音波による3次元位置認識手法の 系統誤差低減のための基礎検討

中村 将成^{1,a)} 秋山 尚之² 杉本 雅則¹ 橋爪 宏達³

概要:我々はこれまでに,音波を用いたスマートフォンの屋内3次元位置認識手法を提案した.屋内に設置した複数のスピーカから周波数の異なる音波を同時に送信し,スマートフォンで受信することで,毎秒 10回ほどの高速な位置認識が可能であることを確認した.しかし,受信位置によっては,各スピーカから 到来した音波の重畳パターンが原因となり,大きな系統誤差が生じることがわかっている.そこで,本稿 ではこの系統誤差を除去する手法を提案し,評価実験によってその有効性を確かめた.

1. はじめに

近年のスマートフォンの急激な普及に伴い. スマートフォ ンを対象とした屋内位置推定手法が広く研究されている. 我々は音波を用いた高速・高精度な3次元位置認識の実現 を目指している.提案手法は、室内に設置されたスピーカ から送信された音響信号をスマートフォン内蔵のマイクロ フォンで受信し、伝搬時間(Time of Flight)を計測するこ とで位置認識を行うものであり,スマートフォンに特別な 機器を追加する必要がない.将来的には,ユーザのジェス チャやモーション認識によるコンテキストアウェアなアプ リケーションに提案手法を応用したいと考えており、その ためには平均二乗誤差 10cm (スマートフォン1台分の大き さ) 以内の精度と毎秒 10 回以上の計測を両立した 3 次元位 置認識を達成できることが望ましい [1]. この要求を満たす ために、周波数分割多重化位相一致法 (Frequency Division Multiplexing Phase Accordance Method : FDM-PAM) [2] を提案している.

FDM-PAMでは単位時間あたりの計測回数 (update rate) を向上させるために,複数のスピーカから周波数の異なる 信号を同時に送出する.残響による影響をさけるために, 信号長はできるだけ短く (4ms) 設定している.送信信号 は2つの正弦波からなる"うなり" (sync pattern とよぶ) であるため,各スピーカからの信号が受信機において十分

北海道大学

1

長重畳すれば,各正弦波が互いに直交して分離可能となり, 厳密な信号受信時刻計算が可能となる.しかし,受信機位 置によっては各信号が十分に重畳しないため,信号受信時 刻計算に誤差が生じ,位置計算に系統誤差が生じることが わかっている.

そこで本稿では、この系統誤差を低減する手法を提案する.提案手法について評価実験を行い、FDM-PAMに比べ 距離にして最大 21cm 系統誤差が低減できることを確認した.しかし、FDM-PAMに比べ標準偏差が悪化したため、 その考察を行った.

2. 関連研究

Active Bat[3] は、ToA(Time of Arrival)方式を用いた 超音波位置測定システムである.屋内に多数の超音波受信 機を取り付け,Batと呼ばれる超音波送信機の位置を推定 する.Cricket[4]では、屋内に送信機を設置し受信機の位 置を推定する.このシステムは、AoA(Angle of Arrival) によりターゲットの角度を計測するCricket Compass[5]に 拡張されている.角度計測における2π周期のあいまい性 回避のため、5つの超音波受信素子を受信機にL字型に実 装している.

音響信号による位置認識システムでは、周波数チャープ 信号を使用する例が多い.チャープ信号で周波数スキャン を高速化すると FM (Frequency Modulation)による側波 帯が生じ,信号の送出を困難にする.そのためチャープ信 号を使用して高精度と短時間計測を同時に達成するのは 難しい. ASSIST[6]は、スマートフォンからチャープ信号 を送信し、TDoA 方式を用いて2次元位置を計算する.屋 内に設置したマイクが利用できない時は、スマートフォン

Hokkaido University

² 総合研究大学院大学

The Graduate University for Advanced Studies ³ 国立情報学研究所

National Institute of Informaticsa) masanari@main.ist.hokudai.ac.jp

図 1 2 周期分の sync pattern と epoch 点 Fig. 1 2 period sync pattern and epoch

内蔵の加速度センサーとカルマンフィルターを用いて位 置計測を行う.実験での誤差は 30cm 以内であった.人が 聞き取りにくい 15kHz から 20kHz の帯域においても,ス ピーカの過渡応答などによりノイズが聞こえる場合があ る.Lazik[7] らはチャープ信号にフェードインとフェード アウトを施すことで,この問題を解決する方法を提案して いる.

