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Quantum Biased Oracles

Kazuo Iwama,†1,†2 Akinori Kawachi†3 and Shigeru Yamashita†4

This paper reviews researches on quantum oracle computations when oracles are not perfect,
i.e., they may return wrong answers. We call such oracles biased oracles, and discuss the formal
model of them. Then we provide an intuitive explanation how quantum search with biased
oracles by Høyer, et al. (2003) works. We also review the method, by Buhrman, et al. (2005),
to obtain all the answers of a quantum biased oracle without any overhead compared to
the perfect oracle case. Moreover, we discuss two special cases of quantum biased oracles
and their interesting properties, which are not found in the classical corresponding cases. Our
discussion implies that the model of quantum biased oracle adopted by the existing researches
is natural.

1. Introduction

The researches on quantum oracle computa-
tion have intensively studied in the quantum
research community. One of the main reasons
may be the following: in most cases of classical
oracle computations, the lower bound of com-
putational complexity is linear to the problem
size, therefore, it is relatively easy to exploit the
difference between the power of classical and
quantum computations in the oracle setting.

The classical oracle computation is the fol-
lowing scenario: we want to compute a desig-
nated Boolean function f(x1, x2, . . . , xN ), but
the value of ai (= 0 or 1) of each xi can be
obtained only by making a query to a black
box called an oracle. Then, we often consider
the smallest number of necessary oracle calls,
which we call the query complexity, to obtain
the value of f(a1, a2, . . . , aN ) with a high (say,
constant) probability. Suppose we want to com-
pute the Boolean OR of input variables, i.e.,
f = x1 ∨ x2 ∨ . . . ∨ xN . In the case of classical
computation, we need Θ(N) queries to compute
the function.

By contrast, we need much fewer queries in
the case of quantum computation. For instance,
we need only O(

√
N) queries to find an index

i such that ai = 1 (Grover Search 18)). This
is one of the major examples of quantum su-
periority. Therefore, quantum query complex-
ity has been intensively studied as a central
issue of quantum computation. Indeed, there
have been a number of applications and exten-
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sions of Grover Search, e.g.,8),9),14),19),20). Also
quite many results on efficient quantum algo-
rithms are shown by sophisticated ways of us-
ing Grover Search. Brassard, et al. 11) showed a
quantum counting algorithm that gives an ap-
proximate counting method by combining the
Grover search with the quantum Fourier trans-
formation. Quantum algorithms for the claw-
finding and the element distinctness problems
given by Buhrman, et al. 10) also exploited clas-
sical random and sorting methods with Grover
Search. (Ambainis,6) developed an optimal
quantum algorithm with O(N2/3) queries for
element distinctness problem, which makes use
of quantum walk and matches to the lower
bounds shown by Shi27)). Ambainis and Aaron-
son2) constructed quantum search algorithms
for spatial regions by combining Grover Search
with the divided-and-conquer method. Mag-
niez, Santha and Szegedy 24) showed efficient
quantum algorithms to find a triangle in a
given graph by using combinatorical techniques
with Grover Search. Dürr, Heiligman, Høyer
and Mhalla 15) also investigated quantum query
complexity of several graph-theoretic problems.
In particular, they exploited Grover Search on
some data structures of graphs for their up-
per bounds. Ambainis, et al. 1) studied the
query complexity of the most general problem
what they call the oracle identification problem
(OIP). An OIP is given a set S of M Boolean
oracles out of 2N ones, to determine which or-
acle in S is the current black box oracle. We
can exploit the information that candidates of
the current oracle is restricted to S. They pro-
vide almost an optimal algorithm whose query
complexity is O(

√
N logM logN log logM).

For oracle computation, there are several sit-
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uations where we can get only a noisy Boolean
value for each variable. Suppose again that we
want to compute the Boolean OR of input vari-
ables, i.e., f = x1 ∨ x2 ∨ . . . ∨ xN by asking an
input oracle. However, this time, the oracles is
noisy in the sense that it returns us the correct
ai (= 0 or 1) with probability 1

2 + ε. In this pa-
per, we call this oracle an ε-biased oracle. For
the above particular example, one simple algo-
rithm is to call the biased oracle for each xi

many times and to guess the value of ai by ma-
jority. It is not hard to see that we need Ω( 1

ε2 )
oracle calls to know the correct value of each
ai with constant probability. Thus, the query
complexity obviously depends on the value of
ε. Note that many studies assume that ε is a
constant, which disappears in the query com-
plexity under the big-O notation 12),28). Note
also that we can get all the values of N bit with
high probability by querying each ai O(logN)
times instead of once. Thus, we can make any
algorithm robust, i.e., resilient against biased
oracles at the cost of an O(logN)-factor over-
head. In some cases, this factor of O(logN)
is actually needed: Feige, et al. 16) proved that
any classical robust algorithm to compute the
parity of the N bits needs Ω(N logN) queries.
On the other hand, the same paper also gives a
non-trivial classical algorithm which computes
OR of the N bits with O(N) queries.

