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Abstract: Monte-Carlo tree search (MCTS) has been successful on improving the strength of the game Go as well as many other 

game playing programs. For MCTS, one of the critical issues to further improve strength is parallelization. In order to deal with 

parallel MCTS generally, this paper designs a software framework for developing computer game programs with parallel MCTS. 

This framework hides the details of game-independent designs from computer game developers, so that developers can concentrate 

on improving heuristics related to game-specific knowledge. In this framework, we used lock-free tree parallelization inside a 

shared-memory system, and root parallelization over a distributed-memory system. For demonstration, we implemented a Go 

program named AMIGO, a Chinese dark chess program, and a puzzle program on top of this framework. The experimental results of 

AMIGO for 9x9 Go also show reasonable speedups and the strength improvement.  
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1. Introduction

The strengths of Computer Go programs were greatly 

improved in the past decade. Monte-Carlo tree search (MCTS), 

an innovative search method, plays a key role of the 

improvement [1)]. In addition to its success in Computer Go, the 

search method has also been successfully applied to other board 

games [2)-4)], such as NoGo, Hex, Havannah, Chinese dark 

chess, and even other games or applications, such as Pacman 

[5)], general game playing [6)], flexible job shop scheduling 

problem (FJSP) [7)].  

In order to improve strength of MCTS, some researchers 

proposed to do parallelization for MCTS [8),9)]. Chaslot et al 

[10)] classified it into three kinds of parallelism for MCTS, leaf 

parallelization, root parallelization and tree parallelization. 

Leaf parallelization is disregarded in this paper, since it was 

clearly outperformed by the other two according to [10)].  

Root parallelization incurs very little synchronization 

overhead for the following reason. All threads are performed 

independently, and the winrates of children of the root are the 

summations of them from all threads. Surprisingly, as the 

research done by Yusuke Siejima [11)], root parallelization 

performs reasonably well. Thus, it is also suitable for threads 

over a distributed system, not just in a shared-memory system.  

In [10)], the article shows that tree parallelization incurs 

significant synchronization overhead by using mutexes. If a 

global mutex is used to lock the whole tree, the overhead for 

thread synchronization is too high; and if local mutexes are used 

to lock individual tree nodes, the overhead is much lower. For 

greatly reducing the overhead, Muller devised lock-free tree 

parallelization when implementing Fuego [12)]. From above, a 

reasonable compromise is to implement lock-free tree 

parallelization inside a shared-memory system, while 

implementing root parallelization over a distributed-memory 

system.  

Unfortunately, it is still nontrivial and time-consuming to 

design/implement lock-free tree parallelization in MCTS which 

includes threading control and memory management, as well as 
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distributed communication mechanism for root parallelization. 

In the past, for alpha-beta search, several general game systems 

were designed and implemented to facilitate the development of 

game-playing programs for developers efficiently [13),14)]. In 

order to deal with parallel MCTS generally, this paper designs a 

software framework for developing computer game programs 

with parallel MCTS. This framework hides the details of 

game-independent designs from computer game developers, so 

that developers can concentrate on improving heuristics related 

to game-specific knowledge. In this framework, we used 

lock-free tree parallelization inside a shared-memory system, 

and root parallelization over a distributed-memory system.  

The framework is described in Section 2. For demonstration 

of this framework, we designed and implemented a Go program, 

named AMIGO, as well as a Chinese dark chess program and a 

puzzle program in Section 3. The experimental results of 

AMIGO for 9x9 Go also showed reasonable speedups and the 

strength improvement. The concluding remarks are given in 

Section 4. 

2. Framework

Fig. 1. Software Framework. 

The architecture of the software framework is shown in Fig. 

1. Software Framework. The framework mainly supports three

modules, generic game module, memory management module, 

and control module. For threading in a host or machine, this 

framework uses a master thread in the control module to manage 

slave threads, each of which runs the MCTS algorithm 
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depending on the game module implemented by developers. 

In principle, this framework hides the details of 

game-independent designs from computer game developers, so 

that developers can concentrate on improving heuristics related 

to game-specific knowledge. So, the computer game developers 

only need to develop the corresponding modules on top of them. 

The three modules, generic game module, memory 

management module, and control module are described in 

Subsections 2.1, 2.2 and 2.3, respectively. The distributed 

system for parallelism is discussed in Subsection 2.4.  

2.1 Game Module 

In the game module, developers only need to implement 

game-related objects and MCTS-related operations.  

The game-related objects include moves and game states, 

whose classes are respectively named Move and GameState. 

The former represents an action in the game, while the latter 

represents a game state. For the latter, developers also need to 

implement the following four operations: reset to the initial state, 

rollback to the root, backup for future rollback, and play a move. 

The MCTS-related operations include those in the four 

common MCTS phases, selection, expansion, playout and 

update. The operation for playout is encapsulated in a class, 

named UctAccessor, while the other three are encapsulated 

in a class, named PlayoutAgent. 

