
Prior Estimation in UCT based on the Sequential
Halving Algorithm

YUN-CHING LIU1,a) YOSHIMASA TSURUOKA1

Abstract:

Recent developments in the pure exploration formulation of the multi-armed bandits problem, have lead
to the development of algorithms that can efficiently identify and estimate the mean reward of the optimal
arm. Applications of these “pure exploration bandit algorithms” to game tree search have been of interest in
recent years, and most of which are in the modification of the selection stage in the Monte-Carlo Tree Search
(MCTS), trying to more effectively identify the principal variation. Instead of identifying the principal vari-
ation, another less explored possibility is utilizing the pure exploration bandit algorithms in estimating a
prior UCB value for a newly expanded node. In this research, we utilize the sequential halving algorithm,
which is a pure exploration bandit algorithm, for obtaining a prior estimation in the UCT algorithm. We
have demonstrate the performance and characteristics of our proposed method on the game of 9× 9 Go.
The experimental results shows that the method is enhanced the performance of the UCT algorithm, and
the use of sequential halving algorithm is more effective than uniformly distributing the simulations for
prior estimation. The proposed estimation method also displayed an interesting phenomenon of perform-
ing better when playing White. These results suggests there are potential in applying simple regret bandit
algorithms to prior estimation.

1. Introduction

The application of Monte-Carlo Tree Search (MCTS) in

various fields has achieved a number of interesting and im-

portant results, especially in the field of Computer Go[1].

The most successful variant of MCTS is the Upper Con-

fidence Bound on Trees (UCT) algorithm, which applies

the Upper Confidence Bound (UCB) algorithm to distribute

random simulations effectively and efficiently [2].

The UCB algorithm is an algorithm that optimally solves

the multi-armed bandits problem, or also known as the “k-

armed bandit problem”[6]. In the multi-armed bandits prob-

lem, a player faces a number of slot machines, also known

as “one-armed bandits”, and each machine produces a ran-

dom reward according to some unknown probability dis-

tribution when it is pulled. The objective of the player is to

maximize his or her sum of reward by a sequence of pulls

on these machines. The multi-armed bandits problem em-

bodies the essence of the exploration vs. exploitation dilemma,

in which exploitation is the decision to perform the “cur-

rent known” optimal action, and exploration is performing

an action to gather more information, but the action may

not be optimal[7]. The UCB algorithm solves the multi-

armed bandits problem by maintaining and upper confi-

dence bound value for each arm, and pulls the arm with

the highest value[6].

1 Department of Electrical Engineering and Information Systems,
Graduate School of Engineering, University of Tokyo,
Tokyo, Japan.

a) cipherman@logos.t.u-tokyo.ac.jp

The UCT algorithm is essentially a Monte-Carlo Method,

which performs a series of random simulations or iterations

to identify and estimate the value of the optimal move of a

position in a game[2]. Each iteration consists of four ma-

jor stages: selection, expansion, simulation, and backpropaga-

tion[3]. In the selection stage, we select a leaf node, and

then expand the selected leaf node in the expansion stage.

From the position of the expanded leaf node, we then play

random moves until the end of a game in the simulation

stage. Finally, we update relevant information maintained

in the nodes along the path that we have just visited, from

the expanded leaf node up to the root node. The UCT al-

gorithm continues to perform these iterations until some

stopping criteria is met, such as the time limit.

The UCT algorithm mainly uses the UCB algorithm in

the selection stage, by viewing each node as an indepen-

dent instance of the multi-armed bandits problem, where

each child node is a single arm. Therefore, an upper confi-

dence bound value is maintained for each expanded node,

and the UCT algorithm selects the leaf that has the highest

value to expand at each iteration [3]. It has been shown that

as the number of iterations n→∞, the minimax value of the

root node can be obtained[2].

Various enhancements for improving the performance of

the UCT algorithm have been proposed, and each method

has a different focus and approach, for example, some

methods have been focusing on modifying the random

simulations to approximate “real-games”[3][4], and some

have investigated the possibility of performing pruning [5].

