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Regular Paper

How to Verify the Threshold t of Shamir’s (t, n)-Threshold Scheme

Raylin Tso,† Ying Miao,† Takeshi Okamoto†

and Eiji Okamoto†

In the Shamir (t, n)-threshold scheme, the dealer constructs a random polynomial f(x) ∈
GF (p)[x] of degree at most t − 1 in which the constant term is the secret K ∈ GF (p).
However, if the chosen polynomial f(x) is of degree less than t − 1, then a conspiracy of any
t − 1 participants can reconstruct the secret K; on the other hand, if the degree of f(x) is
greater than t − 1, then even t participants can not reconstruct the secret K properly. To
prevent these from happening, the degree of the polynomial f(x) should be exactly equal
to t − 1 if the dealer claimed that the threshold of this scheme is t. There also should
be some ways for participants to verify whether the threshold is exactly t or not. A few
known verifiable threshold schemes provide such ability but the securities of these schemes
are based on some cryptographic assumptions. The purpose of this paper is to propose some
threshold-verification protocols for the Shamir (t, n)-threshold scheme from the viewpoint of
unconditional security.

1. Introduction

Consider the problem of n trustees where any
t of them are needed to be in agreement to make
an action (e.g., to open a vault in a bank), and
in addition, if less than t trustees are in agree-
ment, they should not be able to make such an
action. Solutions to this type of problems are
called (t, n)-threshold schemes.

Threshold schemes based on finite geometries
and polynomial interpolations were introduced
independently by Blakley 2) and Shamir 11) in
1979. They are the first well-known examples
of secret sharing schemes. A secret sharing
scheme is a way of sharing a secret K by dis-
tributing partial information called shares to a
set of participants P in such a way that autho-
rized subsets of the participants can reconstruct
the secret K, whereas any non-authorized sub-
sets of P can determine nothing about K. The
value of K is chosen and distributed by a trust-
worthy participant D �∈ P, often called the
dealer.

In the Shamir (t, n)-threshold scheme, a se-
cret K ∈ GF (p), p being a prime greater than
n, is distributed by a trustworthy dealer D to a
set of participants P in the following way.
(1) D chooses n distinct non-zero elements of

GF (p), denoted xl, 1 ≤ l ≤ n. For 1 ≤ l ≤
n, D sends the value xl to Pl ∈ P through
a public channel.
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(2) D secretly chooses, independently at ran-
dom, t − 1 elements of GF (p), a1, a2, . . . ,
at−1.

(3) For 1 ≤ l ≤ n, D computes yl =
f(xl), where f(x) = K +

∑
1≤j≤t−1ajx

j ∈
GF (p)[x] .

(4) For 1 ≤ l ≤ n, D sends the share yl to
Pl ∈ P through a private secure channel.

At a later time, a subset of participants B ⊆
P will pool their shares in an attempt to re-
construct the secret K. If |B| ≥ t, then they
should be able to reconstruct the value of K by
Lagrange interpolation; if |B| < t, then they
should not be able to obtain any information
about K. The parameter t is called the thresh-
old of this scheme.

The Shamir (t, n)-threshold scheme is very
simple and efficient when sharing a secret. Un-
fortunately, such a scheme is not secure against
cheaters. Dishonest participants could sub-
mit fake shares in the process of reconstruct-
ing the secret so that the honest participants
cannot obtain the proper secret. McEliece and
Sarwate 6), Tompa and Woll 12), Tso, Miao and
Okamoto 13) and others investigated this prob-
lem and proposed some methods to defense dis-
honest participants.

Another weakness of the Shamir (t, n)-
threshold scheme is that it is not secure against
any dishonest dealer either. In such a scheme,
D should distribute yl = f(xl) to Pl, 1 ≤ l ≤ n,
respectively, according to f(x) of degree at
most t − 1. However, if the dishonest dealer
D chose a polynomial of degree greater than
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t − 1, then different t-subsets of participants
would compute different secrets from the shares
they collectively hold. On the other hand, al-
though the Shamir (t, n)-threshold scheme only
requires that the degree of f(x) to be at most
t − 1, it is usually necessary that the degree of
f(x) to be exactly t − 1, so that no conspira-
cies of less than t participants can determine
the secret. The recognition of such a require-
ment came when NIST tried to introduce the
controversial Clipper Chip 7) with key escrow-
ing to achieve legal wiretapping. The proposed
escrowed encryption algorithm used two par-
ties called Key Escrow Agencies to deposit the
valid cryptographic key. Only if the two parties
pooled their partial keys together, could cipher-
text be decrypted. The case described at the
beginning of this section is also a good exam-
ple to explain the importance of an unmistaken
threshold.