3. 提案手法

3.1 周波数分割多重化位相一致法

位置認識を高速に行うためには,1回あたりの計測をで きるだけ短くする必要があり,そのためには信号長は十 分短くしたい.そのために著者らは,位相一致法(Phase Accordance Method:PAM)[8]と呼ばれる受信時刻検出手 法を拡張した周波数分割多重化位相一致法(FDM-PAM) を提案している.PAMについては[8]で,FDM-PAMに ついては[2][9]で詳述されているが,提案手法の説明のた め必要最低限の事項についてここで述べる.

FDM-PAM では,周波数の異なる2つの搬送波を重ね 合わせたビート (sync pattern,図1)を信号として用いる. sync pattern は式 (1) のように表せる.

$$s(t) = a_1 \sin(2\pi f_1 t) + a_2 \sin(2\pi f_2 t)$$

= $a_1 \sin(\omega_1 t) + a_2 \sin(\omega_2 t)$ (1)

2つの搬送波の位相 ϕ_1, ϕ_2 は sync pattern の中で高速に 変化するが,位相差はビートの範囲で $-\pi$ から π へと緩や かに変化する (図 1).そしてその中心には位相差 $\phi_2 - \phi_1$ が 0 となる点 (epoch 点)が単ビートに唯一存在する.この 点を受信時刻基準として用いる.

搬送波位相 ϕ_1, ϕ_2 の計算は次のように行う. まず,受 信波形等を関数空間のベクトルとみなし,その内積を次式 の積分で定義する.

$$\langle f(t), g(t) \rangle = \frac{1}{T} \int_{-T/2}^{T/2} f(t) \overline{g(t)} dt$$
 (2)

ただし, $\overline{g(t)}$ はg(t)の複素共役,積分時間Tは受信機の

観測時間窓である.時間軸の幅*T*をビート長と一致させる と,受信アルゴリズムは OFDM (Orthogonal Frequency Division Multiplexing)で使用されるものと同様になる. しかしビート両端は振幅も小さくトランスジューサの過渡 応答も含まれるため,以下のようにそこを避けた任意の窓 幅を使うこともできる.

受信した sync pattern s(t) から搬送波位相 ϕ_1 を求める 計算は次のようになる. 複素正弦波 $e^{j\omega_1 t}$ と s(t) の内積を 計算すると,

$$< s(t), e^{j\omega_{1}t} >$$

$$= \frac{1}{2j} \left(a_{1}(e^{j\phi_{1}} - e^{-j\phi_{1}} \operatorname{sinc} \omega_{1}T) + a_{2}(e^{j\phi_{2}} \operatorname{sinc} \frac{\omega_{2} - \omega_{1}}{2}T - e^{-j\phi_{2}} \operatorname{sinc} \frac{\omega_{2} + \omega_{1}}{2}T) \right)$$

となる [8]. ここで j は虚数単位, sinc $x = \sin x/x$ は標本 化関数であり, $\omega_1 = 2\pi f_1$, $\omega_2 = 2\pi f_2$ である.標本化関 数は $x \to \infty$ において sinc (x) = 0 であり,提案手法で使 用する sync pattern の周波数は 14kHz 以上と十分大きい ことから,

$$\langle s(t), e^{j\omega_1 t} \rangle \approx \frac{1}{2j} \left(a_1 e^{j\phi_1} + a_2 e^{j\phi_2} \operatorname{sinc} \frac{\omega_2 - \omega_1}{2} T \right)$$
(3)

と近似できる. 位相 ϕ_1 を得るには、未知数 ϕ_2 を含む項を 消去する必要がある. そのためには、搬送波の周波数差を Δf ,自然数を n とおくとき、次の条件を満たせばよい.

$$\Delta f \times T = n \tag{4}$$

これは sync pattern をなす搬送波の直交条件であり、この条件をを満たすように周波数と観測時間窓Tを選ぶことで、式(3)は

$$\langle s(t), e^{j\omega_1 t} \rangle \approx \frac{1}{2j} a_1 e^{j\phi_1}$$
 (5)

となり, 位相 ϕ_1 を求めることができる. 受信信号 s(t) と 複素正弦波 $e^{j\omega_2 t}$ の内積を計算することで, ϕ_2 も同様に求 めることができる.

