
3bOS: A flexible and lightweight embedded OS
operated using only 3 buttons

Encarnacion, Immanuel V†1,1,a) Ryohei Kobayashi1,b) Kenji Kise1,c)

Abstract: An embedded system we developed, the MieruEMB system, is used as an educational kit for
learning implementation skills and knowledge regarding embedded systems. In this paper we present 3bOS,
a simple and easily customizable embedded OS, running on the MieruEMB system. 3bOS comes with a
three-button interface and a built-in file explorer for FAT file systems. 3bOS is capable of running ELF exe-
cutables, providing approximately 400 KB of memory for an application. It can also support basic graphics
functions. This embedded OS is written in C, and just consists of around 800 lines of the code. Because of
its simplicity, users can easily understand how this embedded OS runs on the MieruEMB system, and can
easily modify this embedded OS if they want. We show the design, the implementation, and the features of
3bOS, and conclude that 3bOS is usable for educational purposes.

Keywords: Embedded System, FPGA, Lightweight, OS, Education

1. Introduction

Recently, the growth in popularity of embedded systems

have enabled their use in several fields and applications, such

as car electronics, medical products, and communication de-

vices. These backgrounds desire engineers who have skills

and knowledge about embedded systems.

We have developed an embedded system, named

MieruEMB[1], as an educational kit. Fig. 1 shows the

MieruEMB system. The MieruEMB is composed of a MIPS

processor on an FPGA(Xilinx Spartan XC3S500E), along

with a 512 KB SRAM. The I/O is composed of three push

buttons, a 128 × 128 pixel 16-bit color LCD screen, an SD

card slot. This embedded system is used in experiments

on computer science[2] to learn implementation skills and

knowledge regarding embedded systems, ranging from

soldering to software application development (Fig. 2).

This paper presents 3bOS, an operating system designed

with simplicity and flexibility in mind. 3bOS runs on the

MieruEMB system, and is operated using only three push

buttons. This OS aims to be used for educational pur-

poses; users can easily understand how this OS runs on

the MieruEMB system, and they can easily implement their

desired features. The operating system itself is stored in

the SD card, along with some files and programs. 3bOS is

capable of reading FAT-formatted SD cards. The OS has

a built-in file explorer, which can be used to navigate the

folder structure, as well as read and scan file contents.

Besides, the OS is capable of running ELF executables

1 Tokyo Institute of Technology, Japan
†1 Presently with University of the Philippines, Philippines
a) iman@arch.cs.titech.ac.jp
b) kobayashi@arch.cs.titech.ac.jp
c) kise@cs.titech.ac.jp

Fig. 1 MieruEMB System.

which are compiled for 32-bit MIPS. Compiling the ELF file

is simple; it only needs a few included libraries for it to work

properly.

In this paper, we show the design, the implementation,

and the features of 3bOS, and conclude that 3bOS is usable

for educational purposes. The paper is organized as follows.

Section 2 talks about the design choices made in the OS. In

Section 3, we show the challenges encountered in its imple-

mentation. We discuss 3bOS in Section 4, and conclude this

paper in Section 5.

2. Design

Several design choices were made in each step of 3bOS.

As mentioned previously, most choices were based on sim-

plicity and flexibility. The important design choices will be

discussed in this section.

2.1 Instruction Set Architecture

While the operating system is mostly architecture-

組込みシステムシンポジウム 2014
Embedded Systems Symposium 2014

ⓒ 2014 Information Processing Society of Japan 126

ESS2014
2014/10/24

Fig. 2 Experiments on Computer Science IV EMB.

512KB

1KB

16KB

SRAM

0x000000

0x07FFFF

19-bit Physical
Address Space

General
MMIO
MMC
MMIO

MMIO: Memory Mapped I/O
MMC : Multi Media Card

0x800000

0x8003FF

Video
Memory

0x900000

0x903FFF

4GB

Fig. 3 32-bit Address Space.

independent, it still contains some low-level assembly code.

Hence, a good target architecture should be decided on be-

forehand. For this purpose, 32-bit MIPS was chosen, for

its simplicity and widespread use, especially for educational

purposes[3]. It should be noted though that even though

3bOS is architecture-dependent, it is relatively easy to port

across architectures, as most of its low-level code is kept at a

minimum. Therefore, if the user wants to port it to another

architecture, the user only modifies parts of codes written

in assembly.