Verifiable secret sharing schemes were first
proposed in Ref. 3) to overcome the problem of
dishonest dealers. In a verifiable secret sharing
scheme, the shareholders can verify the validity
of their shares, and thus they can reconstruct
the secret properly. Although some of these
works (e.g., Refs. 4) and 9)) also provide as a by-
production the ability to verify the threshold t,
the security of these methods are based on some
mathematical problems such as the intractabil-
ity of the discrete logarithm problem. As an
undesirable consequence, their methods enlarge
the size of shares as well as the secret comparing
to those of the original Shamir (t, n)-threshold
scheme. We observe that it is not difficult to
establish threshold-verification methods based
on some cryptographic assumptions but such
methods require more computational resources
than those based on unconditional security, and
the difference between these two is becoming
more and more striking because of the rapid
progress of computer industry, improvement of
computing speed and the appearances of faster
and faster algorithms. Therefore, in this pa-
per, we only investigate methods of verifying
the threshold t of the Shamir (t, n)-threshold
scheme from the viewpoint of unconditional se-
curity.

Benaloh 1) first described an unconditionally
secure method to verify the degree of the cho-
sen polynomial based on which the dealer D
claimed to distribute the shares in the Shamir
(t, n)-threshold scheme. However, Benaloh’s
method can only guarantee, with an over-

whelming probability, that the polynomial is of
degree at most t − 1. Laih, Harn and Chang
asked, in Chapter 13 of their book 5), whether
there is an effective way to verify if t − 1 is ex-
actly the degree of f(x) as being claimed by the
dealer D.

In this paper, we assume that the dealer
D is asked to construct a polynomial f(x) ∈
GF (p)[x] of degree exactly t − 1 in the Shamir
(t, n)-threshold scheme. This may increase
the probability of successfully guessing the se-
cret K ∈ GF (p) from 1/p to 1/(p − 1) when
t− 1 participants form a conspiracy, since they
know that the coefficient of the xt−1-th term of
f(x) ∈ GF (p)[x] is not zero. They may con-
struct a polynomial f

′
(x) ∈ GF (p)[x] of de-

gree at most t − 2 using the shares they collec-
tively hold by Lagrange interpolation and then
they would know that f

′
(0) ∈ GF (p) is not

the possible value of the secret K ∈ GF (p).
The purpose of this assumption is that we want
the scheme to be t-consistent but not (t − 1)-
consistent. In addition, similar to many other
interactive methods, in our methods, we assume
that every participant is honest; they may be
curious but they do not cheat, which means
that they may form a conspiracy of less than
t participants and try to find the secret or
other participants’ shares but they follow the
threshold-verification protocol and do not lie
about their shares. The only one who may be
dishonest is supposed to be the dealer. Based
on these assumptions, we propose two simple
but effective methods to verify the threshold t
of the Shamir (t, n)-thresold scheme. The se-
curity of these methods does not depend on
any unproven assumptions about the complex-
ity of computing certain number-theoretic func-
tions and also these methods solve the above-
mentioned Laih, Harn and Chang’s problem 5).

The rest of this paper is organized as fol-
lows. In Section 2, we revisit Benaloh’s method
for verifying the threshold in the Shamir (t, n)-
threshold scheme. Section 3 describes our first
method modified from Benaloh’s method. Sec-
tion 4 describes our second method and show
how it can overcome the shortcoming of the first
method. Section 5 is the conclusion of the pa-
per.

2. Benaloh’s Method Revisited

We start this section with a brief description
of some terminologies.
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A set of shares in a (t, n)-threshold scheme is
called t-consistent if every t-subset of the shares
derives the same secret. The purpose of verifi-
able secret sharing is to convince shareholders
that their shares (collectively) are t-consistent.
It is easy to see that in the Shamir (t, n)-
threshold scheme, the shares y1, y2, . . . , yn are
t-consistent if and only if the interpolation of
the points (x1, y1), (x2, y2), . . . , (xn, yn) yields a
polynomial in GF (p)[x] of degree at most t−1.

The following two lemmas are obvious but
useful.

Lemma 2.1 Let p be a prime, and
f(x), g(x) ∈ GF (p)[x]. Then deg(f + g) ≤
max{deg(f), deg(g)}.

Lemma 2.2 Let p be a prime. If the sum
of two polynomials in GF (p)[x] is of degree at
most d, then either both polynomials are of de-
gree at most d or both polynomials are of degree
greater than d.

Let t − 1 be the degree of f(x) ∈ GF (p)[x]
which was used by the dealer D to distribute
shares in the Shamir (t, n)-threshold scheme.
Benaloh’s proof that f(x) is of degree at most
t − 1 can essentially be outlined as follows.

Benaloh’s method
(1’)D computes the shares yl = f(xl), 1 ≤

l ≤ n, and then distributes yl to participant
Pl for 1 ≤ l ≤ n through a private secure
channel.

(2’)D selects many, say N , additional random
polynomials fs(x) ∈ GF (p)[x], 1 ≤ s ≤ N ,
of degree at most t−1, and then distributes
the corresponding shares fs(xl) to Pl for
1 ≤ l ≤ n through a private secure channel.

