
近傍ロケーションテーブルの分割によりサーバ側の計算量を低減する

プライバシ保護 k-Points-of-Interest検索手法

宇都宮 靖人 † 豊田 健太郎 † 笹瀬 巌 †

†慶應義塾大学理工学部情報工学科
223-8522 神奈川県横浜市港北区日吉 3-14-1

utsunomiya@sasase.ics.keio.ac.jp

あらまし 近年，ユーザの所在地をサーバに明かすことなく，近傍のロケーション（POIs：Points of Interest）

を検索するサービスが注目されている．Lienらは，準同型暗号を用いることでユーザの位置をサーバから

秘匿し，POIを検索可能な方式を提案しているが，サーバが所有する全ての POIに対して行列演算を行う

ため，サーバの計算量が増大する問題がある．そこで本論文では，POIテーブルを分割し，準同型性を用

いて統合することで，計算量を低減する POI検索方式を提案する．特性評価により，提案方式は，従来方

式の安全性及び検索精度を保ちつつ，サーバの計算量を大幅に削減できることを示す．

Low-Complexity Privacy-Preserving k-POIs Search Scheme

by Dividing and Aggregating POI-Table

Yasuhito Utsunomiya† Kentaroh Toyoda† Iwao Sasase†

†Department of Information and Computer Science, Keio University.
3-14-1 Hiyoshi, Kohoku, Yokohama, Kanagawa, 223-8522 JAPAN

utsunomiya@sasase.ics.keio.ac.jp

Abstract In recent years, privacy-preserving Location-Based Services (LBSs) are getting much atten-

tion. In a privacy-preserving LBS, a user searches k-Points-of-Interest (k-POIs) in the vicinity of it

without revealing the user’s location to a LBS server. Lien et al. propose a privacy-preserving k-POIs

search scheme that applies homomorphic encryption. However, it requires heavy multiplications against

all POI-table entries and this causes intolerant burden on a server. To tackle this problem, in this pa-

per, we propose a low-complexity k-POIs search scheme by dividing and aggregating a POI-table. Our

scheme divides a POI-table into some sub-tables and hides the calculated sub-table by aggregating them

with homomorphism. The experimental results show that our proposed scheme reduces computational

complexity on the server without sacrificing both the security and accuracy.

1 Introduction

A Location-Based Service (LBS) becomes one

of major services in recent mobile communication

trends. A LBS is to find k-Points-of-Interest

(k-POIs), e.g. cafes or drag stores, in the vicinity

of a user. A LBS consists of two entities, a

user who wants to find k-POIs and a LBS server

which returns k-POIs. A LBS server manages POI

information such as the name or the location of

POI. For instance, nine POIs are located on the

map in Fig. 1(a). These POI information are stored

on the LBS server. When a user is in the cell

numbered as eight in Fig. 1(a) and wants to find

POI near the user, he/she informs his/her current

location, i.e. eight, to the LBS server. Then, the

Computer Security Symposium 2014
22 - 24 October 2014

－1057－

server knows where the user is now and thus it can

return information regarding POI near the user, e

or g. For searching POI near a user, a LBS server

requires the user’s location information. However,

the information a LBS requires is sensitive and thus

it might harm the privacy of the user. Therefore,

a privacy-preserving search scheme is required

in LBSs and many schemes have been recently

proposed. They are categorised into three types;

cloaking-based [1, 2], transformation-based [3,

4], and private-information-retrieval (PIR) based

methods [5, 6]. The cloaking-based methods

try to hide a user’s location by generating

a cloaking region that a LBS server cannot

distinguish him/her from other K − 1 users. The

transformation-based methods utilize a trusted

third party (TTP) to protect a user’s location.

The PIR-based methods are based on the theory

of PIR. PIR enables a user to retrieve POI

from a database on a server without revealing

which item is retrieved. The cloaking-based

and the transformation-based methods achieve

high-accuracy of k-POIs search, but they require

a TTP to hide a user’s location in general.