観測時間窓長と搬送波の周波数差は、計測を高速化した いという要求と SN 比の良い帯域を使いたいという要求か らそれぞれ 2ms, 500Hz とする.また、ビート両端の使用 を避けるために sync pattern の信号長を観測時間窓長の 2 倍の 4ms(うなり 2 つ分)に設定する (図 1).式 (5) から 得られる位相 ϕ_1, ϕ_2 を用いて、epoch 点を以下のように計 算する.

$$t = -\frac{\phi_1 - \phi_2 - \pi}{\omega_1 - \omega_2} = -\frac{\phi_1 - \phi_2 - \pi}{2\pi(f_1 - f_2)}$$
(6)

FDM-PAM では、計測を高速に行うためにスピーカご とに異なる周波数の sync pattern を割り当て、全て同時 に送信する (周波数分割多重化).搬送波周波数には 14.75、

sync pattern B

sync pattern B

図 2 実験環境 Fig. 2 Experimental environment

図 3 単一の観測時間窓で測位可能な範囲 Fig. 3 Cover area with a single square window

15.25, 15.75,..., 18.25kHz を用いる. 各搬送波の周波数差 は 500Hz の定数倍になっているので, 搬送波が 2ms 以上 重畳していれば, その部分に 2ms の観測時間窓をかける ことで直交条件(4)を満たすことができる. よって, 複 数の sync pattern を同時に受信した場合, 重畳部分の長さ が 2ms 以上あれば厳密に分離することができ, それぞれの sync pattern の epoch を正確に計算することができる.

3.1.1 重畳パターンと計算誤差

単一の観測時間窓内で全ての sync pattern が重畳して観 測されるためには,各送信機からの sync pattern の受信時 時刻の差が 1ms 以内になる範囲に受信機を設置しなければ ならない.4台のスピーカを図2のように配置した場合, 受信機を測位できる範囲は図3のようになり,非常に狭い 範囲でしか測位できないことがわかる.そこで FDM-PAM の実装では,sync pattern 毎のそれぞれの中心付近に観測 窓を設定することでこの問題を回避していた.しかしこの 場合,受信位置によっては,図4のように sync pattern A の中心付近の観測時間窓内で,sync pattern B の信号端が 重畳し,重畳部分がT'(< T)となることがある.この場

sync pattern

sync pattern

Т

т

in a square window

図 4 重畳が不十分な観測時間窓

Fig. 4 Insufficient overlapped sync patterns

Fig. 5 Sufficient overlapped sync patterns in a square window

図 6 信号端重畳検出 Fig. 6 Detection of overlapped signal edge

合,式(4)の直交条件を満たさないので, sync pattern A の epoch 点計算に誤差が生じることがわかっている.

そこで本稿では、sync pattern B が T 以上重なった部分 を検出し、この部分に sync pattern A の観測時間窓をか けることを考える (図 5). この検出には次のような特徴 を用いる. 図 5 の信号に対し、sync pattern A をなす搬送 波の角周波数 ω_a, ω_b をもつ 2ms の複素正弦波 $e^{j\omega_a t}, e^{j\omega_b t}$ でそれぞれ畳み込みを行なって振幅を計算し、その和をプ ロットすると、図 6 のようになる. sync pattern B の両端 が重畳している部分でリップルが生じていることがわか る.よって、リップルが生じる部分を避けて観測時間窓を 設定することで、信号端の重畳による誤差を回避する.

3次元位置認識においては4つの sync pattern を用い るため、1つの sync pattern に3つの sync pattern が重畳

する. 図4でみたように, sync pattern B の信号端を含む ように観測時間窓をかけると,重畳が不十分となり sync pattern A の受信時刻計算に誤差が生じる. 信号端が1つ 重畳したとき,その前後 2ms での観測時間窓は信号端を含 み,計算誤差が生じる. よって,1つの sync pattern に3 つの sync pattern が重畳するとき,最大 2ms × 3=6ms の 範囲で誤差が生じることとなり, sync pattern の信号長が 4ms では不足となる場合が想定される. そこで,提案手法 では信号長を 8ms に設定する (図 7).