2.2 Memory Management Module 

In the memory management module, developers only need 

to implement the UCT node and the pruning policy, described in 

Subsection 2.2.1 and 2.2.2, respectively. The details of node 

management and tree pruning mechanism are hidden from 

developers.  

2.2.1 UCT Node 

The data structure of UCT node only includes the basic part 

for running MCTS algorithm. Developers need to extend their 

own data fields additionally.  

In the phase of expansion, a node allocation request is 

invoked to allocate nodes. From [12)], node allocation can be 

done in a lock-free manner, as long as the number of expanded 

children is deterministic. In this framework, node allocation is 

also based on the lock-free method. The details of node 

allocation mechanism are omitted in this paper.  

2.2.2 Tree Pruning 

When the size of allocated nodes is sufficiently large to some 

extent or nearly full in the memory system, it becomes necessary 

for the system to reclaim more space for more node allocation. 

Our method is to prune the subtrees that contains less interesting 

or significant nodes. Developers are allowed to define their own 

pruning policies in a routine, named PrunePolicy. In general, 

the policy is to determine whether to prune the subtrees rooted at 

given nodes. Then, the system is responsible for all the details of 

saving the needed nodes and pruning unnecessary nodes.  

2.3 Control module 

In control module, the system provides developers with an 

application programming interface to implement user interfaces 

and control the computation of each thread.  

As described above, the framework uses one master thread 

as well as slave threads in a host (machine). Master threads are 

in charge of the work such as communicating with users, 

pruning tree and controlling slave threads, each of which runs 

MCTS algorithm.  

Following are the four major interactions between master 

threads and slave threads, initializing, move generating, tree 

pruning and background thinking. 

Fig. 2. Initialization 

The initialization of each thread is shown in Fig. 2, the 

master thread will create the slave threads and initialize itself 

immediately after all slave threads are created. 

Fig. 3. Move generation. 

The interaction for generating a move is shown in Fig. 3. The 

master thread asks all the slave threads to compute the moves 

and chooses the best one as the answer. 

Fig. 4. Tree pruning 

The interaction for tree pruning is shown in Fig. 4. Once it is 

out of pages, slave threads will stop the computation and wait 

for the master thread finishing the tree pruning.  

Fig. 5 (below) shows the interaction between the master 

thread and the slave threads during background thinking. After 

asking the slave threads to think in background, the master 

thread keeps interacting with the user until the game state is 
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changed. 

Fig. 5. Background thinking. 

2.4 Distributed System Parallelization 

Our framework supports to run in a distributed system. As 

shown in Fig. 6 (below), the architecture of the system consists 

of one server and multiple workers. Each worker runs MCTS 

algorithm in the manner of background thinking as described 

above. The server collects information from workers and 

interacts with users. 

Fig. 6. Architecture of distributed system. 

The server sends commands to workers and handles the 

actions of receiving information from workers. The information 

is encapsulated in a class named WorkerMoveInfo which is 

serialized when sent by workers. The server parses (or 

deserialize) WorkerMoveInfo and maintains the latest report 

in server side to determine which is the best move to play. 

2.4.1 Server 

In the distributed system, the server is in charge of two jobs 

only, communicating with users and controlling workers. In 

order to communicate with users smoothly, developers need to 

implement the resolve function, which is used to interpret the 

command sent by users. 

In order to control workers, developers should implement a 

function named dispatch, which is able to send the correct 

commands to workers according to the information provided by 

users or the report maintained by servers. 

2.4.2 Worker 

The workers keep thinking in the background unless they 

receive commands from the server. Once they receive 

commands, they will suspend background thinking and do the 

actions whichever the server required. After reacting the 

commands, the workers send a message to the server by using 

WorkerMoveInfo. 

Several examples for the interaction between server and 

worker including board cleaning, move playing and state 

notifying are shown as follow. 

Fig. 7. Cleaning the game board. 

Fig. 7 shows the interaction for cleaning the game board. 

Once the user starts a new game, the server will send messages 

to the workers. After receiving the messages, the workers stop 

background thinking and renew their game boards. 

Fig. 8. Making a move 

Fig. 8 shows the interaction of making a move. When the 

user or the server plays a new move, the server will send a 

command called play to the workers. The workers stop 

background thinking and change their game boards after 

receiving the command. 

Fig. 9. State notification. 

Fig. 9 shows how workers feedback their computing states to 

the server. The workers transform their game states into the 

WorkerMoveInfo format automatically every 𝑇𝑅  second.

The server will keep the information for choosing the best move 

to play.  

3. Experiments

To demonstrate the framework, we implemented a Go 

program, named AMIGO
†2, a Chinese dark chess program, a 

puzzle program, and a Tic-Tac-Toe program. Table 1 shows the 

code size of the framework as well as additional code sizes for 

†2 The program was renamed CGI later due to name conflict with an old Go. 

number of machines 
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implementing these game-playing programs. For example, 

developers only need about 300 lines to implement a basic 

MCTS algorithm for Tic-Tac-Toe. These game-playing 

programs (except Tic-Tac-Toe) are described in the subsequent 

subsections, respectively.  