2.2 I/O

The I/O is also kept as simple as possible by using

memory-mapped I/O. Physical addressing problems usually

brought by memory-mapped I/O, such as buffer overflows

from the physical RAM to the I/O address space, are not

present. This is because addresses are 32-bit, even though

the RAM is small (512 KB). Fig. 3 shows 32-bit address

space in this system. Very large address values are as-

signed to the memory-mapped I/O, hence a large gap be-

tween RAM addresses and I/O addresses is present. This

prevents pollution of memory-mapped I/O’s address space

from buffer overflows.

2.3 Storage and the Operating System

The SD card serves as the primary storage device of the

system. Fig. 4 shows the SD card contents. It holds the

Fig. 4 The SD card contents.

OS, generic files, and ELF executables. 3bOS is a binary

file which contains the memory image of the operating sys-

tem. When the system is turned on, a hardware module

called the program loader copies the contents of the binary

file to memory. The operating system is then started by

setting the program counter at the entry point. Unlike the

OS, application programs are ELF executables and are much

smaller in size.

Similar to many other small embedded systems, the 3bOS

is programmed with a super-loop[4], where the OS has an

infinite loop that executes processes and does background

tasks. In the super-loop, all the tasks the processor has to

do is done in one cycle of the loop, such as I/O reading

and writing. Threading and modularity is basically non-

existent, which introduces a lot of complexity in coding and

debugging the super-loop. To reduce complexity, we made

sure that the only tasks running in the main loop are the

most necessary ones, which in this case would be the button

interaction.

2.4 File system and File explorer

The FAT file system is chosen for its simplicity and its

popularity on many platforms. Hence, it is suitable to

choose the FAT file system as an educational purpose.

A file explorer is included with the operating system; it

is not implemented as an ELF executable. This way, the

operating system can be executed and be usable even as

a standalone, and would not depend on any external pro-

grams or libraries. As an educational tool, it would be more

user-friendly if it could work right out of the box. Fig. 5

shows the file explorer screen flow. The file explorer is able

to navigate directories, as well as open files. File contents

can be scanned after opening, and is useful for debugging

executables and the OS itself.

It is again important to note that, for simplicity, the OS is

only driven by user interaction. During its idle time, the OS

does nothing except for managing the button I/O. In other

words, no background computations such as animations or

background processes are made.

組込みシステムシンポジウム 2014
Embedded Systems Symposium 2014

ⓒ 2014 Information Processing Society of Japan 127

ESS2014
2014/10/24

View
Directory!

View
Subdirectory!

View
File

View/Run
Executable

User picks
directory!

User picks file

User picks executable

Fig. 5 Basic file explorer screen flow. The blue arrows indicate
that you can go back from the current screen to the pre-
vious one.

2.5 Executables

The standard format of linux executables, ELF (Exe-

cutable and Linkable Format), is one of the most popular

forms of programs today. ELF files are capable of a lot of

features such as shared libraries and core dumps, but only

the most basic features are supported in 3bOS. For instance,

the OS only supports static instead of dynamic linking. Dy-

namic linking could also be implemented without spending

a lot of resources, but it would add much complexity to the

OS. Therefore, we did not think that dynamic linking is

suitable for basic OS knowledge, and did not include it in

3bOS.

3. Implementation

3.1 Compiling the OS

The operating system is mostly coded in C, then com-

piled with gcc for MIPS[5]. Before the main code is run, a

startup script is first executed, which contained the assem-

bly instructions for resetting the registers (Fig. 6). These

files are compiled and linked together using a custom linker

script (Fig. 7). The OS is then loaded into a memory image,

which would then be copied into memory once the system is

turned on. Fig. 8 shows the memory layout for 3bOS. The

program entry point is fixed, and the stack for both the OS

and the application programs are the same.

It is also worth noting that most common C libraries such

as stdio or stdlib are not used. Instead, only necessary func-

tions are implemented, such as a printf-like function. Fig. 9

shows character outputs using the printf-like function. But,

unlike the standard printf, the implemented printf has fewer

patterns and do not have compile-time type checking.

