
A Study of Software Framework for Parallel Monte Carlo Tree Search

Ting-Fu Liao
†1

 I-Chen Wu
†1

 Guan-Wun Chen
†1

 Chung-Chin Shih
†1

Po-Ya Kang
†1

 Bing-Tsung Chiang
†1

 Ting-Chu Ho
†1

 Ti-Rong Wu
†1

Abstract: Monte-Carlo tree search (MCTS) has been successful on improving the strength of the game Go as well as many other

game playing programs. For MCTS, one of the critical issues to further improve strength is parallelization. In order to deal with

parallel MCTS generally, this paper designs a software framework for developing computer game programs with parallel MCTS.

This framework hides the details of game-independent designs from computer game developers, so that developers can concentrate

on improving heuristics related to game-specific knowledge. In this framework, we used lock-free tree parallelization inside a

shared-memory system, and root parallelization over a distributed-memory system. For demonstration, we implemented a Go

program named AMIGO, a Chinese dark chess program, and a puzzle program on top of this framework. The experimental results of

AMIGO for 9x9 Go also show reasonable speedups and the strength improvement.

Keywords: Monte-Carlo tree search, parallelization, Go, Chinese dark chess, puzzle.

1. Introduction

The strengths of Computer Go programs were greatly

improved in the past decade. Monte-Carlo tree search (MCTS),

an innovative search method, plays a key role of the

improvement [1)]. In addition to its success in Computer Go, the

search method has also been successfully applied to other board

games [2)-4)], such as NoGo, Hex, Havannah, Chinese dark

chess, and even other games or applications, such as Pacman

[5)], general game playing [6)], flexible job shop scheduling

problem (FJSP) [7)].

In order to improve strength of MCTS, some researchers

proposed to do parallelization for MCTS [8),9)]. Chaslot et al

[10)] classified it into three kinds of parallelism for MCTS, leaf

parallelization, root parallelization and tree parallelization.

Leaf parallelization is disregarded in this paper, since it was

clearly outperformed by the other two according to [10)].

Root parallelization incurs very little synchronization

overhead for the following reason. All threads are performed

independently, and the winrates of children of the root are the

summations of them from all threads. Surprisingly, as the

research done by Yusuke Siejima [11)], root parallelization

performs reasonably well. Thus, it is also suitable for threads

over a distributed system, not just in a shared-memory system.

In [10)], the article shows that tree parallelization incurs

significant synchronization overhead by using mutexes. If a

global mutex is used to lock the whole tree, the overhead for

thread synchronization is too high; and if local mutexes are used

to lock individual tree nodes, the overhead is much lower. For

greatly reducing the overhead, Muller devised lock-free tree

parallelization when implementing Fuego [12)]. From above, a

reasonable compromise is to implement lock-free tree

parallelization inside a shared-memory system, while

implementing root parallelization over a distributed-memory

system.

Unfortunately, it is still nontrivial and time-consuming to

design/implement lock-free tree parallelization in MCTS which

includes threading control and memory management, as well as

†1 Department of Computer Science, National Chiao Tung University, Taiwan.

distributed communication mechanism for root parallelization.

In the past, for alpha-beta search, several general game systems

were designed and implemented to facilitate the development of

game-playing programs for developers efficiently [13),14)]. In

order to deal with parallel MCTS generally, this paper designs a

software framework for developing computer game programs

with parallel MCTS. This framework hides the details of

game-independent designs from computer game developers, so

that developers can concentrate on improving heuristics related

to game-specific knowledge. In this framework, we used

lock-free tree parallelization inside a shared-memory system,

and root parallelization over a distributed-memory system.

The framework is described in Section 2. For demonstration

of this framework, we designed and implemented a Go program,

named AMIGO, as well as a Chinese dark chess program and a

puzzle program in Section 3. The experimental results of

AMIGO for 9x9 Go also showed reasonable speedups and the

strength improvement. The concluding remarks are given in

Section 4.

2. Framework

Fig. 1. Software Framework.

The architecture of the software framework is shown in Fig.

1. Software Framework. The framework mainly supports three

modules, generic game module, memory management module,

and control module. For threading in a host or machine, this

framework uses a master thread in the control module to manage

slave threads, each of which runs the MCTS algorithm

The 19th Game Programming Workshop 2014

- 122 -

depending on the game module implemented by developers.

In principle, this framework hides the details of

game-independent designs from computer game developers, so

that developers can concentrate on improving heuristics related

to game-specific knowledge. So, the computer game developers

only need to develop the corresponding modules on top of them.