In contrast, the PIR-based methods achieve

high-level security without a TTP, but they

require high computational cost for searching

POI. The computational cost on a LBS server

can be dispersed toward many high-performance

computers on the clouds, whereas a TTP continues

to require costs to protect sensitive information

against various attacks. For this reason, we

pay attention to Private Circular Query Protocol

(PCQP) which is a PIR-based scheme proposed

by Lien et al. [5]. They adopt Moore curve

[7] and Paillier cryptosystem to securely rotate

the POI-table to preserve a user’s location. No

adversary (even a LBS server) knows a user’s

location in PCQP because the user’s query and

the search results are encrypted, i.e., it is

robust to so-called the correlation attack and the

background knowledge attack. However, it takes

high computational complexity since it involves a

large number of multiplications against a matrix on

the server side and this must be reduced to realise

(a) Moore curve (b) POI-table (c) lookup-table

Fig. 1: Example of Moore curve (a), POI-table (b),

and lookup-table (c).

a realtime LBS.

In this paper, we propose a low-complexity

privacy-preserving k-POIs search scheme. We

notice that PCQP multiplies an encrypted matrix

by the entire POI-table for circularly shifting

although most POIs are not required in search

results. Accordingly, we propose to divide a

POI-table into some sub-tables and aggregate

them into a table before shifting a POI-table

in PCQP in order to obtain partial entries of

a POI-table. This reduces the computational

complexity in the matrix multiplication on the

server. In addition, we use a homomorphic

cryptosystem with the properties of additive and

multiplicative homomorhism to perform the above

process in the encryption domain. As a result, our

scheme achieves low-complexity and high-accuracy

of k-POIs search without losing security.

The rest of this paper is constructed as

follows. Section 2 describes conventional scheme.

Comprehensive description regarding the proposed

scheme is described in Section 3. Simulation result

and evaluation are discussed in Section 4. Finally

we conclude our discussion in Section 5.

2 Conventional Scheme

PCQP is a privacy-preserving k-POIs search

scheme. A user’s location is hidden by circularly

shifting the entries of a POI-table through k-POIs

search in PCQP . The shifted amount is randomly

chosen by a user whenever he/she queries to

a LBS. Then, the user requires k-POIs of the

－1058－

shifted location. In order to securely shift the

POI-table, PCQP uses additive homomorphism.

Additive homomorphism offers that a LBS server

can directly compute the addition of two messages

with them encrypted. Lien et al. use Paillier

cryptosystem as a building tool of additive

homomorphism. Shifting is securely performed in

the encryption domain, and thus no user’s location

is revealed to the server. The architecture of PCQP

is described below.

2.1 Initialization Process

In the initialization process, a LBS server

constructs Moore curve. Moore curve is

a space-filling curve with end-point-connected

property. Figure 1(a) indicates the second order

Moore curve. As shown in Fig. 1(a), the dotted

line crosses every cell and start cell and end

cell are adjoined. The number on the corner of

each cell represents an index in the curve, called

H-value. Thus, the two-dimensional coordinates

of POI can be converted into the one-dimensional

one, i.e. H-value. H-value is efficient as a index

for k-POIs search for the following reasons: (i)

calculating the distance between H-values is low

cost and (ii) it partially retains the adjacency

relation of the two-dimensional one. The server

generates two tables, lookup-table and POI-table,

from POIs stored on that. The lookup-table

contains H-value and H-index of each POI,

where H-index denotes the evenly distributed

value numbered in the ascending order of H-value

with common difference d (i.e. H-index of

i-th POI in the ascending order of H-value is

calculated as d × i). The POI-table contains POI

information, e.g. the names or the latitude and

longitude of POIs, and H-index of each POI. Only

the lookup-table is publicly announced to users

for retrieving H-index of their current location.

Figure 1(b) and 1(c) indicate a POI-table and a

lookup-table of the POIs on the map in Fig. 1(a),

respectively. Here, d = 2 in Fig. 1. The user

knows which cell a user belongs to from the Moore

curve and then what his/her H-index is from the

lookup-table. Meanwhile, users generates their

key pair, i.e. a public-key and a private-key, of

Paillier cryptosystem and send their public-key to

the server.

2.2 Query Process

In the query process, a user chooses an arbitrary

amount of shifts t and generates a np × np t-offset

circular shift permutation matrix P t, which is

defined as

P t = [Pi,j]0≤i,j≤np − 1 ,

Pi,j =

{
1 (j = (i + np − t) mod np)

0 (otherwise)
,

(1)

where np denotes the number of all entries of a

POI-table. In order to hide the amount of shifts,

the user encrypts P t before sending it. However,

it requires high communication cost for sending

encrypted whole P t. Here, (i+1)-th row of P t can

be obtained by circularly shifting the element of

i-th row by one. Therefore, the user encrypts only

the first row of P t and sends it. Let Ekenc(m, r)

and Dkdec
(Ekdec

(m, r)) denote the encryption of

a message m with an encryption key kenc and

a pseudo-random number r and the decryption

of that with a decryption key kdec, respectively.