3.2 Executing Programs

Whenever the user wants to execute an ELF file in the

3bOS, a pre-execution menu is first displayed, confirming

if the user indeed wants to run the program, or if the user

wants to open it as a text file instead (Fig. 10). The “back”,

“run”, and “read” in pre-execution menu correspond to the

left, center, and right buttons on the MieruEMB system re-

spectively. 3bOS displays 3 actions that correspond to 3

1 .text
2 .globl _start
3 .ent _start
4 _start:
5 .set noreorder
6 .set noat
7
8 nop
9 move $1, $0

10 move $2, $0
11 move $3, $0
12 move $4, $0
13 move $5, $0
14 move $6, $0
15 move $7, $0
16 move $8, $0
17 move $9, $0
18 move $10 , $0
19 move $11 , $0
20 move $12 , $0
21 move $13 , $0
22 move $14 , $0
23 move $15 , $0
24 move $16 , $0
25 move $17 , $0
26 move $18 , $0
27 move $19 , $0
28 move $20 , $0
29 move $21 , $0
30 move $22 , $0
31 move $23 , $0
32 move $24 , $0
33 move $25 , $0
34 move $26 , $0
35 move $27 , $0
36 move $28 , $0
37 move $29 , $0
38 move $30 , $0
39 move $31 , $0
40 li $sp , 0x7f000
41 j main # jump to the main
42 nop
43
44 .end _start

Fig. 6 The Assembly Instructions for Resetting the Registers.

1
2 ENTRY(_start)
3
4 SECTIONS
5 {
6 .startup 0x0000 : { startup.o(.text) }
7 . = 0x0200;
8
9 .init : { KEEP (*(. init)) } = 0

10 .plt : { *(.plt) }
11 .text : { *(. text .stub .text.*
12 .gnu.linkonce.t.*)
13 KEEP (*(. text)) } = 0
14 .fini : { KEEP (*(. fini)) } = 0
15 .rodata : { *(. rodata .rodata .*
16 .gnu.linkonce.r.*) }
17 .tdata : { *(. tdata .tdata .*
18 .gnu.linkonce.td.*) }
19 .tbss : { *(. tbss .tbss.*
20 .gnu.linkonce.tb.*)
21 *(. tcommon) }
22 .ctors : { start_ctors = .;
23 KEEP (*(SORT(.ctors .*)))
24 KEEP (*(. ctors))
25 end_ctors = .; }
26 .dtors : { start_dtors = .;
27 KEEP (*(SORT(.dtors .*)))
28 KEEP (*(. dtors))
29 end_dtors = .; }
30 .data : { *(. data .data.*
31 .gnu.linkonce.d.*)
32 SORT(CONSTRUCTORS) }
33 .got.plt : { *(. got.plt) }
34 . = .;
35 _gp = ALIGN (16) + 0x7ff0;
36 .got : { *(.got) }
37 .bss : { *(. dynbss)
38 *(.bss .bss.*
39 .gnu.linkonce.b.*)
40 *(COMMON) }
41 }

Fig. 7 A Custom Linker Script.

buttons dynamically.

The user can run the ELF file by pressing the center but-

ton, or can open it as a text file by pressing the right button.

The state saving, program loading, and program counter

組込みシステムシンポジウム 2014
Embedded Systems Symposium 2014

ⓒ 2014 Information Processing Society of Japan 128

ESS2014
2014/10/24

Fig. 8 Physical Memory Layout.

Fig. 9 Character outputs using
the Printf-like Function.

jump happens in this screen. After the executable exits, the

OS returns to this screen.

To implement this feature, it is necessary to accurately

save and restore both processor and memory state. The

memory to be saved is composed of two parts: the stack,

and the video memory. Since these memory chunks are too

large, saving them somewhere (such as the SD card) would

introduce a lot of overhead in the code. As a fix, the stack

could be left as it is, and the new program could just build

over the existing stack, leaving the older variables intact.

This comes with the limitation of a smaller available mem-

ory space for programs.

