Computer Security Symposium 2014
22 - 24 October 2014

gooboboobbobobbotbodddooooo XLooogooooo O
Jooooood

o0oooo oooo 00000t

100000000000
814-0001 DO DOOODOOOOOOODOOOOOOODOODSRPOOOOOOODO

10000
819-039% 00 000D 0ODbOO0O 744
tanasato@itslab.inf.kyushu-u.ac.jp, ccheng@imi.kyushu-u.ac.jp,

sakurai@csce.kyushu-u.ac. jp

0000 ODOooO00oooOoOoOoOobDoOoOoooDoDoMQUUOOODOOOODOOOODbOOO
0O000000XLO eXtended Linearization0 D0 00000 MQDOOOOOOOOODOOODO
oooboooobooooMQUOODOOOOOOODOOODOOOODOOODOOODOOOOO
00000GPUONOOOO XL-Wiedemann OO OO0 00000000000 000OOO GF(2)
003700740000 MQOODO 36,97200GF3)00 2400480000 MQODODO 933
OO0GF()OD 2100420000 MQO 34700000000 OO

Evaluating Solving Time of Multivariate Quadratic Equation

System using XL Algorithm over Small Finite Fields

Satoshi Tanakati Chen-Mou Chengt Kouichi Sakuraifi

tInstitute of Systems, Information Technologies and Nanotechnologies.
Fukuoka SRP Center Building 7F, 2-1-22, Momochihama, Sawara-ku, Fukuoka, 814-0001, JAPAN

IKyushu University
744 Motooka, Nishi-ku, Fukuoka 819-0395, JAPAN
tanasato@itslab.inf.kyushu-u.ac.jp, ccheng@imi.kyushu-u.ac.jp,
sakurai@csce.kyushu-u.ac. jp

Abstract The security of multivariate public-key system is based on the problem of solving
multivariate quadratic equation systems over finite fields (MQ problem). The XL (eXtended
Linearization) is a aolving algorithm of M(Q problem, and its running time is an important index
of the complexity of M(Q problem. In this work, we provide parallelized XL-Wiedeman algorithm
on Graphics Processing Units (GPU). Our implementations solve MQ of 37 unknowns and 74
equations over GF(2) in 36,972 seconds, of 24 unknowns and 48 equations over GF(3) in 933
seconds, and of 21 unknowns and 42 equations over GF(5) in 347 seconds.

— 124 —

1 Introduction

The problem of finding roots of non-linear

multivariate polynomial systems over finite fields

is a core of the security for Multivariate public-
key cryptography (MPKC). Some MPKCs (e.g.
Unbalanced Oil and Vinegar scheme [8], Hid-
den Field Equations [10], QUAD stream ci-
pher [5]) use the quadratic case of such prob-
lems (called MQ). Therefore, evaluating the
complexity of MQ is important for these MP-
KCs.

There are two known algorithms for solving
the MQ problem. One is the Grobner basis
method and the other is the eXtended Lin-
earization (XL) algorithm. Both algorithms
generate new equations from original systems.
Although, XL is proved that is a redundant
variant of a Grobner basis algorithm Fy[3], it
has advantages of memory size in practics[12].

The heaviest part of XL is the solving step
of linearized systems. The Wiedemann algo-
rithm solves N x N non-singular matrix sys-
tems, which row sparsity is k, in O(kN?) mul-
tiplications and additions. NV is decided by the
degree of regularity for the MQ.

1.1 Related works

There are several implementations of the XL-
Wiedemann algorithm. Yang et al. evaluate
the solving time of MQ instances (6-15 un-
knowns) by the C++ version[12]. Moreover,
they show that the expected time of the MQ
instance of 20 unknowns in 40 equations over
GF(28) is in 2% cycles. Cheng et al. imple-
ment on a NUMA machine and a cluster of
PCs[6]. As a result, they solve MQ of 36 un-
knowns and 36 equations over GF(2) in 46,944
seconds, of 32 unknowns and 64 equations over
GF(2%) in 244,338 seconds and of 29 unknowns
and 58 equations over GF(31) in 12,713 sec-
onds.