The 19th Game Programming Workshop 2014

- 25 -

One major approach is on obtaining a good prior estima-

tion for a newly expanded node at each iteration, because

if the initialized UCB value of the newly expanded nodes

are close to its true value, the convergence rate of the tree

search can be increased significantly[1][8].

Recent developments in the pure exploration formula-

tion of the multi-armed bandits problem[13], have lead to

the development of algorithms that can efficiently identify

and estimate the mean reward of the optimal arm[13][20].

Applications of these “pure exploration bandit algorithms”

to game tree search have been of interest in recent years

[21][23], and most of which are in the modification of the

selection stage in theMonte-Carlo Tree Search (MCTS); they

all try to more effectively identify the principal variation.

Instead of identifying the principal variation, another less

explored possibility is utilizing the pure exploration bandit

algorithms in the estimating a prior UCB value for a newly

expanded node.

In this research, we use the sequential halving algo-

rithm[20], which is a pure exploration bandit algorithm, for

obtaining a prior estimation in the UCT algorithm. We will

first give a brief overview of related research in the next

section, and present our proposed method in section 3. We

will demonstrate the behaviour of our proposed method in

section 4, and finally discuss the results and possible direc-

tions for further investigation in section 5.

2. Related Work

In this section, we will begin by reviewing concept of

cumulative regret in the conventional setting of the multi-

armed bandit problem and the concept of cumulative re-

gret. We will then introduce the pure exploration formula-

tion of the multi-armed bandit problem, the concept of sim-

ple regret, and the relation between cumulative and simple

regret. Finally, an overview of the developments of bandit

algorithms for minimizing simple regret, and MCTS algo-

rithms based on these simple regret bandit algorithms will

be given.

2.1 Multi-armed Bandits Problem and Cumulative Re-

gret

The multi-armed bandit problem is a tuple < A ,R >,

where A is a known set of m arms (or “slot machines”), and

R a(r) = P[r|a] is an unknown probability distribution over

rewards. At each round the player selects an action at ∈ A ,

and the selected machine returns a reward rt according to

Rat . The objective is to maximize the cumulative reward

∑t
τ=1 rτ.

Suppose the mean reward for machine a is Q(a) = E[r|a],

and the optimal value V ∗ is defined by V ∗ = Q(a∗) =

maxa∈AQ(a), then the regret is the opportunity loss at a sin-

gle round It = E[V ∗−Q(at)]. Therefore, the cumulative regret

is the expected sum of opportunity loss over t rounds

Rt = E[∑t
τ=1V ∗−Q(aτ)]

It is easy to see that as the cumulative reward increases,

the cumulative regret will also decrease; therefore, the task

of an multi-armed bandits algorithm can also be equiva-

lently formulated as minimizing the cumulative regret.

2.2 Pure Exploration Multi-armed Bandits Problem and

Simple Regret

The pure exploration variation of the multi-armed ban-

dits problem was first proposed in 2009 by Bubeck et

al.[13]. While the objective in the conventional formula-

tion of themulti-armed bandits problem is to accumulate as

much reward as possible, the goal of the pure exploration

formulation is to identify the arm that has the highest ex-

pected reward, given a pre-determined number of rounds.

In other words, in the pure exploration formulation of

the multi-armed bandits problem, after a fixed number of

rounds, the algorithm should recommend an arm which

it identifies as the optimal arm. Therefore, the algorithm

should gather as much information as possible for mak-

ing the recommendation, and not worry about the cost paid

during play.

While the conventional setting was formulated to cap-

ture the essence of practical situations, where it is more

desirable to minimize the cost during the trials, such as

clinical trials[10][11], the pure exploration setting can be

found in applications, where it is more desirable that the

final product would be the best among all the tested pos-

sibilities, such as tests conducted in cosmetics, or channel

selection during the initialization of a mobile device[13].