For a given set of pseudo-random numbers r =

{r0, · · · , rnp−1} and his/her public-key kpub, the

encrypted first row of P t is represented as

Ekpub
(P t

0,j , r) =
[
Ekpub

(P0,j , rj)
]
0≤j≤np − 1

, (2)

where P t
0,j denotes the first row of P t. After

encrypting P t
0,j , the user sends Ekpub

(P t
0,j , r) and

shifted location, which is calculated as H-indexu+

t × d, to the server, where H-indexu denotes

the H-index of the user retrieved from the

lookup-table by using his/her current location as

a key. The server receives Ekpub
(P t

0,j , r) and

obtains the encrypted P t, i.e. Ekpub
(P t, r), by

circularly shifting the element of Ekpub
(P t

0,j , r) by

one consecutively. Then, the server multiplies

Ekpub
(P t, r) by a POI-table. By multiplying

Ekpub
(P t, r) with the homomorphic properties

－1059－

of Paillier cryptosystem, i.e. homomorphic

addition of two ciphertexts and multiplication of a

ciphertext and a plaintext, the POI-table is shifted

by t with it encrypted. That is, for given entries

of POIs I = {I1, · · · , Inp}, the i-th entry of the

shifted POI-table Iti is defined as:

Iti =

np−1∏
j=0

Ekpub
(Pi−1,j , rj)

Ij+1 . (3)

Here, Iti is still encrypted. In addition,

because of the homomorphic properties of Paillier

cryptosystem, Iti satisfies

Dkpri(I
t
i) = I((i+np−t) mod np). (4)

Therefore, only the user can decrypt shifted POIs

and obtain decrypted them. Finally, the server

returns k-nearest rows in the shifted POI-table

from the shifted location specified by the user.

Note that the server cannot obtain any information

regarding the user’s location since the amount of

shifts t varies every time the user queries and

every shifted POI, i.e. Iti , is encrypted by user’s

public-key as shown in Eq. (3). After receiving

encrypted k results from the server, the user

decrypts them by using its private-key.

2.3 Drawback of PCQP

Although PCQP achieves high-level security

and high-accuracy, it takes high computational

complexity in the matrix multiplication on a

LBS server. For a given k-POIs query, the

server requires k × (np − 1) additions and k ×
np multiplications in the plaintext domain; it

requires k × (np − 1) multiplications and k × np

exponentiations in the Paillier domain for the

query. The high-cost computation may keep users

waiting for a long time in each query. Obviously,

the multiplication against the entire POI-table is

too wasteful to find at most k entries of POI.

3 Proposed Scheme

Here, we propose a low-complexity k-POIs

search scheme by dividing and aggregating a

Fig. 2: Operations on LBS server in our scheme.

POI-table. Our scheme is based on PCQP. Our

idea is to shift the partial POI-table whereas

PCQP shifts the entire one. Figure 2 indicates

our technique for partial shifting. In our scheme,

a server divides a POI-table into M sub-tables

and a user chooses the sub-table that involves the

POI he/she wants, i.e. m-th sub-table in Fig. 2.

Then the user sends M encrypted elements with

his/her public-key, where the m-th element is the

encrypted ‘1’ and the others are the encrypted ‘0’.

After receiving them, the server multiplies each

of them by the corresponding sub-table. Here,

the server can reduce the number of entries to be

calculated to
np

M by aggregating them into a table.

Note that the server cannot see which sub-table

the user wants since the processes above are

performed in the encrypted domain with additive

and multiplicative homomorphism. Thus, our

scheme reduces computational complexity on the

server without sacrificing both the security and

accuracy. We describe how to divide and aggregate

a POI-table in Section 3.2 and 3.3 in detail.

3.1 Preliminary

Before presenting our proposed scheme, we

show the properties of additive and multiplicative

homomorphism. Let +c and ×c denote the

operator of additive homomorphism and that of

multiplicative homomorphism, respectively. Here,

for given plaintexts m1 and m2, pseudo-random

numbers r1 and r2, a public-key kpub, and a

－1060－

private-key kpri, Eq. (5) and (6) are satisfied.

Dkpri(Ekpub
(m1, r1)+cEkpub

(m2, r2)) = m1 +m2.