1.2 Challenging issue

The Graphics Processing Units (GPU) im-
plementations: some steps of the XL-Wiedemann
algorithm can be parallelized. Therefore, we
can consider that accelerating by GPU im-
plementations. However, GPUs have different
limitations from CPU implementations. Hence,
we should consider how implement the XL-
Wiedemann algorithm.

1.3 Our contibution

We provide GPU implementations of the XL-
Wiedemann algorithm. We parallelized prod-
ucts of a sparse matrix and a dense vector
on GPU. Moreover, we provide using the cuS-
PARSE library version (with floating point val-
ues) of the XL-Wiedemann algorithm. Finally,
we show the experimental result of solving MQ
instances over GF(2), GF(3) and GF(5). Our
implementations solve MQ of 37 unknowns and
74 equations over GF(2) in 36,972 seconds, of
24 unknowns and 48 equations over GF(3) in
933 seconds, and of 21 unknowns and 42 equa-
tions over GF(5) in 347 seconds.

2 The MQ problem

The security of MPKC is based on the com-
plexity of solving a system of multivariate non-
The MQ
problem is a quadratic case of this problem.
MQ is known to be NR-complete [4].

Let ¢ = p¥, where p is a prime, and = =
{z1,...,2n} Vi, z; € GF(q)). Generally, mul-
tivariate quadratic polynomial equations of n

linear equations over finite fields.

unknowns over GF)(q) are described by the
following;:

flx) = Z QT + Z Bizi +v =0,

1<i<j<n 1<i<n
(1)

—125—

where Vi, j, a; j, 8,7 € GF(q). The MQ prob-
lem consists solving quadratic polynomial equa-

tions given by y = {fi(x),..., fm(x)}.

3 The XL algorithm

The original XL algorithm was proposed by
Courtois in 2000[7]. The idea of XL is based
on the linearization technique. Linearization
is subtitution new unknowns non-linear terms
(e.g. w2 = yi2). If the number of equa-
tions is greater than the number of variables,
it solves the system by algebraic methods (e.g.
the Gaussian elimination). If not, it generates
new equations from the original ones. The XL
The
degree of regularity D is the minimal degree,

algorithm is described in Algorithm 1.

which the number of linearly independent equa-
tions exceeds the number of unknowns in lin-

earized system.

Algorithm 1 The XL algorithm[7]

Input: m quadratic polynomial equations
F={fi,..., fm}, m-th vector y = F(x),
and the degree of regularity D.

Output: the n-th unknown vector ® =
{z1,..., 25}

1: Multiply: Generate all the product of
polynomial equations and products of un-
knowns]_[J.D;I2 Ty

2: Linearize: Consider each monomial in the
x; of degree < D as a new unknown and
perform an elimination algorithm on the
equations obtained in 1 and derive univari-
ate equations.

3: Solve: Solve univariate equations obtained
in 2 over GF(q).

4: Repeat: Simplify the equations and repeat
the process to find the values of other un-

knowns.

The XL algorithm generates sparse equa-
tions in the multiplication step. The num-

ber of non-zero terms of an equation is only

(n;rQ) (of (ngD) terms), since generated equa-
tions are just producted of original equations
and monomials. However, the Gaussian elimi-
nation is not suited to solve systems of sparse
linear equations. it is quantitative for the size
of a matrix. The XL-Wiedemann algorithm[9]
improved this disadvantage of the original XL
by replacing the Gaussian elimination with the
Wiedemann algorithm|[11], which is suited to
a system of sparse linear equations.

3.1 The Wiedemann algorithm

The Wiedemann algorithm[11] is a solving
method for a system of linear sparse equa-
Let A is an N x N
The Wiede-

mann algorithm finds a n-th non-zero vector

tions over finite fields.
non-singular matrix over GF(q).

x, where y = Ax. The block Wiedemann al-
gorithm is described in Algorithm 2.