Therefore, in the pure exploration formulation, instead of

minimizing the cumulative regret Rt = E[∑t
τ=1V ∗ −Q(aτ)],

one should minimize the simple regret, which is the dif-

ference between the expected reward of the recommended

arm and the true optimal arm. The simple regret is defined

as

rt = E[V ∗−Q(arec)],

whereV ∗ =Q(a∗) = maxa∈AQ(a), is the optimal arm that has

the highest mean reward, and Q(arec) is the mean reward of

the identified or the recommended arm arec after t rounds

of play.

Since the objective of pure exploration formulation is

to “recommend” the arm that has the highest expected

reward, apart from the allocation strategy, which decides

which arm to play in the next round, there is also a need for

a recommendation strategy, which determines the arm to rec-

ommend when the designated number of rounds has fin-

ished.

It has been shown that for allocation strategies ϕi on K-

arm bandits, in which all the bandits have a (Bernoulli) dis-

tribution ν1, · · · ,νK , there exists a constant C, such that the

cumulative regret is bounded by

E[Rt]≤Cε(t)
where ε(t) is a function that ε : {1,2, · · ·} → R. Then, for all

the recommendation strategies ψi based on these allocation

strategies ϕi, these exists a constant D, such that simple re-

gret will have the lower bound of

The 19th Game Programming Workshop 2014

- 26 -

E[rt]≥
∆
2

e−Dε(t)

where ∆ is the gap between the mean reward of optimal

arm and the second best arm[13].

This result shows that when minimizing the cumulative

regret, we are increasing the simple regret at the same time.

For example, an optimal algorithm for minimizing the cu-

mulative regret will often have ε(t) = log t, as it is for the

UCB algorithm. But this implies that these optimal algo-

rithms would only decrease the simple regret at a polyno-

mial rate. Therefore, a different approach needs to be taken

for tackling the pure exploration formulation of the multi-

armed bandit problem.

2.3 Simple Regret Bandit Algorithms

Since the formulation of the pure exploration of multi-

armed bandit problem, different efforts have been made to

develop algorithms for minimizing the simple regret, and

finding the theoretical lower bound.

In the initial development of simple regret bandit al-

gorithms, the approach of considering allocation and

recommendation strategy separately, has been taken[13].

Later developed algorithm adopts the approach that sys-

tematically ruling out arms that are sub-optimal, and

the last remaining arm would be the recommended

arm[14][15][16][17].

Recently, the theoretical lower bound has been estab-

lished and an optimal algorithm, the lil’ UCB algorithm,

has been proposed by Jamieson et. al.[19]. Suppose that we

are given K armed bandits, and their rewards are decided

by the distributions ν1,ν2, · · · ,νK
i.i.d
∼ N (∆,1), where the gap

between any two bandits ∆ 6= 0 is unknown. Consider test-

ing whether ∆ > 0 or ∆ < 0. Let Y ∈ {−1,1} be the decision

of any such test based on T samples and let δ ∈ (0,1/2). If
sup∆ 6=0P(Y 6= sign(∆)) ≤ δ then

limsup
∆→0

E∆[T]

∆2 log log∆2
≥ 2−4δ

This theoretical lower bound is derived from law of the

iterated logarithm (LIL), which describes the magnitude of

the fluctuations of a random walk.

2.3.1 Monte-Carlo Tree Search based on Simple Regret

Bandit Algorithms

Recently, there have been increasing interests in applying

simple regret bandit algorithms to MCTS.

It has been argued that the pure exploration formula-

tion of the multi-armed bandits algorithm is actually more

suited to the task of game tree search, since the objective is

not only give an evaluation value of the current game po-

sition, but also decide the best move or course of action to

execute[21].

The Simple Regret + Cumulative Regret (SR+CR) MCTS

sampling scheme takes a hybrid approach in adopting both

simple regret and conventional bandit algorithms inMCTS.

The overall process of the SR+CR MCTS sampling scheme

is mostly the same as the UCT algorithm, except that sim-

ple regret bandit algorithms are used in the first level of

the game tree, and the UCB algorithm is used for the rest.

It has been demonstrated to have better performance than

the UCT algorithm in certain situations [21].