信号長を伸長することで,計測環境によっては信号後方 に残響が重畳することが考えられる.しかし,残響が重畳 した場合もリップルが発生するため,残響重畳部分の使用 は回避されるものと考えられる.

信号長を長くすると, sync pattern の位相差に冗長性が 生じ,観測時間窓から計算した位相差情報のみでは図7の 位相差直線A,B,Cのうちのどの直線上の位相差値なの かを判別できず,受信時刻を計算できない.そこで,信号 端位置を検出することで, sync pattern における観測時間 窓の位置を決定する.

提案アルゴリズムについて詳細に述べる.以下ではサン プリング周波数をfs = 48kHz とする.まず,受信信号に 送信信号の畳み込みを行って sync pattern の概算位置を特 定し.概算位置の周辺 30ms を切り出す(図 8).図 8 の信 号はスマートフォンの内蔵マイクロフォンを用いて分解能 16bit で録音したものである.この信号r(n)に対し,2ms

Fig. 10 Detection of signal edge

の複素正弦波 $e^{j\omega_1 t}, e^{j\omega_2 t}$ で畳み込みを行い,それぞれの振幅の和 ar(n)を計算する (図 9).

$$ar(n) = \left|\sum_{k=0}^{N-1} r(n+k)e^{j\omega_1k/fs}\right| + \left|\sum_{k=0}^{N-1} r(n+k)e^{j\omega_2k/fs}\right|$$
(7)

ここでNは, $N = 48000 \times 0.002 = 96$ である.

振幅の和 ar(n) の先頭から 1ms ごとに切り出し,各 1ms での標準偏差 sr(n) を計算する (図 10).

$$sr(n) = \sqrt{\frac{1}{M} \sum_{k=0}^{M-1} (ar(n+k) - mean(n))^2}$$
(8)

ただし,

$$mean(n) = \frac{1}{M} \sum_{k=0}^{M-1} ar(n+k)$$
 (9)

とする. また, *M* = 48000 × 0.001 = 48 である. 振幅の 和の値は信号端の前後で急激に増加するため, 図 10 にお いて, 信号端にあたる位置にピークが立つ. この位置を信 号端位置とする.

続いて,観測時間窓の位置を決定する.信号端が重畳し ている部分はリップルが発生し標準偏差が大きくなるの で,信号端から 8ms 以内の位置で,標準偏差 sr(n) が最も 小さくなる箇所の位相差に観測時間窓をかけ,位相差を計 算する (この位相差を参照位相差とよぶ).

信号端位置と参照位相差を用いて、参照位相差が図7の どの位相差直線上に存在するかを計算し、sync pattern内 での参照位相差の位置を決定する.このとき、信号端位置

図 11 参照位相差の位置 Fig. 11 Position of reference phase difference

が正確でないことから、参照位相差の位置に誤差が生じる ことがある。例えば、図 11 において参照位相差位置が a であるときに、信号端から計算される位置が b となってし まうことがある。しかし、誤った位置 b の位相差と参照位 相差が大きく異なるので、この誤りを検知しを修正するこ とができる。

最後に、参照位相差位置から信号中心を計算することで、 信号の受信時刻を決定する.

3.2 単位時間あたりの計測回数

1回の計測に必要な時間について検討する.音響信号は 壁や天井で反射する (残響).直接波と反射波が同時に受 信されると,マルチパス障害により計測精度が悪化する. よって連続した計測では残響が十分に減衰するのを待つ必 要がある.図12は,縦3.5m,横7.3m,高さ2.8mの部屋 での残響の一例を示しており,100msで十分残響による障 害が抑制されることがわかる.よって,提案手法では毎秒 10回程度の計測が可能であると考えられる.