Algorithm 2 The Wiedemann algorithm|[11]
Input: N x N non-singular matrix A and the
N-th vector b, where Ax = b.
Output: the N-th unknown vector x.
1: Set bg=b, k =0. yo =0 and dy = 0.
2: Compute the matrix sequence s; =
up 1Al for 0 < i < 2(N — d), with a
random N-th vector 1.

3: Set f(A\) to the minimum polynomial of
the sequence of s; with the Berlekamp-
Massey algorithm.

4: Set yr+1 = yr + [~ (A)by, where f~(\) :=
M7 biy1 = bo + Aypy1 and diy1 =
di, + deg f(N).

5: If bx1 = 0, then the solution is x :7,;’

6: Set kK =k + 1 and go to step 2.

3.2 Sparse matrix forms

We assume that D is the degree of regu-

larity for the XL algorithm. Then, XL con-

structs ("ED) X ("ED) linearized matrix from

— 126 —

MQ instances of n unknowns and m equa-

tions over GF(q). However, quadratic polyno-

"3

terms. Therefore, we can reduce computations

mial equations of n unkowns have only (

of matrix-vector product and the memory size
of matrix by using sparse matrix form.

Let N be the degree of row and column in
a matrix(i.e. N x N matrix), and numyz be
the number of non-zero elements in the matrix.
Sparse matrix forms have value, row-index and
column-index data of non-zero elements in a
matrix. There are some sparse matrix foratss
as the following[1]:
The COO (coordinate) format is the most ba-

sic. It holds simplly value, row-index and column-

index data of non-zero elements in the matrix.
Therefore, it requires 3numpyz for the emory
space.

The CSR (compressed storage row) assumes
that the data vector is ordered by the row-
index. It differs only row-index from the COO
formats, it holds the head number of non-zero
terms in each row-vector of the matrix instead
of row-index data. The, it requires 2numpyz +
N.

The ELL (Ellpack-Itpack) format uses two dense

N X maxyz matrices, where maxyyz is the
maximal number of non-zero terms in a row-
vector. One matrix shows the value of non-
zero matrix, and the other shows the column-
index. Figure 1 shows the example of each

foramt.

4 CUDA API

CUDA is a development environment for GPU,

based on C language and provided by NVIDIA.
Proprietary tools for using GPU have existed
before CUDA was proposed. However, such
tools as OpenGL and DirectX need to out-
put computer graphics while processing work.
Therefore, these tools are not efficient. CUDA
is efficient, because CUDA uses computational

core of GPU directly.

In CUDA, hosts correspond to computers,
and devices correspond to graphic cards. CUDA
works by making the host control the device.
Kernel is a function the host used to control
the device. Because only one kernel can work
at a time, a program requires parallelizing pro-
cesses in a kernel. A kernel handles some blocks
in parallel. A block also handles some threads
in parallel. Therefore a kernel can handle many
threads simultaneously.

4.1 cuSPARSE library

NVIDIA provides several libraries for lin-
ear algebra. For example, the cuBLAS library
provides functions of the Basic Linear Alge-
bra Subprograms (BLAS) library. BLAS class-
fies three levels of functions. Level 1 functions
gives operations of vectors and vectors, level 2
acheives operations vectors and matrices, and
level 3 allows matrix and matrix operations.
Actually, the cuSPARSE library is the sparse
matrix version of the cuBLAS library. There-
fore, cuSPARSE also provides three level func-

tons.

5 The XL-Wiedemann algorithm

on GPU

5.1 Degree of regurarity over small
fields

The heviest point of the XL-Wiedeman algo-
rithm is solving /N x N matrix systems as a lin-
ear algebra. In XL, N is decided by the degree

of regularity D as N = (N]J{)D).

The dgeree
of regularity is the minimal degree, where the
number of linearly independent equations ex-
ceeds the number of linearized unknowns. We
can figure the number of linearized unknowns
N for the degree d as N = (N ;d) easily. Rgnjon

and Raddum gives that the upperbound for

— 127 —

value row column
1 1 1

O OR =
N=O O
ocCocoON
w oo =
-
B WK =
BN N AW

2
1
1
1
2
3 4

Dense matrix COO format

row
value column

head
1 1 value column
2 1 3 12 1 1 3 4
1 4 |* 10 0 100
1 5 1 100 2 00
el |2 2 30 2 4 0
2 2
3 4
CSR format ELL format

Figure 1: Image of each sparse matrix formats.