Recently, two papers, by Høyer, et al. 21) and
Buhrman, et al. 13), raised the question of how
to cope with biased oracles in the quantum case.
For the quantum setting, both papers 13),21) are
based on the following model: the oracle re-
turns, for the query to bit ai, a quantum pure
state from which we can measure the correct
value of ai with a constant probability. This
noise model naturally fits the motivation that
a similar mechanism should apply when we use
bounded-error quantum subroutines.

Based on the above biased oracle model,
Høyer, et al. gave a quantum algorithm that
robustly executes Grover Search with O(

√
N)

queries, which is only a constant factor worse
than the perfect oracle case 21). Buhrman, et
al. 13) also adopted the same model and gave
a robust quantum algorithm to output all the
N bits by using O(N) queries. This obviously
implies that O(N) queries are enough to com-
pute the parity of the N bits, which contrasts
with the classical Ω(N logN) lower bound men-
tioned earlier. Thus, robust quantum compu-
tation does not need a serious overhead at least

for several important problems.
In this paper, we introduce the formal model

of quantum biased oracles appeared in the ex-
isting researches 3),13),21),22), and mainly review
the two robust quantum algorithm mentioned
above. We also discuss special cases of quan-
tum biased oracles. This paper is organized as
follows. In Section 2, we define the model of
quantum biased oracles discussed in computer
science community. Then we introduce two in-
teresting researches based on the model in Sec-
tions 3 and 4. In Section 5, we discuss other
models of quantum biased oracles. Finally, Sec-
tion 6 concludes this paper.

2. Quantum Biased Oracle Models

2.1 Classical Biased Oracles
We start with the classical model of biased

oracles.
Definition 1 A classical ε-biased oracle is

defined to return ai with probability 1
2 +ε when

its input is i(1 ≤ i ≤ N).
2.2 Quantum Biased Oracles
From Definition 1, it is natural to consider

a quantum oracle to be defined as a quantum
black box algorithm such that the measured
value of the answer qubit produced by the al-
gorithm is ai with probability 1

2 +ε when its in-
put is i. Therefore, the most general model of a
quantum biased oracle is such that the quantum
state generated by the oracle is a mixed state
from which we can measure the correct value
with probability 1

2+ε. This model can deal with
decoherence errors. Indeed there are researches
that study the effect of decoherence error on
Grover Search by using this error model 25),26).

In the computer science community, we usu-
ally consider that the quantum state generated
by a quantum biased oracle is a pure state. In
other words, a biased oracle is considered to be
a unitary transformation. Recently there have
been many researches 3),13),21)∼23) based on this
model. If we consider a quantum subroutine as
an oracle, the oracle can be considered as this
model, therefore, the motivation of this model
is also natural. Adcock and Cleve firstly dis-
cussed quantum biased oracles of this model 3),
and their definition can be written as follows.

Definition 2 A quantum ε-biased oracle is
a unitary transform (denoted by Oε hereafter)
on n+m+1 qubits which satisfies the following
two properties.
( 1 ) If the last qubit of Oε |i〉 |0m〉 |0〉 is mea-

sured, yielding the value w ∈ {0, 1}, then
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Pr[w = ai] ≥ 1
2 + ε for any i ∈ {0, 1}n.

( 2 ) For any i ∈ {0, 1}n and y ∈ {0, 1}m+1,
the state of the first n qubits of Oε |i〉 |y〉
is |i〉. For simplicity, we just assume N =
2n in the rest of the paper. (Otherwise
we consider an oracle whose input size is
N ′ = 2n(2N > N ′ > N) by adding some
dummy inputs. It is obvious that this
does not change the query complexity in
the big-O notation.)

The second property is for technical conve-
nience, and any unitary operation without this
property can be converted to one that has this
property, by first producing a copy of the classi-
cal basis state |i〉. Note that we use the bias (ε
in the definition) of the success probability from
1/2 to denote the parameter for a biased oracle.
However, some papers use the error probability
(1/2−ε) for the purpose. That is only the defer-
ence of notations, but for a simpler expressions
in Section 4, we will use the error probability,
which is denoted by δ, instead of the bias rate
ε. In Section 4, we denote the biased oracles Oδ

in stead of Oε to avoid confusion.
Since Oε is a unitary transform, Oε |i〉 |0m〉 |0〉

must be written as
|i〉 (αi |vi〉 |ai〉+ βi |wi〉 |ai〉) .