The three modules, generic game module, memory

management module, and control module are described in

Subsections 2.1, 2.2 and 2.3, respectively. The distributed

system for parallelism is discussed in Subsection 2.4.

2.1 Game Module

In the game module, developers only need to implement

game-related objects and MCTS-related operations.

The game-related objects include moves and game states,

whose classes are respectively named Move and GameState.

The former represents an action in the game, while the latter

represents a game state. For the latter, developers also need to

implement the following four operations: reset to the initial state,

rollback to the root, backup for future rollback, and play a move.

The MCTS-related operations include those in the four

common MCTS phases, selection, expansion, playout and

update. The operation for playout is encapsulated in a class,

named UctAccessor, while the other three are encapsulated

in a class, named PlayoutAgent.

2.2 Memory Management Module

In the memory management module, developers only need

to implement the UCT node and the pruning policy, described in

Subsection 2.2.1 and 2.2.2, respectively. The details of node

management and tree pruning mechanism are hidden from

developers.

2.2.1 UCT Node

The data structure of UCT node only includes the basic part

for running MCTS algorithm. Developers need to extend their

own data fields additionally.

In the phase of expansion, a node allocation request is

invoked to allocate nodes. From [12)], node allocation can be

done in a lock-free manner, as long as the number of expanded

children is deterministic. In this framework, node allocation is

also based on the lock-free method. The details of node

allocation mechanism are omitted in this paper.

2.2.2 Tree Pruning

When the size of allocated nodes is sufficiently large to some

extent or nearly full in the memory system, it becomes necessary

for the system to reclaim more space for more node allocation.

Our method is to prune the subtrees that contains less interesting

or significant nodes. Developers are allowed to define their own

pruning policies in a routine, named PrunePolicy. In general,

the policy is to determine whether to prune the subtrees rooted at

given nodes. Then, the system is responsible for all the details of

saving the needed nodes and pruning unnecessary nodes.

2.3 Control module

In control module, the system provides developers with an

application programming interface to implement user interfaces

and control the computation of each thread.

As described above, the framework uses one master thread

as well as slave threads in a host (machine). Master threads are

in charge of the work such as communicating with users,

pruning tree and controlling slave threads, each of which runs

MCTS algorithm.

Following are the four major interactions between master

threads and slave threads, initializing, move generating, tree

pruning and background thinking.

Fig. 2. Initialization

The initialization of each thread is shown in Fig. 2, the

master thread will create the slave threads and initialize itself

immediately after all slave threads are created.

Fig. 3. Move generation.

The interaction for generating a move is shown in Fig. 3. The

master thread asks all the slave threads to compute the moves

and chooses the best one as the answer.

Fig. 4. Tree pruning

The interaction for tree pruning is shown in Fig. 4. Once it is

out of pages, slave threads will stop the computation and wait

for the master thread finishing the tree pruning.

Fig. 5 (below) shows the interaction between the master

thread and the slave threads during background thinking. After

asking the slave threads to think in background, the master

thread keeps interacting with the user until the game state is

The 19th Game Programming Workshop 2014

- 123 -

changed.

Fig. 5. Background thinking.

2.4 Distributed System Parallelization

Our framework supports to run in a distributed system. As

shown in Fig. 6 (below), the architecture of the system consists

of one server and multiple workers. Each worker runs MCTS

algorithm in the manner of background thinking as described

above. The server collects information from workers and

interacts with users.

Fig. 6. Architecture of distributed system.

The server sends commands to workers and handles the

actions of receiving information from workers. The information

is encapsulated in a class named WorkerMoveInfo which is

serialized when sent by workers. The server parses (or

deserialize) WorkerMoveInfo and maintains the latest report

in server side to determine which is the best move to play.

2.4.1 Server

In the distributed system, the server is in charge of two jobs

only, communicating with users and controlling workers. In

order to communicate with users smoothly, developers need to

implement the resolve function, which is used to interpret the

command sent by users.

In order to control workers, developers should implement a

function named dispatch, which is able to send the correct

commands to workers according to the information provided by

users or the report maintained by servers.

2.4.2 Worker

The workers keep thinking in the background unless they

receive commands from the server. Once they receive

commands, they will suspend background thinking and do the

actions whichever the server required. After reacting the

commands, the workers send a message to the server by using

WorkerMoveInfo.

Several examples for the interaction between server and

worker including board cleaning, move playing and state

notifying are shown as follow.

Fig. 7. Cleaning the game board.

Fig. 7 shows the interaction for cleaning the game board.

Once the user starts a new game, the server will send messages

to the workers. After receiving the messages, the workers stop

background thinking and renew their game boards.