Degree of regularity

Unknowns

0 8 16 24 32 40 48 56 64 n
=——GF(2) =—GF(3) =—GF5) =———GF(q)

Figure 2: The deree of regularity for m = 2n
cases, under n < 64.

the number of linearly independent equations
I is decided by the following formula:

Dm

S () EC) @

i=0 §=0

Then, D,, is the maximal degree of monomi-
als multplying equations, and D, is the degree
of the original equations system. For the MQ
problem, D,, = D — 2 and D, = 2. There-
fore, we can find the minimal degree D, where
I > N(= (NgD)) by Formula (2). Figure 2
shows degrees of regularity for MQ of n un-
knowns and 2n equations over GF(2), GF(3),
GF(5) and other prime fields under n < 64.
Acturally, the cases of GF(5) and other prime
fields are similar. textGF(2) and textGF(3)
differ from other fields, because we consider re-
ductions by field equation a? = «a (o € GF(q)).

5.2 Choosing equations

By the definition of the degree of regular-
ity, I > N. Then, we get an I x N matrix

by the extend step of the XL algorithm. For
the Wiedemann algorthm, we should reduce
to N from I. The simplest way is removing
equations by random choosing.

5.3 The Wiedemann algorithm

Mainly, the Wiedemann algorithm is seper-
ated to three steps. The first step is gener-
ating the sequence {(u,Aib)}fiV() for a N x
N matrix A, a vector b, where Az = b and
random vector w. The second step is find-
ing the minimal polynomial of the generated
sequence f(A) by the Berlekamp-Massey al-
gorithm. The final step is compute f~(A)b,
where f~(\) = M.

only implement the first step and the final step

In this work, we

on GPU. Because, the Berlekamp-Massey al-
gorithm is very sequencial (it seems no par-
allelizable) and has many conditional branchs.
Since, both of the sequencial algorithm and the
conditional branch are not suitable for GPU,
we implement the second step on CPU.

5.4 Generating sequence {(u, Aib)}?ﬁ)

This step requires products the sparse ma-
trix A and the dense vector A*~'b, and dot
products (u, A’b). However, we can choose the
random vector u as u = {1,0,...,0}. There-
fore, dot products can be computed by looking
up the first element of the vector A'b. Hence,
we should consider only producs of the sparse
matrix A and the dense vector A*"1b

—128 —

Products of the sparse matrix A and the
dense vector A*~'b has two steps. The first
one is multiplications of non-zero elements in
The

other is summations of multiplication result

the matrix and elements in the vector.

for each row.

We choose the ELL format for sparse matri-
ces. One of advantages of this format is every
column width is same in a matrix and multi-
plication result holds such width. In CUDA
kernels (GPU functions), the column width
can correspond with the number of threads of
the kernel and the row height corresponds the
number of blocks. Usually, each blocks has the
same number of threads. Therefore, the ELL
format is suited to CUDA kernels.

In summations of multiplication result, we
use the parallel reduction technique [2]. This
technique computes summations of n terms in
log n steps.

5.5 Computing f~(A)b

Since f7(A)b = Zle c;A™ b, where d is
the degree of f(\), this step is summations of
¢; A" 1b. Then, A%b is similar to the first step
of the Wiedemann algorithm. Hence, there is
two strategies for A’b. One is storing the result
of A’ on GPU. This strategy can reduce re-
computations of A*b. However, it needs about
N? memory spaces for A'b, where 0 < i < N
(since d < N). Therefore, this strategy can be
used only small matrix cases.

The other is recomputing A’b. Although,
it requires more d products of A’b, it needs
memory space only A“1b (last vector of A%b).
Terefore, this strategy is suitable for large ma-

trix cases.

5.6 cuSPARSE version

The cuSPARSE library provides functions of
products a sparse matrix and a dense vector.

