, then recur-

sively call with the chosen type. Since Algorithm 1 computes

the table as the preprocessing, these numbers can be looked up

4ⓒ 2014 Information Processing Society of Japan

Vol.2014-AL-150 No.20
2014/11/21

IPSJ SIG Technical Report

T(2,4,4,0)
11110000(0)
T(2,7,1,0)

0111100000(0)

1001110000(0)

1010110000(0)

1011010000(0)

1011100000(0)

1100011000(0)

1100101000(0)

1101010000(0)

1101100000(0)

1110000100(0)

1110100000(0)

1110010000(0)

1110001000(0)

111100000(0)
T(3,8,0,0)

110100100(0)

1100110000(0)

011110000(0)

100111000(0)

101011000(0)

101101000(0)

101110000(0)

110001100(0)

110010100(0)

110101000(0)

110110000(0)

111000010(0)

111010000(0)
T(3,7,1,0)

111001000(0)

111000100(0)

11010010(0)

110011000(0)

111100000(0)
T(2,8,0,0)

11100001(0)

11101000(0)
T(2,7,0,1)

11100100(0)

11100010(0)

01111000(0)

10011100(0)

10101100(0)

10110100(0)

10111000(0)

11000110(0)

11001010(0)

11010100(0)

11011000(0)
T(3,6,2,0)

11010010(0)

11001100(0)

1111000(0)
T(2,6,2,0)

1110100(0)
T(2,6,1,1)

1110010(0)

1110001(0)

1110000(0)
T(2,6,0,0)

1100011(0)

1100101(0)

1101010(0)

1101100(0)
T(2,6,0,2)

1101001(0)

1100110(0)

0111100(0)

1001110(0)

1010110(0)

1011010(0)

1011100(0)
T(3,5,3,0)

110001(0)

110010(0)

110100(0)
T(2,5,0,1)

110101(0)

110110(0)
T(2,5,1,2)

110011(0)

111000(0)
T(2,5,1,0)

111000(0)
T(2,5,1,0)

111010(0)
T(2,5,2,1)

111001(0)

1110(0)
T(2,3,3,0)

11101(0)
T(2,4,3,1)

1110(0)
T(2,3,3,0)

1110(0)
T(2,3,3,0)

1110(0)
T(2,3,3,0)

11100(0)
T(2,4,2,0)

11100(0)
T(2,4,2,0)

11100(0)
T(2,4,2,0)

111100(0)
T(2,5,3,0)

11110(0) 1110(0)
T(2,3,3,0)

110(0)
T(2,2,2,0)

1101(0)
T(2,3,2,1)

11011(0)
T(2,4,2,2)

11010(0)
T(2,4,1,1)

11001(0) 1100(0)
T(2,3,1,0)

1101(0)
T(2,3,2,1)

110(0)
T(2,2,2,0)

110(0)
T(2,2,2,0)

110(0)
T(2,2,2,0)

110(0)
T(2,2,2,0)

110(0)
T(2,2,2,0)

1100(0)
T(2,3,1,0)

1100(0)
T(2,3,1,0)

1101(0)
T(2,3,2,1)

11001(0)

11010(0)
T(2,4,1,1)

11000(0)
T(2,4,0,0)

011110(0)
T(3,4,4,0)

01111(0)
T(2,4,0,4)

10011(0)

10101(0)

10110(0)
T(2,4,0,2)

10111(0)
T(2,4,1,3)

100111(0)

101011(0)

101101(0)

101110(0)
T(2,5,0,3)

1011(0)
T(2,3,1,2)

1001(0)

1010(0)
T(2,3,0,1)

0111(0)
T(2,3,0,3)

011(0)
T(2,2,0,2)

100(0)
T(2,2,0,0)

101(0)
T(2,2,1,1)

101(0)
T(2,2,1,1)

101(0)
T(2,2,1,1)

10(0)
T(2,1,1,0)

10(0)
T(2,1,1,0)

10(0)
T(2,1,1,0)

10(0)
T(2,1,1,0)

01(0)
T(2,1,0,1) T(2,0,0,0)

0(0)

1011(0)
T(2,3,1,2)

0111100000(0)

1001110000(0)

1010110000(0)

1011010000(0)

1011100000(0)

1100011000(0)

1100101000(0)

1101010000(0)

1101100000(0)

1110000100(0)

1110100000(0)

1110010000(0)

1110001000(0)

111100000(0)

110100100(0)

1100110000(0)

Fig. 7 The recurrence for |T (3,8, 0, 0)|.