On the other hand, the Sequential Halving on Trees

(SHOT) algorithm is an MCTS algorithm that is based

purely on simple regret bandit algorithms [23]. The SHOT

algorithm iteratively expands the game tree, and a fixed

budget of playouts are performed in each iteration. The

playouts are allocated according to the Sequential Halving

algorithm, which is a near optimal simple regret bandit al-

gorithm [20]. The SHOT algorithm has been demonstrated

to outperform the UCT algorithm on the game of NoGo.

The H-MCTS algorithm is a hybrid of the SHOT algo-

rithm and the UCT algorithm[22]. Similar to the SR+CR

MCTS sampling scheme, the H-MCTS algorithm utilize the

SHOT algorithm on top part of the expanded game tree,

and the UCT algorithm in deeper depths. The H-MCTS

algorithm has shown to outperform the UCT algorithm

on various games, such as Amazons, AtariGo, and Break-

though.

3. Proposed Method

As shown in the previous section, most approaches that

adopts simple bandit algorithms in MCTS are mainly fo-

cused on the selection stage of the MCTS. Rather than the

selection stage, we investigate the possibility of utilizing

simple bandit algorithm for prior estimation in the expan-

sion stage of MCTS.

In this section, we will first give some preliminary obser-

vation in the general process of game tree search, and then

present the Sequential Halving algorithm, which we will

adopt in our method. Finally, we will show our method of

prior estimation by utilizing the Sequential Halving algo-

rithm.

3.1 Exploration and Evaluation

If we take a step back and observe the general search

process on the game tree, we can break the process into

two main tasks: exploration and evaluation. When search-

ing on the game tree, the task of exploration is the decision

of which part of the game tree should be expanded, and the

task of evaluation is to estimate a value of a node, since we

could not search the game tree exhaustively. In the conven-

tional game tree search methods, the expansion and evalu-

ation tasks are mostly achieved by the αβ-search algorithm

and evaluation function, respectively. Various methods

have been developed to enhance the performance in these

two respective tasks. For example, αβ pruning enhances

performance in the exploration task, and auto parameter

tuning and machine learning enhances performance in the

evaluation task.

The exploration and evaluation tasks can also be ob-

served in MCTS. The exploration task can be mainly ob-

The 19th Game Programming Workshop 2014

- 27 -

served in the selection stage, since it decides where in the

game tree should we expand, and it is mainly dictated by

the adopted bandit algorithms. The evaluation task can be

observed in the expansion and simulation stage. Similar

to that of the conventional game tree search methods, en-

hancement heuristics can also be roughly categorized in ac-

cording to these two tasks, for example, progressive prun-

ing [5] in the exploration task, and RAVE in the evaluation

task [8].

Since the main objective of the pure exploration multi-

armed bandit algorithm is to identify the optimal arm in a

given budget of plays, it is natural to expect simple bandit

algorithms should estimate the expect reward of each arm

efficiently. Therefore, utilizing simple bandit algorithms to

enhance the performance of the evaluation task in MCTS

seems to be promising possibility.

It has been shown that a good initialization value given

to the newly expanded node, can enhance the speed of con-

vergence in MCTS[8], and that simple bandit algorithms

seem to be able to estimate the average reward efficiently.

Hence, we utilize the simple bandit algorithms in estimat-

ing the prior of the newly expanded nodes.

3.2 Sequential Halving Algorithm

The simple bandit algorithm we have adopted is the se-

quential halving algorithm[20].

The sequential halving algorithm is depicted in Algo-

rithm 1. It divides the given budget of plays into a num-

ber of iterations, and in each iteration the number of pulls

on each arms are equal. Each iteration will eliminate worst

half of the arms, and then retain the top half.

An example is shown in Figure 1. There are four possi-

ble actions A1, A2, A3, and A4. The given budget is 64 plays,

and the plays are divided into three iterations. In the first

iteration, each action is sampled 8 times, with A1 winning

7 games, A2 winning 3 games, A3 winning 8 games, and

A4 winning 5 games. Hence we eliminate the worst half,

namely A2 and A4, and retain A1 and A3 for further sam-

pling. In the second iteration, we further sample 16 more

games on A1 and A3. Therefore, together with the first iter-

ation, A1 and A3 are sampled a total of 24 times, winning a

total of 19 and 22 out of 24 games, respectively. Since we

have reached the given number of budget, we recommend

the action of A3 in the third iteration.