(3’)All participants designate a random �N/2�-
subset R of fs(x), 1 ≤ s ≤ N , say,
R = {fi1(x), fi2(x), . . . , fi�N/2�(x) : ij ∈
{1, 2, . . . , N}, 1 ≤ j ≤ �N/2�}.

(4’)All participants pool their shares fij
(xl),

1 ≤ j ≤ �N/2�, to recover fij
(x) ∈

GF (p)[x] by Largrange interpolation.
These polynomials fij

(x) must all be of de-
gree at most t − 1.

(5’)These participants pool fs(xl) + f(xl) ∈
GF (p) for all the remaining random poly-
nomials fs(x) to reconstruct the polynomi-
als fs(x)+f(x) by Largrange interpolation.
These polynomials fs(x)+f(x) must all be
of degree at most t − 1.

For a large positive integer N , if fij
(x), 1 ≤

j ≤ �N/2�, are all of degree at most t − 1, and

if furthermore fs(x) + f(x) are all of degree at
most t−1 for all the remaining N −�N/2� ran-
dom polynomials fs(x), then we are almost sure
that, by Lemma 2.2, the degree of f(x) is upper
bounded by t − 1. Also note that each partici-
pant has N additional shares of the same size,
and that although fs(xl) + f(xl) were pooled,
the shares f(xl) are still kept secret.

According to our assumption on the Shamir
(t, n)-threshold scheme, f(x) must be exactly
of degree t − 1. Unfortunately, Benaloh’s pro-
tocol can only convince the participants that
f(x) is of degree at most t − 1. In the next
section, we will describe a simple method to
modify Benaloh’s protocol to convince the par-
ticipants that f(x) is of degree at least t − 1.

3. Proposed Method 1

In the Shamir (t, n)-threshold scheme, Be-
naloh’s protocol, as we complained in the
last section, only allows participants to verify
whether the degree of f(x) is at most t − 1
or not. In this section, we describe a simple
modification of Benaloh’s protocol which can be
used to convince the participants, to some ex-
tent, that the degree of f(x) used in the Shamir
(t, n)-threshold scheme is exactly of degree t−1.

In step (5’) of Benaloh’s protocol, if the poly-
nomials fs(x)+f(x) are of degree at most t−1,
then they can only ensure to participants that
the degree of f(x) is upper bounded by t − 1
since the degrees of the random polynomials
fs(x) are at most t − 1. If all these random
polynomials fs(x), 1 ≤ s ≤ N , were asked to
be exactly of degree t − 1 in step (2’) of Be-
naloh’s protocol, and if the coefficients of the
xt−1-th term of the random polynomials fs(x)
could be verified to be different from those of
fs(x)+f(x) (without revealing any other infor-
mation about fs(x) and f(x), of course,) then
participants can be convinced that f(x) is ex-
actly of degree t−1, as the dealer D previously
claimed. The essentials of our method are first
to require the N additional random polynomi-
als fs(x), 1 ≤ s ≤ N , to be of degree exactly
t − 1 in step (2’) of Benaloh’s protocol, and
then, in addition, to require the coefficients of
the xt−1-th term of these polynomials to be all
primes so that participants can verify if the co-
efficients of the xt−1-th term have been changed
to composites or not after the computation of
fs(x) + f(x).

In step (3’) of Benaloh’s protocol, partici-
pants designate a random (N − 1)-subset of
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the random polynomials fs(x), and in step (4’),
participants check these (N − 1) random poly-
nomials fs(x) to see if these polynomials are
all of degree exactly t − 1 and the coefficients
of the xt−1-th term are all primes. In step
(5’), participants pool the sums of their shares
fs′(xl)+ f(xl) to recover gs′(x) = fs′(x)+ f(x)
where fs′(x) is the remaining polynomial not
been checked by participants. With the addi-
tional property that the coefficient of the xt−1-
th term of fs′(x) is a prime, if gs′(x) is of de-
gree less than t − 1, or of degree t − 1 but its
coefficients of the xt−1-th term not a prime,
then participants can assert, with a probabil-
ity (N − 1)/N , that f(x) is of degree exactly
t − 1. This probability is computed from the
fact that the dealer is able to cheat the verifica-
tion by guessing the random polynomial fs′(x)
that is not tested in step (4’) with a probability
1/N . Problems arise when the degree of gs′(x)
is t − 1 but the coefficient of its xt−1-th term
is still a prime. We prove that this problem
will only arise with a probability approximately
equal to 1

ln(p−1) −
1

p−1 .
Lemma 3.1 Let p be a prime, A =

GF (p)\{0}, and B = {b : 1 ≤ b ≤ p − 1, b
is a prime}. If a ∈ A and b ∈ B are chosen ran-
domly, then the probability that a + b mod p is
a prime is approximately equal to 1

ln(p−1)−
1

p−1 .
Proof According to Prime Number Theorem,
the number of primes not exceeding a positive
integer m is approximately m/ lnm, so |B| ≈
(p − 1)/ ln(p − 1). We consider the set H =
{(a, b) ∈ A× B : a + b mod p is a prime}. For
any prime g, 1 ≤ g ≤ p − 1, let Hg = {(a, b) ∈
A × B : g = a + b mod p}. Then clearly H
can be partitioned into Hg, where g, 1 ≤ g ≤
p − 1, are primes. For any prime g, 1 ≤ g ≤
p − 1, |Hg| = |B| − 1 ≈ p−1

ln(p−1) − 1 since b is
not allowed to be g (because a is not allowed to
be 0). Therefore |H| ≈ p−1

ln(p−1) × ( p−1
ln(p−1) − 1).