The problem in the implementation of this feature is the

video memory, since it would be overwritten when the new

program runs. When the pre-execution menu opens, it

draws the UI on the screen, but that UI should also be

restored after the program exits. A possible workaround

Fig. 10 A rendering of the 3bOS File explorer and the Pre-
execution menu UI.

would be to save the state before the pre-execution menu

UI is drawn. In other words, when the executable exits,

the state is restored, and the OS acts again as if the pre-

execution menu just opened.

However, in this case it is inevitable that there will

be some instructions between state saving and the actual

changing of the program counter (Fig. 11). Doing this will

most likely change the current stack after the state has been

saved. This will result in an imperfect state restoration,

since the stack in the restored state is different.

The solution is shown in Fig. 12, where the state saving

is done after user interaction, instead of before it. The pre-

execution menu UI is first drawn, and when the user presses

the “Run” button, the state is saved and the program is ex-

ecuted. When the program exits, the state is restored and

the program counter is restored to the instruction right af-

ter the user presses “Run”. We can now put a flag called

“done” here, so we can check whether or not the program

has been run. If “done == true”, then the program jump is

skipped, and the instruction goes on. The important point

here is that the flag done should be a global variable, so that

it is not stored in the stack, so that the stack remains un-

changed when the program is called. After that, the redraw

functions are called to display the UI again.

3.3 Loading ELF Executables into Memory

Fig. 13 shows the loading process of an ELF file. The

ELF file should be interpreted and its sections should be

copied into specific locations in memory. Since only static

linking is used, no shared external libraries were needed to

be loaded, keeping the code simple. A fixed, predefined

memory address that is set from the linker script, which de-

fines where the program should be loaded in memory. Since

the entry point is fixed, a single jump instruction would be

enough to go to the program’s instructions. In saving the

current state, all the register values are saved to memory

using assembly code. The program counter is then moved

to the entry point of the program.

3.4 Program Exit Procedure

Since the operating system does not use threads, exiting

to the OS can only be done by the program. All programs

should run an exit procedure, in which the register states

and the program counter would be restored (Fig. 14). This

組込みシステムシンポジウム 2014
Embedded Systems Symposium 2014

ⓒ 2014 Information Processing Society of Japan 129

ESS2014
2014/10/24

Fig. 11 Execution Procedure (wrong behavior).

exit procedure is implemented in assembly, and can be exe-

cuted by programs by including a simple OS library which

is added at compile-time. Exiting can be done in code by

just using a simple function call.

3.5 Debugging the OS

While creating basic components for the OS such as the

drivers and program execution, some painstaking debugging

is done. Since there is no simple way to communicate with

the system, the only way to debug on the system side is by

printing logs on the screen. Most of the time, these logs

are used to inspect memory contents. Debugging SD card

reading/writing, for instance, also required reading the SD

card with a hex editor on a PC (Fig. 15) to verify correct-

ness. As it is not easy to locate the correct data addresses

in the hex editor, some techniques such as inserting unique

constants are done. Unique constants are inserted in several

parts of the code, to act as markers. This will make it easier

to find certain instructions adjacent to those markers when

debugging binaries and machine code using hex editors.

4. Discussion

Fig. 16 shows the 3bOS file explorer running on the

MieruEMB system. Users can select the ELF files that they

want to run.

We show 3bOS’s important points, and conclude that

3bOS is usable for educational purposes.

• Simplicity and Flexibility

– The finished code consists of just around 800 lines to-

Fig. 12 Execution Procedure (fixed).

Fig. 13 The Loading Process of an ELF File.

tal. In terms of the number of lines of code, 3bOS is

about one-eighth the size of FreeRTOS[6]. The small

number of lines of code, especially considering most op-

erating systems, shows 3bOS’ simplicity. Hence, users

can easily understand how this embedded OS runs on

the MieruEMB system, and can easily modify this em-

組込みシステムシンポジウム 2014
Embedded Systems Symposium 2014

ⓒ 2014 Information Processing Society of Japan 130

ESS2014
2014/10/24

1
2 void os_exit () {
3 asm("li␣$t9 ,␣0x7ff00;");
4 asm("addi␣$t9 ,␣$t9 ,␣ -32;");
5 asm("lw␣$9,␣0($t9);");
6 asm("lw␣$8,␣4($t9);");
7 asm("lw␣$7,␣8($t9);");
8 asm("lw␣$6,␣12($t9);");
9 asm("lw␣$5,␣16($t9);");