(5)

Dkpri(Ekpub
(m1, r1)×cEkpub

(m2, r2)) = m1 ×m2.

(6)

In other words, the server can execute addition and

multiplication without decryption. For example,

NTRU cryptosystem [8] is one of the cryptosystems

with additive and multiplicative homomorphism.

3.2 Initialization Process

In the initialization process, the server first

divides a POI-table into M sub-tables. The j-th

sub-table tjPOI is defined as

tjPOI =
[
Iji

]
1≤i≤np0

,

Iji = I(np0 × (j − 1) + i),

(7)

where np0 , Iji , and Ii denote the number of all

entries of a sub-table calculated as ⌈np

M ⌉ , the i-th

entry of the j-th sub-table, and the i-th entry of the

original POI-table, respectively. M is an arbitrary

integer value and pre-defined from 2 to np by the

server depending on the requirements for search

accuracy or cost. The complexity becomes lower

as M is larger, but the accuracy rate also becomes

lower then. Note that a POI-table may contain

overlapped entries. The reasons are as follows. In

our proposed scheme, all sub-tables are aggregated

into a table and thus the number of entries of the

aggregated table is raised to the largest number of

entries in sub-tables. For instance, when np = 8

and M = 3, eight POIs are divided into two

sub-tables with three entries and a sub-table with

two entries without redundancy. In this case,

a user can obtain at most two POIs from the

aggregated table when the user requires POIs in

the sub-table with two entries. It is inefficient to

obtain two POIs nevertheless the aggregated table

accommodates three POIs. For this reason, we fix

the number of entries in each sub-table to np0 with

redundancy.

Now, let IDtable denote an index of a sub-table

in which POI is contained. IDtable is added to the

lookup-table so that a user knows which sub-table

he/she should search. The lookup-table of our

scheme, therefore, contains IDtable, H-index, and

H-value of each POI. Although the processes

mentioned above should be performed only once in

advance, they have to be performed whenever any

POI information is updated, inserted, or deleted as

with PCQP.

3.3 Query Process

In the query process, a user first generates a

pseudo-random number t and a np0 × np0 t-offset

circular shift permutation matrix P ′t, which is

defined as follows:

P ′t =
[
P ′
i,j

]
0≤i,j≤np0

− 1
,

P ′
i,j =

{
1 (j = (i + np0 − t) mod np0)

0 (otherwise)
.

(8)

Before sending P ′t to the server, the user encrypts

it with his/her public-key and pseudo-random

numbers r = {r0, · · · , rnp0
} as Ekpub

(P ′t, r) in

order to hide the amount of shifts. Next, the

user obtains the index of the sub-table, i.e. m, by

retrieving from the lookup-table. The user, then,

generates a vector qm
M defined as

qm
M = [qi]1≤i≤M , qi =

{
1 (i = m)

0 (otherwise)
.

(9)

qm
M is used for specifying which sub-table a

user searches. It is also encrypted with his/her

public-key and pseudo-random numbers r′ =

{r′1, · · · , r′M} as Ekpub
(qm

M , r′) and sent to the

server. After receiving them, the server multiplies

each element of Ekpub
(qm

M , r′) by every entry of the

corresponding sub-table. That is, j-th sub-table

tjPOI becomes tj
′

POI defined as

tj
′

POI = Ekpub
(qj , r

′
j)×c Ekpub

(tjPOI)

=
[
Ekpub

(qj , r
′
j)×c Ekpub

(Iji)
]
1≤i≤np0

.

(10)

As a result, all entries of sub-tables except them-th

sub-table become zero in the plaintext domain.

－1061－

Then, the server aggregates all tj
′

POI into a table

t
′

POI as shown below:

t
′

POI = t1
′

POI +c t
2′

POI +c · · · +c t
M ′

POI

=
[
I ′i

]
1≤i≤np0

,

I ′i = Ekpub
(q1, r

′
1)×c Ekpub

(I1i)

+c Ekpub
(q2, r

′
2)×c Ekpub

(I2i)

+c · · · +c Ekpub
(qM , r′M)×c Ekpub

(IMi).

(11)

Here, I ′i is still encrypted and satisfies

Dkpri(I
′
i) = Imi . (12)

Therefore, each entry in an aggregated table

is indicated by them of m-th sub-table in

the plaintext domain. Note that the server

cannot obtain any information regarding the user’s

location and the sub-table since qm
M and P ′t are

encrypted with the user’s public-key and different

random numbers against each element. In our

scheme, the server multiplies Ekpub
(P ′t, r) instead

of Ekpub
(P t, r) by t

′

POI for circularly shifting.