4. 評価実験

4.1 実験設定

提案手法の有効性を確認するために,FDM-PAMと提 案手法のそれぞれで3次元位置認識実験を行い,精度を 比較した.FDM-PAM では4msの sync pattern (図1) を,提案手法では8msのsync pattern (図7)をそれぞ れ用いた.スピーカ4台を図2のように配置した.送信

表 1 平均值 [単位:m] Table 1 Means[m]

計測位置	FDM-PAM	提案手法
(1.0, 1.0, 0.8)	(1.06, 1.02, 0.79)	(1.06, 1.02, 0.83)
(1.0, 2.0, 0.8)	(1.01, 1.85, 0.75)	(1.00, 1.90, 0.79)
(2.0, 1.0, 0.8)	(1.94, 0.96, 0.81)	(1.92, 0.93, 0.81)
(2.0, 2.0, 0.8)	(1.79, 1.75, 0.86)	(1.97, 1.89, 0.76)

表 2 標準偏差 [単位:m]

Table 2 Standard deviations[m]

計測位置	FDM-PAM	提案手法
(1.0, 1.0, 0.8)	(0.003, 0.002, 0.002)	(0.006, 0.006, 0.017)
(1.0, 2.0, 0.8)	(0.003, 0.004, 0.003)	(0.033, 0.060, 0.025)
(2.0, 1.0, 0.8)	(0.004, 0.002, 0.002)	(0.030, 0.013, 0.013)
(2.0, 2.0, 0.8)	(0.011, 0.008, 0.008)	(0.056, 0.035, 0.009)

表 3 系統誤差 [単位:m] Table 3 Systematic errors[m]

計測位置	FDM-PAM	提案手法
(1.0, 1.0, 0.8)	0.07	0.07
(1.0, 2.0, 0.8)	0.15	0.09
(2.0, 1.0, 0.8)	0.06	0.10
(2.0, 2.0, 0.8)	0.32	0.11

スピーカには Fostex 社の FT200D を,スマートフォン には富士通社の Arrows X F-02E を,信号生成器として NF 回路設計ブロック社の WF1948 を,スピーカ駆動に は自作のアンプをそれぞれ使用した.位置計算は PC 上 で行った.スピーカの放射角度を有効に使うために,床 に置いたスピーカは 26 度傾けて設置し (図 2),各スピー カからの放射角が ±45 度となる範囲の 4 点 (x,y,z) =(1.0,1.0,0.8),(1.0,2.0,0.8),(2.0,1.0,0.8),(2.0,2.0,0.8) で 計測を行った.スマートフォンは三脚に固定し,スマート フォンの向きは x 軸に対して 45 度となるように設定した. 各位置で 100 回連続して計測し,その平均値と標準偏差を 計算した.室温は 27 度であり,それに応じた音速で実験 を評価した.本実験での計測速度は機器のパラメータ設定 の関係上,毎秒 7.8 回とした.録音時のサンプリングレー トは 48kHz に設定した.

4.2 実験結果

評価実験の結果は表 1, 2, 3 のようになった.系統誤差は, 100 回連続して行った計測の平均値と真値との距離とする. 位置 (x,y,z) = (1.0, 1.0, 0.8), (1.0, 2.0, 0.8), (2.0, 1.0, 0.8)では,FDM-PAM と既存手法の系統誤差に大きな差はな いが,位置 (x,y,z) = (2.0, 2.0, 0.8)では距離にして 21cm 系統誤差が低減している.信号端重畳による受信時刻誤 差の影響は (2.0, 2.0, 0.8) で最も大きいことがわかってお り [9][10],提案手法によって系統誤差が小さくなったとい える.標準偏差については FDM-PAM に比べ最大 15 倍ほ ど悪化している.しかしながら,その値は最大でも 6cm で あり,本手法をモーション認識等へ応用する場合において は十分小さいものと考えられる.

5. 考察

提案手法によって誤差は最大 21cm 改善したものの,標準偏差が最大 15 倍悪化した.この点について考察する.

評価実験での連続 100 回の位置計算において,参照位相 差として位相差直線 A 上の値が選択されたものと, B 上の 値が選択されたものが存在した.本稿での設定における位 相差の変化速度は 2π/2ms であるため,位相差直線 A 上に ある参照位相差から受信時刻を求めるには,式(6)に 2ms を加えればよい.しかし,受信波形の一部では 2π/2ms よ りも早い位相差の変化速度が観測された.よって,連続 100 回の計測のうち位相差直線 A 上の参照位相差と位相差 直線 B 上の参照位相差で受信時刻に差が生じ,標準偏差 が悪化したものと考えられる.これはスピーカとマイクロ フォンの過渡応答の影響と考えている.