5ⓒ 2014 Information Processing Society of Japan

Vol.2014-AL-150 No.20
2014/11/21

IPSJ SIG Technical Report

Algorithm 2: Random-Generation($, h, p, q)

1 begin
2 if $ = 2, h = p, and q = 0 then
3 return the ladder lottery corresponding to the path from the

root to the current leaf.
4 else
5 if T ($,h, p, q) has only one child, say T ($1, h1, p1, q1) then
6 Random-Generation($1 , h1, p1, q1)

7 /* Let T ($1, h1, p1, q1) and T ($2, h2 , p2, q2) be the two

child types of T ($,h, p, q). */

8 Generate an integer x in [1, |T ($, h, p, q)|] uniformly at random.

9 if x ≤ |T ($1, h1, p1 , q1)| then /* Choose T ($1, h1, p1, q1) */
10 Random-Generation($1 , h1, p1, q1)

11 else /* Choose T ($2, h2 , p2, q2). */

12 Random-Generation($2 , h2, p2, q2)

in O(1) time. Thus we can generate ladder lotteries uniformly at

random, as in the following theorem.

Theorem 5.1 Given two integers n ≥ 2 and b ≥ 0, after com-

puting the table of |T ($, h, p, q)| by Algorithm 1, we can generate

ladder lotteries with n lines and b bars in O(n + b) time for each,

uniformly at random.

6. Conclusions

We have designed three algorithms for enumeration, counting,

and random generation of ladder lotteries with n lines and b bars.

All the three algorithms are based on the code [1] of ladder lot-

teries.

Our enumeration algorithm enumerates all the ladder lotteries

with n lines and b bars in O(n + b) time for each. Our counting

algorithm counts the number of ladder lotteries with n lines and

b bars in O(nb3) time. Our random generation algorithm takes

O(nb3) time as a preprocessing, then generates ladder lotteries

with n lines and b bars in O(n + b) time for each, uniformly at

random.

References

[1] T. Aiuchi, K. Yamanaka, T. Hirayama, and Y. Nishitani. Coding ladder
lotteries. In Proc. of European Workshop on Computational Geometry
2013, Braunschweig, Germany, pages 151–154, March 2013.

[2] D. Avis and K. Fukuda. Reverse search for enumeration. Discrete Ap-
plied Mathematics, 65(1-3):21–46, 1996.

[3] D.E. Knuth. Axioms and hulls. LNCS 606, Springer-Verlag, 1992.
[4] L. Manivel. Symmetric Functions, Schubert Polynomials and Degener-

acy Loci. American Mathematical Soc., 2001.
[5] S. Nakano. Efficient generation of triconnected plane triangulations.

Computational Geometry: Theory and Applications, 27(2):109–122,
2004.

[6] K. Yamanaka and S. Nakano. Listing all plane graphs. Journal of Graph
Algorithms and Applications, 13(1):5–18, 2009.

[7] K. Yamanaka, S. Nakano, Y. Matsui, R. Uehara, and K. Nakada. Effi-
cient enumeration of all ladder lotteries and its application. Theoretical
Computer Science, 411:1714–1722, 2010.

Appendix

A.1 Child generation

If we can traverse the family forest Fn,b, then we can enumer-

ate all ladders lotteries in Sn,b which correspond to leaves of Fn,b.

To traverse the family forest, we consider to enumerate all root

pre-ladders of Fn,b, and to enumerate all child pre-ladders of a

pre-ladder in Fn,b. First, by enumerating pre-ladders with two

lines and p unmatched l-bars attached to the first line for each

p = 1, 2, . . . , b, we obtain all root pre-ladders of Fn,b. We next

consider to enumerate all child pre-ladders of any pre-ladder in

Fn,b. Now imagine to generate the code corresponding to a child

pre-ladder from the code corresponding to the parent pre-ladder.

The code of a child pre-ladder is obtained by appending 0 or 1 to

the code corresponding to the parent pre-ladder as the second last

bit. That is, a child pre-ladder is obtained by appending a half-bar

or a line to the parent pre-ladder. Now we explain the details.

Let R be a pre-ladder in Fn,b, and let C(R) be the code of R. Re-

call that R is a pre-ladder derived from some ladder lottery with n

lines and b bars. We introduce a notation, as follows. R(0) is the

pre-ladder corresponding to the code obtained from C(R) by ap-

pending 0 as the second last bit. Similarly, R(1) is the pre-ladder

corresponding to the code obtained from C(R) by appending 1 as

the second last bit. Note that R(0) is obtained from R by attaching

a r-bar or appending a line, and R(1) is obtained from R by attach-

ing an l-bar. R(0) and R(1) are candidates of child pre-ladders of

R. R(i) for each i = 1, 2 is a child pre-ladder of R if and only if

R(i) is a vertex of Fn,b.