Therefore, using cuSPARSE is another choice
for products of A and A*"'b. There are two
important points for implementations. One
is the function form. The cuSPARSE library
only provides y < aAzx + Sy (A: matrix, x,
y: vector and a, §: scalar) form functions for
the CSR format. Then, for the first step, we
set f = 0. Moreover, in the cuSPARSE ver-
sion, we should use the CSR format for sparse
matrices.

The other is the type of variables. The cuS-
PARSE library suportes only floating point
values (does not support integer values). It
means that the cuSPARSE library does not
directly supporte any field operations. Then,
we should coordinate cuSPARSE functions as
field operations by additional operations (e.g.
modular operations).

6 Experimentation

We implement the XL-Wiedemann algorithm
on GPU. Our implementations are two types,
integer version and the cuSPARSE (floating
point) version. We solve the largest case of
D = 4,5, over GF(2), GF(3) and GF(5) by
both XL-Wiedemann implementations. Ta-
ble 1 shows the detail of each M(Q construc-
tion.

Table 2 shows the experimental result, and
Table 3 shows the profile of the Wiedemann
algorithm. The cuSPARSE library seems to
be better choice for larger case. In our ex-
perimentations, the Berlekamp-Massey algo-
rithm is heavy for the XL-Wiedemann algo-
rithm. However, it is not problem, because we
can choose faster libraries on CPU like MAGMA.

7 Conclusion

We provide GPU implementations of the XL-
Wiedemann algorithm. Also, we show the two

—129 —

Table 1: Constructions of MQ instances.

Field GF(q) GF(2) GF(3) GF(5)
Degree of regularity D 4 5 4 5 4 5
Unknowns n 24 37 15 24 13 21
Equations m 48 74 30 48 26 42
Matrix
Linearized terms 12,950 | 510,415 | 3,635 | 110,954 | 2,379 | 65,758
Nonzero terms 301 704 136 325 105 253
Table 2: Result of XI.-Wiedemann on GPU.
Field GF(q) GF(2) GF(3) GF(5)
Degree of regularity D 4 5 4) 4 5
Unknowns n 24 37 15 24 13 21
Equations m 48 74 30 48 26 42
Solving time (sec) 14.7358 | 83,782.11 | 0.5847 | 2,089.30 | 0.4415 | 601.124
Integer Extension (sec) 0.1248 130.98 | 0.0116 7.29 | 0.0059 3.347
Wiedemann (sec) 14.6101 | 83,651.08 | 0.5729 | 2,082.01 | 0.4355 | 597.777
Solving time (sec) 8.8982 | 36,971.85 | 0.8684 932.95 | 0.4852 | 346.571
cuSPARSE | Extension (sec) 0.0885 128.28 | 0.0098 8.00 | 0.0050 3.366
Wiedemann (sec) 8.8077 | 36,843.49 | 0.8583 924.95 | 0.4800 | 343.204
Table 3: Profile of the Wiedemann slgorithm.
Field GF(q) GF(2) GF(3) GF(5)
Degree of regularity D 4 5 4 5 4 5
Unknowns n 24 37 15 24 13 21
Equations m 48 74 30 48 26 42
Running time (sec)
Wiedemann 14.6101 | 83,651.08 | 0.5729 | 2,082.01 | 0.4355 | 597.777
Generating Sequence 9.5806 | 49,719.75 | 0.3030 | 1,104.82 | 0.2131 | 302.236
Berlekamp-Massey 4.9253 | 9,035.16 | 0.2379 | 439.1057 0.19 | 148.328
Integer Computing f~(A)b 0.0937 | 24,895.43 | 0.0305 537.99 | 0.0273 | 147.188
Memory Usage (MB)
Matrix 29.74 2741.49 5.66 412.67 2.86 190.39
Stream 1279.47 0 | 100.81 0| 43.22 0
Running time (sec)
Wiedemann 8.8077 | 36,843.49 | 0.8583 924.94 | 0.4800 | 343.2035
Generating Sequence 3.8079 | 22,215.69 | 0.4284 325.75 | 0.2418 | 108.0073
Berlekamp-Massey 4.8855 | 9,059.83 | 0.4284 325.75 | 0.1999 | 183.685
cuSPARSE | Computing f~(A)b 0.1045 | 5,567.20 | 0.0403 160.77 | 0.0372 51.473
Memory Usage (MB)
Matrix 44.66 4114.18 5.67 413.10 2.87 190.64
Stream 1279.47 0 | 100.81 0| 43.22 0