Meanwhile, |A × B| ≈ (p − 1) × p−1
ln(p−1) . Hence

the probability for a + b mod p, where a and
b are randomly chosen from A and B, to be a
prime is approximately equal to

p−1
ln(p−1) × ( p−1

ln(p−1) − 1)

(p − 1) × (p−1)
ln(p−1)

=
1

ln(p − 1)
− 1

p − 1
.

Therefore, there is an average probability
1

ln(p−1) −
1

p−1 that the coefficient of the xt−1-th
term of gs′(x) = fs′(x) + f(x) is still a prime

when f(x) used in the Shamir (t, n)-threshold
scheme is of degree t−1. From the fact that the
average probability 1

ln(p−1)−
1

p−1 tends to 0 as p
becomes very large, the participants can ignore
this average probability and conclude that the
degree of f(x) is less than t − 1 if the degree
of gs′(x) is t − 1 but its leading coefficient is
still a prime. Also note that though the dealer
D can, but he will not, choose at−1, the lead-
ing coefficient of f(x), intentionally to make the
coefficient of the xt−1-th term of gs′(x) to be a
prime, because his purpose is to convince the
participants that he is honest about the thresh-
old t of the Shamir (t, n)-threshold scheme.

With the pre-knowledge that the threshold is
less than t + 1, the threshold-verification prob-
lem can be viewed as the following decision
problem: “Is the threshold of this scheme ex-
actly t?” The answer Yes will mean that the
threshold of this scheme is exactly t and the
answer No will mean that the threshold of this
scheme is less than t. As a consequence, if we
lay the dealer’s cheating aside, then our method
can be regarded as a yes-biased probabilistic
method with an error probability nearly equal
to 1

ln(p−1) − 1
p−1 , where Yes is always correct

but No may be incorrect with an average prob-
ability 1

ln(p−1) −
1

p−1 .
If the answer is No, the participants should

reject this scheme although it may be incorrect
with a probability nearly equal to 1

ln(p−1)−
1

p−1 .
The participants should ask the dealer D to
recreate a new Shamir (t, n)-threshold scheme
and to distribute new shares to participants
through a private secure channel. The partic-
ipants should verify the threshold of this new
Shamir (t, n)-threshold scheme again according
to this slight modification of Benaloh’s proto-
col.

The approach to consider the security of this
slightly modified method is similar to that of
Benaloh’s one. Although the sums of shares
fs′(xl)+f(xl) are pooled and gs′(x) = fs′(x)+
f(x) is reconstructed, the shares f(xl) and
the secret K are still kept secret. Besides
that, this modified method still preserves per-
fect secrecy against any conspiracy of less than
t − 1 participants, even if they had partici-
pated in the threshold-verification process. In
this case, they can successfully guess at−1 as
gs′,t−1 − pi ∈ GF (p) with an average proba-
bility ln(p−1)

p−1 , where at−1, gs′,t−1 ∈ GF (p) are
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the coefficients of the xt−1-th term of f(x),
gs′(x) ∈ GF (p)[x] respectively and pi is any
prime not exceeding p. However, according
to the property of the Shamir (t, n)-threshold
scheme, no information concerning the secret
K ∈ GF (p) and shares belonging to other par-
ticipants will be leaked out in the case of less
than t − 1 shares and the value at−1 having
been revealed. That is, a conspiracy of less
than t − 1 participants can not obtain any in-
formation about the secret K and other par-
ticipants’ shares from at−1 and gs′(x). But
this method does not provide perfect secrecy
against a conspiracy of exactly t − 1 partici-
pants, because the approximate p−1

ln(p−1) possible
values of at−1 ∈ GF (p) will give them enough
information to solve the system of t − 1 linear
equations in the t−1 unknowns K, a1, . . . , at−2,
yij

= K + a1xij
+ · · · + at−2x

t−2
ij

+ at−1x
t−1
ij

,
1 ≤ j ≤ t − 1, where all arithmetic is done in
GF (p), and thus reduce the number of possible
values of the secret K from p − 1 (c.f. Section
1) to approximately p−1

ln(p−1) accordingly. As an
immediate consequence, the probability for any
conspiracy of exactly t − 1 participants to find
the secret K will be increased approximately
from 1

p−1 to ln(p−1)
p−1 .