We assume that R has $ lines, h half-bars, p unmatched l-bars

attached to the ($-1)-th line, and q unmatched l-bars attached to

the $-th line. Recall that a bar is regarded as a pair of an l-bar and

an r-bar. If R is a ladder lottery with n lines and b bars, then R

has no child. We hence assume that R is not a ladder lottery with

n lines and b bars. Note that R is ladder lottery with n lines and b

bars if and only if R satisfies $ = n, h = 2b, p = 0, q = 0.

Case 1: p = 0

We first assume that $ = n holds. Since there is no unmatched

l-bar attached to the (n-1)-th line in R, R(0) contains n + 1 lines.

(Note that, in this case, R(0) is obtained from R by appending

a new line.) Hence, R(0) is not a child pre-ladder of R. R(1) in-

cludes an unmatched l-bar attached to the n-th line. Note that R(1)

is obtained from R by appending an unmatched l-bar attached to

the n-th line. Hence, R(1) is not a child pre-ladder of R.

We next assume that $ = n − 1 holds. If h + q < 2b holds, then

we show that R(0) is not a child pre-ladder of R and R(1) is a child

pre-ladder, as follows. R(0) contains n lines and q unmatched l-

bar such that h + q < 2b holds. Hence any pre-ladder derived

from R(0) cannot contains n lines and 2b half-bars, namely, b

bars. Hence, R(0) is not a child pre-ladder. On the other hand,

R(1) is a child pre-ladder of R. If h + q = 2b holds, then we show

that R(0) is a child and R(1) is not a child. R(0) is obtained from

R by appending a new line. Hence, R(0) is a child pre-ladder of R.

Since h + q = 2b holds, any unmatched l-bar cannot be appended

6ⓒ 2014 Information Processing Society of Japan

Vol.2014-AL-150 No.20
2014/11/21

IPSJ SIG Technical Report

R R(0) R(1)

R R(0) R(1)

(a)

(b)
Fig. A·1 Illustration for child generations.

Algorithm 3: Generate(n, b)

1 for p = 0 to b do
2 Create a root pre-ladder R with two lines and p unmatched

l-bars attached to the first line.
3 Find-All-Children(R)

to derive a ladder lottery with n lines and b bars. Hence, R(1) is

not a child pre-ladder.

We finally assume that $ < n − 1 holds. If h + q < 2b holds,

then both R(0) and R(1) are child pre-ladders, as illustrated in

Fig. A·1(a). If h + q = 2b holds, then only R(0) is a child pre-

ladder.

Case 2: p > 0

In this case, we can assume that h < 2b holds. (If h = 2b

holds, we cannot append any r-bar such that it matches to an l-bar

attached to the ($-1)-th line.) If h + p + q < 2b holds, then both

R(0) and R(1), as illustrated in Fig. A·1(b), are child pre-ladder.

Next, we assume that h+ p+q = 2b holds. Then R(0) is a child

pre-ladder. On the other hand, R(1) is not a child pre-ladder, since

any ladder lottery in Sn,b cannot be derived from R(1).

By the case analysis above, we have the algorithms shown in

Algorithm 3 and Algorithm 4. Algorithm 3 is the main rou-

tine. It enumerates all root pre-ladders of Fn,b, then calls Al-

gorithm 4 (Find-All-Children) for each root pre-ladder. Algo-

rithm 4 recursively enumerates all child pre-ladders of a given

pre-ladder, so it traverses the family forest and output a ladder

lottery at each leaf. Algorithm 4 always stores the current pre-

ladder in global memory and updates it with some difference in-

formation which is needed to reconstruct the previous ladder lot-

teries. Hence, memory space required in our algorithm is O(n+b).

By Algorithms 3 and 4, we have the following theorem.

Theorem A.1.1 Our algorithm uses O(n+b) space and enumer-

ates all ladder lotteries with n lines and b bars in O(n+b) time for

each.

Algorithm 4: Find-All-Children(L)

1 Let L be a pre-ladder in Fn,b. Assume that L has $ lines, h
half-bars, p unmatched l-bars attached to the ($-1)-th line, and q
unmatched l-bars attached to the $-th line.

2 if $ = n and h = 2b then /* No child */

3 Output R
4 return

5 if p = 0 then
6 if $ = n − 1 then
7 if h + q = 2b then
8 Find-All-Children(R(0))
9 else /* h + q < 2b */

10 Find-All-Children(R(1))

11 else if $ < n − 1 then
12 if h + q = 2b then
13 Find-All-Children(R(0))
14 else /* h + q < 2b */
15 Find-All-Children(R(0))
16 Find-All-Children(R(1))

17 else /* p > 0 */
18 if h + p + q = 2b then
19 Find-All-Children(R(0))
20 else /* h + p + q < 2b */
21 Find-All-Children(R(0))
22 Find-All-Children(R(1))

7ⓒ 2014 Information Processing Society of Japan

Vol.2014-AL-150 No.20
2014/11/21