The reason for choosing the sequential halving algorithm

is that the only parameter we need to give is the total bud-

get of plays, which significantly simplifies the task of per-

formance tuning. Although the lil’UCB algorithm, intro-

duced in Section 2, has been shown to be optimal, and se-

quential halving is only “near” optimal, the lil’UCB algo-

rithm has more parameters that are needed to tune, which

may significantly make the task of identifying the key fac-

tors that affect performance more complicated.

3.3 Prior Estimation by Simple Bandit Algorithms

We will use the UCT algorithm as our MCTS algorithm,

but instead of just performing a single simulation in the

simluation stage, as shown in Figure 2(a), we perform a pre-

determined number of simulations to obtain a more accu-

rate estimation of the UCB value of the newly expanded

node, as depicted in Figure 2(b).

Since we are performing search on game trees, the value

of the newly expanded node will most likely be close to the

value of its optimal child node. Hence, in order to obtain

a more accurate estimation, distributing more simulations

to a child node that will most likely have the optimal value

is more desirable. Hence, we utilize the sequential halving

algorithm to distribute the simulations performed for ini-

tializing the newly expanded node among its child nodes.

The UCB value of each node is the same as the UCT al-

gorithm, which is defined as follows[2]:

UCBi = vi +C

√

log N
ni

where vi is the value of node i, ni is the number of times

that node i has been visited, N is the number of times that

the parent of node i has been visited, and C is a constant

parameter. The results of the simulations are only used for

updating the the winning rate vi in the UCB formula, while

the updating for other terms remains the same, that is ni

is initialized to 1. This is due to the fact that the criteria

of distributing simulations by sequential halving and UCB

are different; therefore, the number of times visited, namely

the N and ni terms, can not be transferable, but the value vi

for each move should be the same.

4. Experimental Results

We performed two experiments to demonstrate the per-

formance and behaviour of our proposedmethod. The first

experiment is a comparison between the pure UCT algo-

rithm and our proposed method. The second experiment is

a comparison between uniform and sequential halving dis-

tribution of the multiple simulations performed for node

initialization.

4.1 Experimental Settings

The experiments are performed on the game of 9×9 Go.

A total of 1000 playouts are performed for each tree search,

with pure random simulations. A match of 100 games

were performed for each comparison experiment, and each

method takes turns in playing Black and White.

4.2 Performance Against Pure UCT

The constant c in theUCB formulawas set to 0.31 for both

pure UCT and UCT with prior estimation. We performed

64 simulations for initializing newly expanded nodes in our

proposed method of prior estimation.

Our proposed method won 61 games out of the 100,
achieving a winning rate of 61%.

This result shows that our method effectively enhanced

the performance of the UCT algorithm, although this is not

The 19th Game Programming Workshop 2014

- 28 -

Algorithm 1 Sequential Halving Algorithm [20]

1: SequentialHalving(budget)

2: S← [possibleMoves]

3: while |S|> 1 do

4: for each move m in S do

5: play(m)

6: perform ⌊ budget
|S|×⌈log2(possibleMoves)⌉⌋ playouts

7: undo(m)

8: end for

9: S← the set of ⌈ |S|2 ⌉moves with the largest empirical average

10: end while

Fig. 1: An example of the sequential halving algorithm. There are four possible actions A1, A2, A3, and A4. The budget is 64 playouts, divided into 3
iterations. The action A3 is the recommended action of the algorithm.

surprising, since our proposedmethod performed far more

number of simulations despite the same number of play-

outs are performed for both methods.

An interesting observation is that 43 of the 61 games that

our proposed method won are with White, which hints

there is an unbalance in the performance of our proposed

method.

4.3 Performance Comparison with Uniform Distribu-

tion of Simulations

We investigate the difference between utilizing sequen-

tial halving and uniform distribution of the multiple simu-

lations performed for prior estimation. There are two pos-

sible factors that might affect the performance, namely the

number of given budget, and the value of the constant C in

the UCB value. We will observe their influence separately.