This modified method is simple, and any
Shamir (t, n)-threshold scheme with an incor-
rect threshold t will be rejected with a high
probability by the participants. Unfortunately,
this method is not very efficient. Each partic-
ipant receives N additional shares of the same
size in each verification round. We also men-
tioned that the dealer can cheat the verification
by guessing the random polynomial fs′(x) that
is not tested in step (4’) with a probability 1/N .
In order to make this probability negligible, we
should choose a very large N . Consequently,
we have to generate a very large number of ad-
ditional random polynomials each of degree ex-
actly t − 1 and each with a prime leading coef-
ficient, which in turn requires a primality test
in generating such a polynomial.

We know that with an error probability ap-
proximately equal to 1

ln(p−1) −
1

p−1 , the Shamir
(t, n)-threshold scheme will be rejected by the
participants even though the dealer D is honest
about threshold t. Also we know that the num-
ber of possible values of the secret K ∈ GF (p)
will be reduced from p − 1 to approximately

p−1
ln(p−1) for any conspiracy of exactly t−1 partic-
ipants. As a consequence, for security purpose,

Table 1 Error probability and possible values of K.

p 1
ln(p−1)

− 1
p−1

p−1
ln(p−1)

213 − 1 1.107 × 10−1 909
261 − 1 2.365 × 10−2 256

2107 − 1 1.348 × 10−2 2101

2521 − 1 2.769 × 10−3 2512

2607 − 1 2.376 × 10−3 2598

21297 − 1 1.112 × 10−3 21287

22203 − 1 6.551 × 10−4 22193

the prime p should also be very large. Table 1
shows the values of 1

ln(p−1) − 1
p−1 and p−1

ln(p−1)
for several known Mersenne primes p, where

1
ln(p−1) −

1
p−1 is the approximate error probabil-

ity and p−1
ln(p−1) is the number of possible values

of the secret K ∈ GF (p) against any conspiracy
of exactly t − 1 participants.

We emphasize here that although the er-
ror probability illustrated in Table 1 seems to
be non-negligible, this causes no serious prob-
lems to participants since they should reject the
scheme in this case. Also we can see from Table
1 that for a large prime p, the number of possi-
ble values of the secret K ∈ GF (p) against any
conspiracy of exactly t − 1 participants is very
close to the number of all possible values of K,
so this will cause no serious problems too for
any conspiracy of exactly t − 1 participants.

4. Proposed Method 2

In this section, we describe our second
method which can overcome the shortcomings
of our first method. This method requires the
threshold t to be greater than 2.

Since Benaloh’s method described in Sec-
tion 2 provides the ability to convince the par-
ticipants that the polynomial f(x) used in the
Shamir (t, n)-threshold scheme is of degree at
most t−1, in this section, we pay our attention
only to the problem of convincing the partici-
pants that the degree of f(x) is of degree at least
t−1. Combining this method to Benaloh’s one,
participants can succeed in verifying the exact
threshold of the scheme.

Note that if f(x) used in the Shamir (t, n)-
threshold scheme is of degree exactly t−1, then
the shares are necessarily not (t−1)-consistent.
Therefore, if two groups of t − 1 participants
each pool their shares to reconstruct the poly-
nomials f ′(x) and f ′′(x) respectively, then with
a high probability, f ′(x) and f ′′(x) should not
be the same. This is the main fact we will use in
this section. The point is that this verification



Vol. 46 No. 8 How to Verify the Threshold t of Shamir’s (t, n)-Threshold Scheme 1829

should be done without revealing any informa-
tion about the secret K as well as the shares
of participants. We illustrate our method first
from the following example.

If 2t−2 participants, say P1, . . . , P2t−2, agree
to verify whether the threshold of the scheme
is greater than t − 2, then they first randomly
divide them into two groups of t − 1 par-
ticipants each, say T1 = {P1, . . . , Pt−1} and
T2 = {Pt, . . . , P2t−2}. If each Pi possesses
a secret random number ri ∈ GF (p), 1 ≤
i ≤ 2t − 2, such that

∑2t−2
i=1 ri = 0 mod p,

then each Pi ∈ T1 computes yi ·
∏

1≤l≤t−1
l �=i

(xi −
xl)−1 + ri mod p and each Pi ∈ T2 computes
(−yi) ·

∏
t≤l≤2t−2

l �=i

(xi − xl)−1 + ri mod p respec-
tively. These participants pool these values and
sum them up.

t−1∑

i=1

(yi ·
∏

1≤l≤t−1
l �=i

(xi − xl)−1 + ri mod p) +

2t−2∑

i=t

((−yi) ·
∏

t≤l≤2t−2
l �=i

(xi − xl)−1 + ri mod p)