—130—

types, integer case and using cuSPARSE li-
brary (floating point values) case. Our imple-
mentations solve MQ of 37 unknowns and 74
equations over GF(2) in 36,972 seconds, of 24
unknowns and 48 equations over GF(3) in 933
seconds, and of 21 unknowns and 42 equations
over GF(5) in 347 seconds by using cuSPARSE
library case. Our further goal is evaluating the
expected time of larger degree cases (e.g. the
case of D = 6).

Acknowledgement

This work is partly supported by “Study on
Secure Cryptosystem using Multivariate poly-
nomial,” no. 0159-0172, Strategic Information

In Advances in Cryptology-EUROCRYPT
2006, pages 109-128. Springer, 2006.

[6] Chen-Mou Cheng, Tung Chou, Ruben
Solv-

ing quadratic equations with xl on paral-

Niederhagen, and Bo-Yin Yang.

lel architectures. In Cryptographic Hard-
ware and Embedded Systems—CHES 2012,
pages 356-373. Springer, 2012.

[7] Nicolas Alexander

Jacques Patarin, and Adi Shamir. Ef-

Courtois, Klimov,
ficient algorithms for solving overde-
fined systems of multivariate polynomial
equations. In Advances in Cryptology-
EUROCRYPT 2000, pages 392-407.
Springer, 2000.

and Communications R&D Promotion Programme [8] Aviad Kipnis, Jacques Patarin, and Louis

(SCOPE), the Ministry of Internal Affairs and
Communications, Japan and Grant-in-Aid for
Young Scientists (B), Grant number 24740078.

References

toolkit documenta-

http://docs.nvidia.com/cuda/

[1] cusparse::cuda
tion.

cusparse, Accessed August 2014.

[2] Optimizing parallel reduction in cuda.
http://developer.download.nvidia.
com/compute/cuda/1.1-Beta/x86_
website/projects/reduction/doc/

reduction.pdf, Accessed August 2014.

[3] Gwénolé Ars, Jean-Charles Faugere,
Hideki Imai, Mitsuru Kawazoe, and
Makoto Sugita. Comparison between xI

and grobner basis algorithms. In Ad-
vances in Cryptology-ASIACRYPT 2004,
pages 338-353. Springer, 2004.

[4] Gregory V. Bard. Algebraic Cryptanaly-
sis. Springer, 2009.

Henri Gilbert, and
Quad:
cal stream cipher with provable security.

[5] Céme Berbain,

Jacques Patarin. A practi-

Goubin. Unbalanced oil and vinegar sig-
nature schemes. In Advances in Cryptol-
ogy - EUROCRYPT’ 99, pages 206-222.
Springer, 1999.

[9] Wael Said Abdelmageed Mohamed, Jintai

Ding, Thorsten Kleinjung, Stanislav Bu-
Pwxl:
A parallel wiedemann-xl algorithm for

lygin, and Johannes Buchmann.

solving polynomial equations over gf(2).
SCC, 2010:89-100, 2010.

[10] Jacques Patarin. Hidden fields equations
(hfe) and isomorphisms of polynomials

(ip):

algorithms.

Two new families of asymmetric
In Advances in Cryptology
- Eurocrypt’ 96, pages 33-48. Springer,
1996.

[11] Douglas Wiedemann. Solving sparse lin-
Infor-
mation Theory, IEFE Transactions on,
32(1):54-62, 1986.

ear equations over finite fields.

[12] Bo-Yin Yang, Owen Chia-Hsin Chen,
Daniel J Bernstein, and Jiun-Ming Chen.
Analysis of quad. In Fast Software En-
cryption, pages 290-308. Springer, 2007.

— 131 —