4.3.1 Comparison between Different Budget

The performance against the uniform distribution of the

multiple simulations given different budget are shown in

Table 1.

Budget No. of Win Games Wins with White
16 55 32
32 52 37
64 50 33

128 34 34
Table 1: Comparison with uniform distribution of initialization simu-
lations. Variation of given simulation budget of simulations for node
value initialization.

We can observe that the performance of distribution

by sequential halving converges to that of uniform distri-

bution when the number of given simulation budget in-

creases. The winning rate is roughly the same when the

budget of 64 is given, but worsens when a budget of 128 is

given.

This shows that distribution by sequential halving is

more effective in prior estimation with a smaller number

of budget, but less effective or even worse when the bud-

get increase.

The 19th Game Programming Workshop 2014

- 29 -

Fig. 2: Methods of initializing UCB values for newly expanded nodes. The grey node is the newly expanded node, and the dotted line indicates a single
random simulations performed to initialize the UCB of the grey node.

We have also observed the same phenomenon as in the

experiment against pure UCT, where our proposedmethod

is more effective when playing with White.

4.3.2 Comparison between Different Setting of Explo-

ration Constant

The performance against the uniform distribution of the

multiple simulations given different number of budget are

shown in Table 2.

constant C No. of Win games Wins with White
0.05 60 37
0.1 58 36
0.3 52 37
0.6 47 36

Table 2: Comparison with uniform distribution of initialization sim-
ulations. Variation of different settings of the constant C in the UCB
formula.

We can observe that the performance of distribution by

sequential halving is more effective with C set to a smaller

value. The winning rate is roughly the same when C is set

to 0.3, and worsens when set to 0.6.
This shows that distribution by sequential halving has

higher accuracy in prior estimation. Therefore, less explo-

ration is needed, and thus the value ofC should be smaller.

Again, the same phenomenon has also been observed,

where the distribution by sequential halving performs bet-

ter when playing with White.

5. Conclusion

We have proposed a new method for prior estimation in

the UCT algorithm. The method performs a number of

predetermined number of simulations distributed by the

sequential halving algorithm.Experiments show promising

results, and performs particularly well when playing with

White, which is a very interesting phenomenon.

This research is a preliminary investigation into the pos-

sibility of using simple bandit algorithms for prior estima-

tion in the UCT algorithm. The results has shown some

potential in this approach, but it should be noted that the

proposed method might still not be practical in real game-

play, because the extra time for performing prior estima-

tion simulations might be better spent on the expansion of

the game tree. Modifications, such as logistic regression to

model the simple regret bandit based prior estimation, are

a possibility for making such an approach practical.

Further investigations are needed to identify the reason

to its uneven performance and other characteristics. Explo-

rations in to the possibilities of utilizing different pure ex-

ploration bandit algorithms for simulation distribution or

integration with other methods, such as RAVE[8], will cer-

tainly be of interest.

References

[1] Browne, C., Powley, E.J., Whitehouse, E., Lucas, S.M., Cowl-
ing, P.I., Rohlfshagen, Tavener, P.S., Perez, D., Samothrakis,
S., Colton, S.: A Survey of Monte Carlo Tree Search Methods.
In: IEEE Transactions on Computational Intelligence and AI in
Games, 4(1):143 (2012)

[2] Kocsis, L., Szepesvari, C.: Bandit based Monte-Carlo planning.
In: Proceedings of the 17th European conference on Machine
Learning, pp. 282-293 (2006)

[3] Gelly,S., Wang, Y., Munos,R., Teytaud O.: Modification of
UCT with Patterns in Monte-Carlo Go. Technical report, INRIA
(2006)

[4] Coulom, R.: Computing Elo Ratings of Move Patterns in the
Game of Go. In: ICGA Journal, 30(4), pp.198-207 (2007)