=
t−1∑

i=1

(yi ·
∏

1≤l≤t−1
l �=i

(xi − xl)−1) −
2t−2∑

i=t

(yi ·

∏

t≤l≤2t−2
l �=i

(xi − xl)−1) +
2t−2∑

i=1

ri mod p

=
t−1∑

i=1

(yi ·
∏

1≤l≤t−1
l �=i

(xi − xl)−1) −
2t−2∑

i=t

(yi ·

∏

t≤l≤2t−2
l �=i

(xi − xl)−1) mod p

= a′
t−2 − a′′

t−2 mod p, (1)

where a′
t−2 ∈ GF (p) is the coefficient of the

xt−2-th term of f ′(x), which can be uniquely
computed by T1 by Lagrange interpolation, and
a′′

t−2 ∈ GF (p) is the coefficient of the xt−2-
th term of f ′′(x), which can be uniquely com-
puted by T2 by Lagrange interpolation. If
a′

t−2 − a′′
t−2 �= 0 mod p, then f ′(x) �= f ′′(x),

which means that f(x) used in the scheme can-
not be uniquely determined by these two groups
T1 and T2 of t − 1 participants each. There-
fore, the degree f(x) should be greater than
t − 2. On the other hand, if f ′(x) �= f ′′(x),
then a′

t−2 − a′′
t−2 = 0 mod p can only happen

with a probability pt−2−1
pt−1−1 , which is computed

as follows.
There are totally pt−1 numbers of polynomi-

als of degree less than or equal to t − 2. Since
f ′(x) �= f ′′(x), the total number of possibili-
ties of the pair (f ′(x), f ′′(x)) is

(
pt−1

2

)
. If, in

addition, the coefficients of the xt−2-th term,
a′

t−2 of f ′(x) and a′′
t−2 of f ′′(x), are the same,

then the total number of possibilities of the pair
(f ′(x), f ′′(x)) becomes p ×

(
pt−2

2

)
. Therefore,

the probability that a′
t−2 − a′′

t−2 = 0 mod p
under the condition of f ′(x) �= f ′′(x) is p ×(
pt−2

2

)
/
(
pt−1

2

)
= pt−2−1

pt−1−1 .
When p is large enough, participants can ig-

nore this probability. In other words, if p is
large enough, then f ′(x) �= f ′′(x) will almost
imply a′

t−2 − a′′
t−2 �= 0 mod p. Or conversely,

when p is large enough, a′
t−2 −a′′

t−2 = 0 mod p
will almost imply f ′(x) = f ′′(x), which means
that the dealer D is dishonest about the thresh-
old and the degree of f(x) is less than t − 1.

A simple explanation to the security of this
method is that because every secret share yi

is concealed by the random number ri and∑2t−2
i=1 ri = 0 mod p, any conspiracy of less

than 2t − 3 participants can obtain no infor-
mation about other participants’ shares yi not
in the conspiracy from the Eq. (1). Also note
that the threshold to be verified is t, so the
number of participants engaged in threshold-
verification can be reduced to any number q
with t + 1 ≤ q ≤ 2t − 2, where in this case,
|T1| = |T2| = t − 1 and |T1 ∩ T2| = 2t − 2 − q.
The case q = t is not allowed, since otherwise
the conspiracy of the t−2 participants in T1∩T2

would be able to compute the secret by using
the two shares pooled by the two participants
outside of T1 ∩ T2.

Now we describe our method in the follow-
ing protocol. In this protocol, the number of
participants engaged in threshold-verification is
q, where t + 1 ≤ q ≤ 2t − 2. Without loss
of generality, we assume these participants to
be P1, . . . , Pq, T1 = {Pl : 1 ≤ l ≤ t − 1},
T2 = {Pl : q − t + 2 ≤ l ≤ q}. Consequently,
T1 ∩ T2 = {Pl : q − t + 2 ≤ l ≤ t − 1}. In
addition, similar to Benaloh’s original method,
the dealer D should choose many, say N ′,
sets R1, . . . , RN ′ of random numbers in GF (p),
Ri = {ri,1, . . . , ri,q}, 1 ≤ i ≤ N ′, such that∑q

j=1 ri,j = 0 mod p.
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Protocol
(1”’)D computes the shares yl = f(xl), 1 ≤

l ≤ n, and then distributes yl to participant
Pl for 1 ≤ l ≤ n through a private secure
channel.

(2”’)When participants P1, . . . , Pq agree to ver-
ify the threshold of the scheme, D selects
many, say N ′, sets R1, . . . , RN ′ of non-
zero random numbers in GF (p), Ri =
{ri,1, . . . , ri,q}, 1 ≤ i ≤ N ′, such that∑q

j=1 ri,j = 0 mod p. D distributes ri,l for
1 ≤ i ≤ N ′ to participant Pl for 1 ≤ l ≤ q
through a private secure channel.