Fig. 8. Making a move

Fig. 8 shows the interaction of making a move. When the

user or the server plays a new move, the server will send a

command called play to the workers. The workers stop

background thinking and change their game boards after

receiving the command.

Fig. 9. State notification.

Fig. 9 shows how workers feedback their computing states to

the server. The workers transform their game states into the

WorkerMoveInfo format automatically every 𝑇𝑅 second.

The server will keep the information for choosing the best move

to play.

3. Experiments

To demonstrate the framework, we implemented a Go

program, named AMIGO
†2, a Chinese dark chess program, a

puzzle program, and a Tic-Tac-Toe program. Table 1 shows the

code size of the framework as well as additional code sizes for

†2 The program was renamed CGI later due to name conflict with an old Go.

number of machines

The 19th Game Programming Workshop 2014

- 124 -

implementing these game-playing programs. For example,

developers only need about 300 lines to implement a basic

MCTS algorithm for Tic-Tac-Toe. These game-playing

programs (except Tic-Tac-Toe) are described in the subsequent

subsections, respectively.

Parallel

MCTS

Framework

Go
Dark

Chess
Puzzle Tic-Tac-Toe

Code

length
5559 lines

~2500

lines

~1500

lines

~500

lines
~300 lines

Table 1. Number of lines implemented by developer.

3.1 Go

The computing environment was experimented on a

supercomputer, named ALPS, at the National Center for

High-performance Computing (NCHC), Taiwan. Each machine

(also called node) in ALPS is equipped with AMD Opteron

Processor 6174 with 48 cores and 128G memory in total.

Fig. 10. Speedups and efficiencies for using different numbers

of threads.

Fig. 11. Winrates for different numbers of threads.

Fig. 12. Winrates against Fuego.

In our first experiment, the program for 9x9 Go ran for 10

seconds using different numbers of threads inside one node in

ALPS. Fig. 10 shows the speedups and efficiencies by running

in 10 seconds. Fig. 11 demonstrates the strength improvement of

the program by showing the winrates against the one with one

thread. In Fig. 11, all programs runs in one second for each move.

The results show that in shared-memory parallelization the

speedup is 36.08 for 48 threads, and the winrate against the

single-core version is more than 90% when using 12 threads or

more.

Fig. 12 shows the strength improvement of the program by

using different numbers of ALPS nodes (machines) against a

single-thread Fuego. All programs runs in five seconds for each

move. The result shows that in distributed-memory

parallelization the winning rate for one machine with 36 cores

against Fuego is 23%, while that for 8 machines each with 36

cores is 68%, about 45% higher.

AMIGO also attended 9x9 Go tournament in the 17th

Computer Olympiad, held in Yokohama, Japan, 2013. In this

tournament, AMIGO with a total of 576 cores won the 4th place.

The above result demonstrates that our framework keeps good

quality while supporting general game-playing programs.

3.2 Chinese Dark Chess

Chinese dark chess is a two-player imperfect information

game. Nondeterministic Mote Carlo tree search algorithm was

proposed by Yen et al. [15)]. To demonstrate our framework for

the game, we used a two-layer structure to represent the

nondeterministic state nodes mentioned in the paper.

Fig. 13. Transformation between nondeterministic node and

two-layer structure.

Fig. 14 shows the speedups for different numbers of threads.

The curve in Fig. 14 is almost linearly when the core number

goes higher. The result shows that the program based on this

framework works smoothly for Chinese dark chess.

Fig. 14. Speedups among different numbers of threads.

3.3 15-Puzzle

15-Puzzle [17)] is a well-known single-player game. We

chose this game as a test case of single-player game for our

framework. Different with two-player games, single-player

games do not have the concept of winning, which is necessary

for winrate computation. Therefore, we computed the winrate of

each puzzle based on their Mahanttan distance. Namely, the

Manhattan distance was transformed into winrates as shown in

The 19th Game Programming Workshop 2014

- 125 -

Fig. 15, similar to that in the research done in [7)].

Fig. 15. Transformation between Manhattan distance and

winrate.

Fig. 16. Required simulation count and moves of best solution.

The problem of 15-puzzle is to achieve the goal state with

the optimal solution which requires the minimum number of

moves. In this experiment, we used MCTS to find the solutions

with the number of moves as small as possible. In order to

measure how good the MCTS program is, we obtained the

number of simulations in which the program can reach the goal

state with the optimal solution. In this experiment, we collected

150 15-puzzles all of which can be solved within 80 steps. Then,

these puzzles were separated into 15 groups depending on the

move counts of their optimal solutions. For example, the puzzles

with 55-60 moves in the optimal solution were grouped into 60.