Therefore, as compared with Eq. (1) in PCQP, the

server can reduce the number of multiplications

to np0 . Hence, our scheme reduces computational

complexity without sacrificing security.

3.4 Computational Complexity

In this section, we discuss the computational

complexity on a server of our proposed scheme.

The computational complexity is represented as

that in the plaintext domain in the following

since it depends on which encryption system is

used. In other words, in this section, the terms

‘addition’ and ‘multiplication’ mean +c and ×c,

respectively. In the initialization process, our

scheme requires the dividing process in addition

to that of PCQP. It is negligible since its cost

significantly low as compared with calculation of

ciphertexts with homomorphism. In the query

process, the server first multiplies the encrypted

qm
M by the corresponding sub-table and thus it

requires np multiplications. Next, the server

aggregates sub-tables and thus it requires np0 ×
(M − 1) additions. The server, finally, shifts

the aggregated table by multiplying P ′t and thus

it requires min(k, np0) × (np0 − 1) additions and

min(k, np0)× np0 multiplications, where min(a, b)

denotes the function returns the smaller one of

a or b. TABLE1 summarizes the computational

complexity of PCQP and our scheme, respectively.

3.5 Search Accuracy

In our scheme, np POIs are aggregated into

a table with np0 POIs. This causes losing

information regarding (np − np0) POIs. The more

tables are divided, the less accurate the search

results get. Therefore, we choose a certain number

M for high-accuracy and low-complexity k-POIs

search. We evaluate the relationship between

search accuracy and the number of sub-tables in

the following section.

4 Simulation Results

We evaluate the k-POIs search of our scheme

in terms of computational complexity and search

accuracy. Our scheme is implemented in Java

language and performed on a laptop computer,

which has Intel Core i5 1.8GHz processor and 4GB

memory. We use Sequoia dataset 1 as a real-world

dataset. We randomly chose 10,000 POIs from

65,536 POIs in Sequoia dataset to evaluate the

performance metrics against Sequoia dataset.

Let G and R denote the ground-truth result set

and the query result set obtained by k-POIs search,

respectively. The accuracy rate of k-POIs search

is defined as

raccuracy =
|R ∩ G|

|G|
, (13)

where |R| denotes the cardinality of the set

R. Then, for the given accuracy rate of our

proposed scheme, raccuracyPROP , and that of

PCQP, raccuracyPCQP
, we define the ratio α as:

α =
raccuracyPROP

raccuracyPCQP

. (14)

As the definition above, α ∈ [0, 1] and α = 0 means

that the proposed scheme is not accurate at all

1http://www.chorochronos.org/

－1062－

TABLE 1: Computer Complexity of PCQP and Our Scheme

Addition (+c) Multiplication (×c)

PCQP k × (np − 1) k × np

Our Scheme np0
× (M − 1) + min(k, np0

) × (np0
− 1) np + min(k, np0

) × np0

while α = 1 means that ours achieves the same

accuracy as that of the conventional one achieves.

Our objective is to keep α to be close to one while

reducing computational complexity on the server.

We experimentally evaluate the performance of

our k-POIs search scheme for different values of

M and k. M and k vary from 1 to 10,000 and

from 1 to 50, respectively. Khoshgozaran et al.

show that the average number of POIs which are

assigned to the same H-value should be two or

less for high-accuracy k-POIs search [3]. Thus, we

set the curve order of Moore curve to eight that

satisfies the above condition against our dataset.

In each experiment, queries are issued at randomly

chosen 1,000 locations on the map and the results

are averaged.

4.1 Computational Complexity

Figure 3(a) and 3(b) indicate the number of

additions and that of multiplications in the

plaintext domain that are required in the schemes

versus k per query, respectively. In Fig. 3, ‘Conv.’

indicates the conventional scheme. From Fig. 3, we

can see that our schemes in any M significantly

decrease the complexity of both addition and

multiplication. Furthermore, the each number of

additions and multiplications gets fewer as M gets

larger. In particular, our scheme can reduce 98%

of that required in the conventional scheme when

M = 10, 000 and k = 50. Even if M = 10, our

scheme can reduce 90% of that. From these results,

we can see that it is effective to divide a POI-table

except when k is significantly small, e.g. k = 1,

since our scheme requires multiplying every entry

by encrypted ‘0’ or ‘1’ for the query.