[5] Bouzy, B.: Move-Pruning Techniques for Monte-carlo Go. In:
Proceedings of the 11th International Conference on Advances
in Computer Games. pp. 104-119 (2006)

[6] Auer, P., Cesa-Bianchi,N., Fischer, P.: Finite-time analysis of
the multi-armed bandit problem. In: Machine learning, 47(2-
3):235256 (2002)

[7] Sutton, R., Barto, A.: Reinforcement Learning, MIT Press,(1998)
[8] Gelly, S., Silver, D.: Combining Online and Offline Knowledge

in UCT. In: Proceedings of the 24th International Conference on
Machine Learning. pp. 273-280 (2007)

[9] Chaslot, G., Winands, M., Uiterwijk, J., van den Herik, J., Bouzy,

The 19th Game Programming Workshop 2014

- 30 -

B.:Progressive Strategies for Monte-Carlo Tree Search. In: New
Mathematics and Natural Computation, Vol. 4, No. 3. pp. 343-
357 (2008)

[10] Robbins, H: Some aspects of the sequential design of experi-
ments. In: Bulletin of the AmericanMathematical Society, 58 (5)
pp. 527535 (1952)

[11] Lai, T.L.,Robbins, H. (1985): Asymptotically efficient adaptive
allocation rules. In: Advances in applied mathematics 6 (1): 4
(1985)

[12] Bubeck, S., Cesa-Bianchi, N.: Regret Analysis of Stochastic and
Nonstochastic Multi-armed Bandit Problems. In: Foundations
and Trends in Machine Learning, Vol 5: No 1, pp. 1-122 (2012)

[13] Bubeck, S., Munos, R., Stoltz, G.: Pure exploration in multi-
armed bandits problems. In: Proceedings of the 20th Interna-
tional Conference on Algorithmic Learning Theory (2009)

[14] Audibert, J.-Y., Bubeck, S., Munos, R. : Best Arm Identifica-
tion inMulti-Armed Bandits. In: Proceedings of the 23th annual
conference on Computational Learning Theory (2010)

[15] Gabillon, V., Lazaric, A., Ghavamzadeh, M., Bubeck, S.:Multi-
bandit Best Arm Identification. In: Proceedings of the Twenty-
Fifth Annual Conference onNeural Information Processing Sys-
tems (2011)

[16] Kalyanakrishnan, S., Tewari, A., Auer, P., Stone, P.: PAC Subset
Selection in Stochastic Multi-armed Bandits. In: Proceedings of
the 29th International Conference on Machine Learning (2012)

[17] Bubeck, S., Wang, T., Viswanathan, N.: Multiple Identifications
in Multi-Armed Bandits. In: Proceedings of the 30th Interna-
tional Conference on Machine Learning (2013)

[18] Munos, R.:From bandits to Monte-Carlo Tree Search: The op-
timistic principle applied to optimization and planning. In:
Foundations and Trends in Machine Learning, pp. 1-130 (2013)

[19] Jamieson,L., Malloy, M., Bubeck, S., Nowak, R.: lil’ UCB: An
Optimal Exploration Algorithm for Multi-Armed Bandits. In:
Proceedings of the 27th annual conference on Computational
Learning Theory (2014)

[20] Karnin, Z., Koren, T., Somekh, O.: Almost Optimal Exploration
in Multi-Armed Bandits. In: Proceedings of the 30th Interna-
tional Conference on Machine Learning.pp. 1238-1246 (2013)

[21] Tolpin, D., Shimony, S.E.: MCTS Based on Simple Regret. In:
Proceedings of the 26th AAAI Conference on Artificial Intelli-
gence, pp. 570576 (2012)

[22] Pepels, T., Cazenave, T., Winands, M.H.M., Lanctot, M.: Min-
imizing Simple and Cumulative Regret in Monte-Carlo Tree
Search. In: Proceedings of Computer Games Workshop at the
21st European Conference on Artificial Intelligence (2014)

[23] Cazenave, T.: Sequential Halving Applied to Trees. IEEE Trans-
actions on Computational Intelligence and AI in Games (2014)

The 19th Game Programming Workshop 2014

- 31 -