Fig. 16 shows the relation between simulation counts (in

average) and puzzle groups. This experiment only tested the

feasibility of developing single-player game programs on

MCTS, but not for performance.

4. Conclusion

This paper designs a software framework for developing

computer game programs that are based on parallel

Monte-Carlo tree search (MCTS). This framework hides the

details of game-independent designs from computer game

developers, so that developers can concentrate on improving

heuristics related to game-specific knowledge. In this

framework, we used lock-free tree parallelization inside a

shared-memory system, and root parallelization over a

distributed-memory system.

To demonstrate the framework, we implemented a Go

program, named AMIGO, a Chinese dark chess program, and a

puzzle program. The experimental results of AMIGO for 9x9 Go

also demonstrated reasonable speedups and the strength

improvement. It is expected that more applications can be

designed based on the framework.

References

1) Coulom, R., Monte Carlo tree search in crazy stone. Game

Programming Workshop, pp. 74–75, Tokyo, Japan, 2007.

2) Arneson, B., Hayward, R. B., and Henderson, P., Monte Carlo Tree

Search in Hex, IEEE Transactions on Computational Intelligence and

AI in Game, Vol. 2, No. 4, December 2010.

3) Lorentz , R. J., Improving Monte-Carlo Tree Search in Havannah,

Computers and Games Lecture Notes in Computer Science, Vol. 6515,

pp. 105-115, 2011.

4) Yen, S.-J., Chou, C.-W., Chen, J.-C., Wu, I-C., Kao, K.-Y., The Art of

the Chinese Dark Chess Program DIABLE, Proceedings of the

International Computer Symposium ICS, 2012.

5) Ikehata N. and Ito T., Monte-Carlo Tree Search in Ms. Pac-Man,

IEEE Conference on Computational Intelligence and Games (CIG),

2011.

6) Finnsson H. and Bjornsson Y., Simulation-Based Approach to

General Game Playing, Proceedings of the Twenty-Third AAAI

Conference on Artificial Intelligence, 2008.

7) Tung-Ying Wu, I-Chen Wu, Chao-Chin Liang, Multi-Objective

Flexible Job Shop Scheduling Problem Based on Monte-Carlo Tree

Search, the 2013 Conference on Technologies and Applications of

Artificial Intelligence (TAAI 2013), Taipei, Taiwan, December 2013.

8) Kazuki Yoshizoe, Akihiro Kishimoto, Tomoyuki Kaneko, Haruhiro

Yoshimoto, Yutaka Ishikawa. Scalable Distributed Monte Carlo Tree

Search. Proceedings of the Fourth Annual Symposium on Combinatorial

Search, SOCS 2011, 2011.

9) Tobias Graf, Ulf Lorenz, Marco Platzner, and Lars Schaefers.Parallel

Monte-Carlo Tree Search for HPC Systems.In Proceedings of the 17th

International Conference Euro-Par, 2011.

10) Chaslot G.M.J.B., Winands M.H.M., and H.J. van den Herik.

Parallel monte-carlo tree search. Proceedings of the Conference on

Computers and Games 2008.

11) Yusuke Soejima, Akihiro Kishimoto and Osamu Watanabe.

Evaluating Root Parallization in Go, IEEE Transactions on

Computational Intelligence and AI in Games, Volume 2, Number 4,

pages 278-287, 2010.

12) Enzenberger M., Muller M., Fuego - An Open-source Framework

for Board Games and Go Engine Based on Monte-Carlo Tree Search,

IEEE Transactions Computational Intelligence and AI in Games, 2009.

13) Barney Pell. Strategy Generation and Evaluation for Meta-Game

Playing, PhD Thesis, University of Cambridge, 1993.

14) John W. Romein. Multigame - An Environment for Distributed

Game-Tree Search, Vrije Universiteit Amsterdam, 2001.

15) Yen, S.-J., Chou, C.-W., Chen, J.-C., Wu, I-C., Kao, K.-Y., The Art

of the Chinese Dark Chess Program DIABLE, Proceedings of the

International Computer Symposium ICS, 2012.

16) Zillions of Games, http://www.zillions-of-games.com/

17) R. E. Korf. Depth-first iterative-deepening: An optimal admissible

tree search. Artificial Intelligence, 27:97–109, 1985.

 Acknowledgments The authors would like to thank the

Ministry of Science and Technology of the Republic of China

(Taiwan) for financial support of this research under the contract

numbers NSC-102-2221-E-009-069-MY2 and

NSC-102-2221-E-009-080-MY2, and the National Center for

High-performance Computing (NCHC) for computer time and

facilities.

The 19th Game Programming Workshop 2014

- 126 -

http://www.zillions-of-games.com/