10 20 30 40 50
104

105

k

C
o
m
p
u
ta
ti
on

al
co
m
p
le
x
it
y

Conv. M=10 M=100
M=1,000 M=10,000

(a) Addition (+c)

10 20 30 40 50
104

105

k

C
om

p
u
ta
ti
on

al
co
m
p
le
x
it
y

Conv. M=10 M=100
M=1,000 M=10,000

(b) Multiplication (×c)

Fig. 3: Each number of additions and

multiplications in the plaintext domain required

in the schemes versus k.

0 10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

k

α

M=10 M=100 M=1,000
M=10,000

Fig. 4: α versus k.

－1063－

4.2 Search Accuracy

Figure 4 indicates α versus k. From Fig. 4,

we can see that α decreases when M or k gets

large. In particular, our scheme achieves α ≥
0.99 when M = 10 even if k = 50. However,

α drops as M gets larger. The reason is that

some entries of POI located near the user are

lost by aggregating as mentioned in Section 3.5.

Therefore, we must choose the minimum M that

satisfies α ≥ 0.95 to provide a high-accuracy and

low-complexity k-POIs search. Then, the each

number of additions and multiplications required

in our scheme is reduced 97% of that required in

the conventional scheme under the condition of

np = 10, 000 and k = 50, respectively, and it is

more reduced as k gets larger.

5 Conclusion

In this paper, we have proposed a

low-complexity privacy-preserving k-POIs search

scheme by dividing and aggregating a POI-table

with homomorphism cryptosystem. Our scheme is

as secure and accurate as the conventional scheme.

We evaluate the computational complexity and

search accuracy of our scheme and show that our

scheme significantly reduces computational cost

of k-POIs search without sacrificing the search

accuracy.

Acknowledgment

This work is partly supported by the Grant

in Aid for Scientific Research (No. 26420369)

from Ministry of Education, Sport, Science and

Technology, Japan.

Reference

[1] C.-Y. Chow, M. F. Mokbel, and W. G.

Aref, “Casper*: Query processing for location

services without compromising privacy,” ACM

Trans. Database Syst., vol. 34, no. 4, pp.

24:1–24:48, Dec. 2009.

[2] K. Tan, Y. Lin, and K. Mouratidis, “Spatial

cloaking revisited: Distinguishing information

leakage from anonymity,” in Advances in

Spatial and Temporal Databases, ser. Lecture

Notes in Computer Science, N. Mamoulis,

T. Seidl, T. Pedersen, K. Torp, and I. Assent,

Eds. Springer Berlin Heidelberg, 2009, vol.

5644, pp. 117–134.

[3] A. Khoshgozaran, H. Shirani-Mehr, and

C. Shahabi, “Blind evaluation of location based

queries using space transformation to preserve

location privacy,” GeoInformatica, vol. 17,

no. 4, pp. 599–634, 2013.

[4] M. L. Yiu, C. S. Jensen, X. Huang, and

H. Lu, “Spacetwist: Managing the trade-offs

among location privacy, query performance,

and query accuracy in mobile services,” in

Data Engineering, 2008. ICDE 2008. IEEE

24th International Conference on, April 2008,

pp. 366–375.

[5] I.-T. Lien, Y.-H. Lin, J.-R. Shieh, and

J.-L. Wu, “A novel privacy preserving

location-based service protocol with secret

circular shift for k-nn search.” IEEE

Transactions on Information Forensics

and Security, vol. 8, no. 6, pp. 863–873, 2013.

[6] A. Khoshgozaran and C. Shahabi, “Private

information retrieval techniques for enabling

location privacy in location-based services,” in

Privacy in Location-Based Applications, ser.

Lecture Notes in Computer Science, C. Bettini,

S. Jajodia, P. Samarati, and X. Wang, Eds.

Springer Berlin Heidelberg, 2009, vol. 5599, pp.

59–83.

[7] E. H. Moore, “On certain crinkly curves,”

Transactions of the American Mathematical

Society, vol. 1, no. 1, pp. 72–90, 1900.

[8] J. Hoffstein, J. Pipher, and J. Silverman,

“Ntru: A ring-based public key cryptosystem,”

in Algorithmic Number Theory, ser. Lecture

Notes in Computer Science, J. Buhler, Ed.

Springer Berlin Heidelberg, 1998, vol. 1423, pp.

267–288.

－1064－