(3”’)Participants Pl, 1 ≤ l ≤ q, designate a ran-
dom (N ′−1)-subset of R = {R1, . . . , RN ′},
say, Rij

, 1 ≤ j ≤ N ′ − 1, pool their ran-
dom numbers rij ,l ∈ Rij

, 1 ≤ j ≤ N ′ − 1,
and verify if

∑q
l=1 rij ,l = 0 mod p. If these

congruences are verified to be true for all j,
1 ≤ j ≤ N ′−1, then

∑q
l=1 riN′ ,l = 0 mod p

can also be considered true.
(4”’)Participants Pl, Pl ∈ T1 \ (T1 ∩ T2), com-

pute yl·
∏

1≤i≤t−1
i�=l

(xl−xi)−1+riN′ ,l mod p,

participants Pl, Pl ∈ T2\(T1∩T2), compute
(−yl)·

∏
q−t+2≤i≤q

i�=l

(xl−xi)−1+riN′ ,l mod p,
and participants Pl, Pl ∈ T1 ∩ T2, compute
yl·(

∏
1≤i≤t−1

i�=l

(xl − xi)−1 −
∏

q−t+2≤i≤q
i�=l

(xl −
xi)−1) + riN′ ,l mod p, secretly and individ-
ually. They pool all these results and com-
pute Sj as their sum.

S =
t−1∑

l=1

yl ·
∏

1≤i≤t−1
i�=l

(xl − xi)−1 +

q∑

l=q−t+2

(−yl) ·
∏

q−t+2≤i≤q
i�=l

(xl − xi)−1

+
q∑

l=1

riN′ ,l mod p.

(5”’)If S �= 0, then the degree of f(x) must be
greater than t − 2.

(6”’)If S = 0, then the degree of f(x) must be
less than or equal to t − 2 with an error

probability pt−2−1
pt−1−1 .

In step (3”’), a random (N ′ − 1)-subset of
R is tested. This allows the dealer D to cheat
the verification by guessing the random mask
that is not tested in step (3”’) with a prob-
ability 1/N ′. If N ′ becomes very large, then
this probability tends to 0. There is a trick
that makes the dealer’s chance of cheating even

more smaller. In step (3”’), participants ran-
domly choose an �N ′/2�-subset of R to chal-
lenge. In step (4”’), participants compute the
values of S for all the unchallenged cases. The
test is successful only if all the values of S are
not 0. To cheat the dealer D has to be able
to guess exactly which subset participants will
challenge; the odds are much smaller than the
odds of guessing which one set Ri of random
numbers participants will not challenge. In fact
the probability is 1/

(
N ′

�N ′/2�
)

in this case, which
is obviously much smaller than 1/N ′. The idea
described above is exactly the same as that used
in the blind signatures depicted in Page 114
of10) to prevent the holder of the message to be
signed blindly from cheating. However, in this
paper, we do not describe this better method
explicitly for the convenience of explanation,
although everything works correctly with this
method.

We look at this protocol in more details. If
S = 0, then participants are unable to cor-
rectly determine the threshold, since even if D
is honest, S = 0 will happen with a probability
pt−2−1
pt−1−1 . However, if the prime p is large enough,
then this probability can be reduced to zero and
thus be ignored. Another way to reduce this
probability is to replace at least one participant
in T1 \T1∩T2 and at least one in T2 \T1 ∩T2 by
new participants respectively, or just to replace
at least one participant in T1∩T2 by new partic-
ipants to carry out this protocol from step (2”’)
again. If the degree of f(x) is less then or equal
to t−2, then Sj in step (4”’) must still be zero.
Conversely, if the degree of f(x) is great than
t − 2, then S = 0 will only occur again with a
probability (pt−2−1

pt−1−1 )2. Repeating this protocol
m times, the error probability will be reduced
to (pt−2−1

pt−1−1 )m. As a consequence, participants
are able to verify, with an overwhelming proba-
bility, whether the degree of f(x) is exactly t−1
as being claimed by the dealer D.

Now we consider the security of this protocol
in detail. It is clear that no one can obtain any
information about the secret K ∈ GF (p) and
other participants’ shares from the messages
pooled in step (4”’) because each of the shares
yl ∈ GF (p) is concealed by the private random
number riN′ ,l. We notice that any individual
participant can obtain a linear equation with
q−1 or q unknowns from S in step (4”’) accord-
ing to whether he takes part in the threshold-
verification or not, where the unknowns are the
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shares belonging to other participants engaged
in the threshold-verification. But this equation
is not helpful to him for increasing the proba-
bility of finding the secret K ∈ GF (p) and the
shares of other participants, because q − 1 or q
unknowns with t + 1 ≤ q ≤ 2t − 2 can not be
uniquely determined from one linear equation.
When a set C of t−1 participants, where C = T1

or T2, form a conspiracy, they are able to ob-
tain the values

∑t−1
l=1 yl ·

∏
1≤i≤t−1

i�=l

(xl−xi)−1 and
∑q

l=q−t+2(−yl) ·
∏

q−t+2≤i≤q
i�=l

(xl − xi)−1 from S

in step (4”’), where the first term is in fact the
value of a′

t−2, the coefficient of the xt−2-th term
of f ′(x) computed by participants P1, . . . , Pt−1,
and the second term is in fact the value of
a′′