6. むすび

本稿では,著者らが提案している高速・高精度3次元位 置認識手法である FDM-PAM について,系統誤差を低減 する手法を提案した.評価実験から,提案手法では系統誤 差を最大 21cm 低減できることを確認した.しかし,標準 偏差は約 15 倍悪化することがわかり,その原因について 考察した.今後は sync pattern の位相差の変化速度につい てさらなる検証を行い,提案手法の標準偏差の改善を行う 予定である.

参考文献

- Yatani, K., Tamura, K., HirokiI, K., Sugimoto, M. and Hashizume, H.: Toss-It : Intuitive Information Transfer Techniques for Mobile Devices Using Toss and Swing Actions, *IEICE transactions on information and systems*, Vol. 89, No. 1, pp. 150–157 (online), available from (http://ci.nii.ac.jp/naid/110003485936/) (2006).
- [2] Akiyama, T., Nakamura, M., Sugimoto, M. and Hashizume, H.: Smart phone localization method using dual-carrier acoustic waves, *Proceedings of the* 2013 International Conference on Indoor Positioning and Indoor Navigation (IPIN), pp. 1–9 (online), DOI: 10.1109/IPIN.2013.6817879 (2013).
- [3] Ward, A., Jones, A. and Hopper, A.: A new location technique for the active office, *Personal Communications, IEEE*, Vol. 4, No. 5, pp. 42–47 (online), DOI: 10.1109/98.626982 (1997).
- [4] Priyantha, N. B., Chakraborty, A. and Balakrishnan, H.: The Cricket Location-support System, *Proceedings* of the 6th Annual International Conference on Mobile Computing and Networking, MobiCom '00, ACM, pp. 32–43 (online), DOI: 10.1145/345910.345917 (2000).
- [5] Priyantha, N. B., Miu, A. K., Balakrishnan, H. and Teller, S.: The Cricket Compass for Context-aware Mo-

bile Applications, Proceedings of the 7th Annual International Conference on Mobile Computing and Networking, MobiCom '01, ACM, pp. 1–14 (online), DOI: 10.1145/381677.381679 (2001).

- [6] Hoflinger, F., Zhang, R., Hoppe, J., Bannoura, A., Reindl, L., Wendeberg, J., Buhrer, M. and Schindelhauer, C.: Acoustic Self-calibrating System for Indoor Smartphone Tracking (ASSIST), Processings of the 2012 International Conference on Indoor Positioning and Indoor Navigation (IPIN), pp. 1–9 (online), DOI: 10.1109/IPIN.2012.6418877 (2012).
- [7] Lazik, P. and Rowe, A.: Indoor Pseudo-ranging of Mobile Devices Using Ultrasonic Chirps, *Proceedings of the* 10th ACM Conference on Embedded Network Sensor Systems, SenSys '12, ACM, pp. 391–392 (online), DOI: 10.1145/2426656.2426724 (2012).
- [8] 橋爪宏達,金子 歩,杉本雅則:位相一致法による正確な 超音波位置認識手法とその特性,電子情報通信学会論文 誌. A,基礎・境界, Vol. 91, No. 4, pp. 435–447 (オンラ イン),入手先 (http://ci.nii.ac.jp/naid/110007382219/) (2008).
- [9] Nakamura, M., Akiyama, T., Sugimoto, M. and Hashizume, H.: 3D FDM-PAM: Rapid and Precise Indoor 3D Localization Using Acoustic Signal for Smartphone, Proceedings of the 2014 ACM International Joint Conference on Pervasive and Ubiquitous Computing: Adjunct Publication, UbiComp '14 Adjunct, ACM, pp. 123–126 (online), DOI: 10.1145/2638728.2638758 (2014).
- [10] Bard, J. and Ham, F.: Time difference of arrival dilution of precision and applications, *Signal Processing, IEEE Transactions on*, Vol. 47, No. 2, pp. 521–523 (online), DOI: 10.1109/78.740135 (1999).