10 asm("lw␣$4,␣20($t9);");
11 asm("lw␣$3,␣24($t9);");
12 asm("lw␣$2,␣28($t9);");
13 asm("addi␣$t9 ,␣$t9 ,␣ -32;");
14 asm("lw␣$17 ,␣0($t9);");
15 asm("lw␣$16 ,␣4($t9);");
16 asm("lw␣$15 ,␣8($t9);");
17 asm("lw␣$14 ,␣12($t9);");
18 asm("lw␣$13 ,␣16($t9);");
19 asm("lw␣$12 ,␣20($t9);");
20 asm("lw␣$11 ,␣24($t9);");
21 asm("lw␣$10 ,␣28($t9);");
22 asm("addi␣$t9 ,␣$t9 ,␣ -32;");
23 asm("lw␣$24 ,␣4($t9);");
24 asm("lw␣$23 ,␣8($t9);");
25 asm("lw␣$22 ,␣12($t9);");
26 asm("lw␣$21 ,␣16($t9);");
27 asm("lw␣$20 ,␣20($t9);");
28 asm("lw␣$19 ,␣24($t9);");
29 asm("lw␣$18 ,␣28($t9);");
30 asm("addi␣$t9 ,␣$t9 ,␣ -28;");
31 asm("lw␣$31 ,␣4($t9);");
32 asm("lw␣$30 ,␣8($t9);");
33 asm("lw␣$29 ,␣12($t9);");
34 asm("lw␣$28 ,␣16($t9);");
35 asm("lw␣$27 ,␣20($t9);");
36 asm("lw␣$26 ,␣24($t9);");
37 asm("addi␣$t9 ,␣$t9 ,␣28;");
38 asm("lw␣$25 ,␣0($t9);");
39 asm("nop;");
40 asm("jr␣$ra;");
41 }

Fig. 14 The Program Exit Procedure.

Fig. 15 Debugging the SD Card.

bedded OS as they desire.

• Low Memory Usage

– The maximum memory usage of the operating system

itself is very small. This leaves around 400 KB of us-

able space for running programs, which is around 80%

of the total size of the main memory. The amount

of available memory for programs is also relatively de-

cent, taking into account that most programs meant to

be run in this OS are non-intensive and perform only

simple tasks.

The 3bOS is simple and flexible. Hence, it is suitable to

use this embedded OS as an educational material. Its low

memory usage also enables users to develop richer programs

and features.

5. Conclusion

We have introduced 3bOS, a simple and customizable

embedded OS operated using only 3 buttons. The design

choices made to achieve simplicity and flexibility were ex-

Fig. 16 OS with file explorer on screen.

plained. Important details of the system implementation

was discussed. Finally, we showed some metrics highlight-

ing 3bOS’ size and simplicity.

Since this embedded OS is simple, users who want to learn

OS programming can easily understand it. Its flexibility

makes it simple for users to modify, add, or remove features.

Therefore, we conclude that 3bOS is usable for educational

purposes.

References

[1] KISE, K.: Designing and Using The Simple Computer Sys-
tems and Embedded Systems, ESS2013: EMBEDDED SYS-
TEM SYMPOSIUM 2013, Vol. 2013, p. 1 (2013).

[2] Experiments on Computer Science IV EMB:
http://www.arch.cs.titech.ac.jp/lecture/emb/.

[3] Patterson, D. A. and Hennessy, J. L.: Computer Organization
and Design, Fifth Edition: The Hardware/Software Interface,
Morgan Kaufmann Publishers Inc., San Francisco, CA, USA,
5th edition (2013).

[4] Glistvain, R. and Aboelaze, M.: Romantiki OS; A single stack
multitasking operating system for resource limited embedded
devices, Informatics and Systems (INFOS), 2010 The 7th In-
ternational Conference on, pp. 1–8 (2010).

[5] Buildroot: making embedded Linux easy:
http://buildroot.uclibc.org.

[6] FreeRTOS:
http://www.freertos.org/.

組込みシステムシンポジウム 2014
Embedded Systems Symposium 2014

ⓒ 2014 Information Processing Society of Japan 131

ESS2014
2014/10/24