t−2, the coefficient of the xt−2-th term of
the polynomial f ′′(x) computed by participants
Pq−t+2, . . . , Pq. But these values still give them
no help to increase the probability of finding
the secret K ∈ GF (p) and the shares belong-
ing to other participants not in their conspiracy.
What they can obtain from a′′

t−2 (if C = T1) or
a′

t−1 (if C = T2) or from S directly is a linear
equation with q − t + 1 unknowns where these
unknowns can not be uniquely determined be-
cause q ≥ t + 1. Therefore, the probability
for the t − 1 participants in a conspiracy to
find the secret K ∈ GF (p) in this case remains
1/(p − 1) (c.f. Section 1). The security in the
case C ⊂ T1∪T2 with C∩T1 �= ∅ and C∩T2 �= ∅,
or the case C �⊂ T1 ∪ T2 with |C| ≤ t − 1 can be
also analyzed in the same way. Therefore, no
conspiracy formed by less than t participants
can obtain any information about the secret
K ∈ GF (p) and the shares of other partici-
pants not in their conspiracy. If the process of
the threshold-verification is repeated m times,
since at least one participant in each of the two
groups needs to be replaced by a new partici-
pant each time, the number of participants took
part in the threshold-verification will be at least
q+m−1, while any conspiracy of less than t par-
ticipants can obtain at most m linear equations,
one from each round, with totally z unknowns,
where z ≥ q + m − 1 − (t − 1) ≥ m + l. Since
at least m + l unknowns can not be uniquely
determined by at most m equations, any con-
spiracy less than t participants still cannot rule
out any possible values of the secret K ∈ GF (p)
and shares yi of participants Pi not in their con-
spiracy.

Similar to the last section, with the pre-
knowledge that the threshold is less than t + 1,

threshold-verification problem can be viewed as
the following decision problem: “Is the thresh-
old of this scheme exactly t?” The answer Yes
means again that the threshold of this scheme
is exactly t, and No means the threshold of this
scheme is less than t. This method is again a
yes-biased probabilistic method with an error
probability pt−2−1

pt−1−1 , if we lay the dealer’s cheat-
ing aside. An advantage of this method over
our first method is that if in both T1 and T2, at
least one participant is replaced by a new par-
ticipant not belonging to T1∪T2, or just replace
at least one participant from T1 ∩ T2, then the
participants can go through the same verifica-
tion process once again. In the case when D
is honest about the threshold, the probability
that the verification process will return No m
times in succession will be reduced to less than
or equal to (pt−2−1

pt−1−1 )m.
We emphasize again that this method is

only applicable to the Shamir (t, n)-threshold
scheme with t > 2 because it is necessary that
2t − 2 ≥ t + 1.

5. Concluding Remarks

In this paper, we proposed two uncondition-
ally secure methods to verify the threshold t
of the Shamir (t, n)-threshold scheme. Our
first method is a simple modification of Be-
naloh’s method 1). This method is a yes-biased
probabilistic method, and returns No answer
with an error probability approximately equal
to 1

ln(p−1) −
1

p−1 , where Yes answer means the
threshold is exactly t and No answer means the
threshold is not greater than t−1, with the pre-
knowledge that the threshold is less than t + 1.
Among others, a shortcoming of this method is
that the number of possible values of the secret
K ∈ GF (p) will be reduced from p − 1 to ap-
proximately p−1

ln(p−1) against a conspiracy of t−1
participants. Our second method, also a yes-
biased probabilistic method returning No an-
swer with an error probability less than or equal
to pt−2−1

pt−1−1 , can overcome the shortcomings of the
first method. The second method allows any m-
subset of participants with m > t to verify if the
threshold is at least t or not, but requires the
threshold t to be greater than 2. Its error proba-
bility can be reduced to (pt−2−1

pt−1−1 )m by repeating
the verification procedure m times under some
mild requirements. Combining this method
with Benaloh’s one, participants can verify if
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the threshold is exactly t or not. These new pro-
posed methods solve Laih, Harn and Chang’s
problem in their book 5), although they are not
very efficient for the reasons that they require
many additional shares to be distributed and
many verification processes to be executed.

We also note that there are some close rela-
tions between threshold-verification and shares-
verification. If the dealer gives a faulty share to
one participant, then it will cause the scheme
to be non t-consistent and consequently cause
the polynomial participants computed to be
of degree greater than t − 1. On the other
hand, if the polynomial f(x) the dealer used in
the Shamir (t, n)-threshold scheme is verified
to be of degree greater than t − 1, then par-
ticipants can conclude that either the thresh-
old is greater than t, in which all shares can
be viewed as faulty shares, or that at least
one faulty share has been distributed by the
dealer. Another fact we would like to emphasize
is that even if no faulty shares are detected by
share-verification protocols, it can only guaran-
tee that the Shamir (t, n)-threshold scheme is t-
consistent but can not rule out the possibility of
being (t−1)-consistent. In this sense, threshold-
verification surpasses share-verification.
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