Parallel 

MCTS 

Framework 

Go 
Dark 

Chess 
Puzzle Tic-Tac-Toe 

Code 

length 
5559 lines 

~2500 

lines 

~1500 

lines 

~500 

lines 
~300 lines 

Table 1. Number of lines implemented by developer. 

3.1 Go 

The computing environment was experimented on a 

supercomputer, named ALPS, at the National Center for 

High-performance Computing (NCHC), Taiwan. Each machine 

(also called node) in ALPS is equipped with AMD Opteron 

Processor 6174 with 48 cores and 128G memory in total.  

Fig. 10. Speedups and efficiencies for using different numbers 

of threads.  

Fig. 11. Winrates for different numbers of threads. 

Fig. 12. Winrates against Fuego. 

In our first experiment, the program for 9x9 Go ran for 10 

seconds using different numbers of threads inside one node in 

ALPS. Fig. 10 shows the speedups and efficiencies by running 

in 10 seconds. Fig. 11 demonstrates the strength improvement of 

the program by showing the winrates against the one with one 

thread. In Fig. 11, all programs runs in one second for each move. 

The results show that in shared-memory parallelization the 

speedup is 36.08 for 48 threads, and the winrate against the 

single-core version is more than 90% when using 12 threads or 

more.  

Fig. 12 shows the strength improvement of the program by 

using different numbers of ALPS nodes (machines) against a 

single-thread Fuego. All programs runs in five seconds for each 

move. The result shows that in distributed-memory 

parallelization the winning rate for one machine with 36 cores 

against Fuego is 23%, while that for 8 machines each with 36 

cores is 68%, about 45% higher.  

AMIGO also attended 9x9 Go tournament in the 17th 

Computer Olympiad, held in Yokohama, Japan, 2013. In this 

tournament, AMIGO with a total of 576 cores won the 4th place. 

The above result demonstrates that our framework keeps good 

quality while supporting general game-playing programs.  

3.2 Chinese Dark Chess 

Chinese dark chess is a two-player imperfect information 

game. Nondeterministic Mote Carlo tree search algorithm was 

proposed by Yen et al. [15)]. To demonstrate our framework for 

the game, we used a two-layer structure to represent the 

nondeterministic state nodes mentioned in the paper.  

Fig. 13. Transformation between nondeterministic node and 

two-layer structure. 

Fig. 14 shows the speedups for different numbers of threads. 

The curve in Fig. 14 is almost linearly when the core number 

goes higher. The result shows that the program based on this 

framework works smoothly for Chinese dark chess. 

Fig. 14. Speedups among different numbers of threads. 

3.3 15-Puzzle 

15-Puzzle [17)] is a well-known single-player game. We 

chose this game as a test case of single-player game for our 

framework. Different with two-player games, single-player 

games do not have the concept of winning, which is necessary 

for winrate computation. Therefore, we computed the winrate of 

each puzzle based on their Mahanttan distance. Namely, the 

Manhattan distance was transformed into winrates as shown in 
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Fig. 15, similar to that in the research done in [7)]. 

Fig. 15. Transformation between Manhattan distance and 

winrate. 

Fig. 16. Required simulation count and moves of best solution. 

The problem of 15-puzzle is to achieve the goal state with 

the optimal solution which requires the minimum number of 

moves. In this experiment, we used MCTS to find the solutions 

with the number of moves as small as possible. In order to 

measure how good the MCTS program is, we obtained the 

number of simulations in which the program can reach the goal 

state with the optimal solution. In this experiment, we collected 

150 15-puzzles all of which can be solved within 80 steps. Then, 

these puzzles were separated into 15 groups depending on the 

move counts of their optimal solutions. For example, the puzzles 

with 55-60 moves in the optimal solution were grouped into 60. 

Fig. 16 shows the relation between simulation counts (in 

average) and puzzle groups. This experiment only tested the 

feasibility of developing single-player game programs on 

MCTS, but not for performance.  

4. Conclusion

This paper designs a software framework for developing 

computer game programs that are based on parallel 

Monte-Carlo tree search (MCTS). This framework hides the 

details of game-independent designs from computer game 

developers, so that developers can concentrate on improving 

heuristics related to game-specific knowledge. In this 

framework, we used lock-free tree parallelization inside a 

shared-memory system, and root parallelization over a 

distributed-memory system.  

To demonstrate the framework, we implemented a Go 

program, named AMIGO, a Chinese dark chess program, and a 

puzzle program. The experimental results of AMIGO for 9x9 Go 

also demonstrated reasonable speedups and the strength 

improvement. It is expected that more applications can be 

designed based on the framework. 
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