We consider that vi, wi and αi are generally
different according to i. In the classical case,
we usually do not care such a condition since it
seems almost impossible to utilize this kind of
information usefully. However, in the quantum
case, this condition should be very important.
In Section 5, we will see the reason why we con-
sider the condition important in the quantum
case.

3. Quantum Search with Biased Ora-
cles

Høyer, Mosca, and de Wolf showed a quan-
tum search algorithm with biased oracles 21).
Their algorithm can find a solution, i.e., an in-
dex j such that aj = 1 from N indices with high
probability using O(

√
N) queries to a biased or-

acle (with a constant bias), which requires only
constant overhead compared to the perfect or-
acle. The following quantum biased oracle is
given in their algorithm:

Oδ |i〉 |0m〉 |0〉 =
√
pi |i〉 |vi〉 |ai〉+√

1− p2
i |i〉 |wi〉 |ai〉 ,

where pi ≥ 9/10 for every i. In this section, we
describe how their algorithm finds a solution

with high probability using the biased oracle.
3.1 Algorithms
We first describe two ingredients to construct

the main algorithm.
Lemma 1 (Amplitude Amplification11))

Let S0 be the unitary operator that inverts
the sign of the amplitude of the all-zero state
and S1 be the unitary operator that inverts the
signs of the amplitudes of all basis states whose
last qubit is |1〉. Let A |0〉 = sin θ |φ1〉 |1〉 +
cos θ |φ0〉 |0〉, where 0 ≤ θ ≤ π/2. When
G = −AS0A

−1S1, we then have GA |0〉 =
sin 3θ |φ1〉 |1〉+ cos 3θ |φ0〉 |0〉.

Lemma 2 (Error Reduction) Let A |0〉
=
√
p |φb〉 |b〉 +

√
1− p |φ1−b〉 |1− b〉, where

b ∈ {0, 1} and p ≥ 9/10. Then, we can
construct a unitary operator E such that
E |0〉 =

√
1− q |ψb〉 |b〉 +

√
q |ψ1−b〉 |1− b〉 by

O(log(1/q)) applications of A and majority-
voting, where |ψb〉 and |ψ1−b〉 are larger space
for extra workspace than |φb〉 and |φ1−b〉, re-
spectively.

We exploit the above two procedures recur-
sively to build the main algorithm of the ro-
bust quantum search algorithm. The main al-
gorithm consists of a number of rounds. As-
sume that we have the following unitary oper-
ator Ak in the k-th round:

Ak |0〉 = αk |Γk〉 |1〉+ βk

∣∣Γk

〉 |1〉
+

√
1− α2

k − β2
k |Hk〉 |0〉 ,

where αk and βk are non-negative reals, |Γk〉 is
a unit vector whose first register only contains
j ∈ {i : ai = 1}, ∣∣Γk

〉
is a unit vector whose first

register only contains j �∈ {i : ai = 1}, and Hk

is a unit vector. Here, A1 is a unitary operator
applying the given biased oracle Oδ to the state
(1/
√
N)

∑
i |i〉 |0〉 |0〉. Then, we build a unitary

operator Ak+1 for the next round by setting
Ak+1 = EkGkAk,

where Ek and Gk are unitary operators for the
error reduction step and the amplitude ampli-
fication step, respectively. In more details, by
Lemma 1, the amplitude amplification step is
defined as

Gk = −AkS0A
−1
k S1.

and by Lemma 2, the error reduction step con-
sists of majority voting on O(k) runs of the Oδ

for all superposed j to decide whether aj = 1
with error at most 1/2k+5:

Ek |j〉 |1〉 |0〉 = pjk |j〉 |1〉 |1〉+ qjk |j〉 |1〉 |0〉
Ek |j〉 |0〉 |0〉 = |j〉 |0〉 |0〉 ,
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where qjk =
√

1− p2
jk, p2

jk ≥ 1−1/2k+5 if fj =
1 and p2

jk ≤ 1/2k+5 otherwise. (Note that we
omit the second registers for workspace in the
above equations.)

We now describe the main algorithm as fol-
lows.
Robust Quantum Search
( 1 ) For m = 0 to �log9N	 − 1 do:

( a ) Run Am 1,000 times (any large
constant times is fine).

( b ) Verify the 1,000 measurement re-
sults by O(logN) times of the cor-
responding Oδ for each result.

( c ) If a solution has been found, then
output the solution and stop this
procedure.

( 2 ) Output ‘no solution’.
The following theorem holds for the above al-
gorithm.

Theorem 1 The algorithm Robust Qua-
ntum Search can find a solution j such that
fj = 1 with a constant probability if one ex-
ists. Moreover, this outputs ‘no solution’ with
a constant probability if no solutions exist. The
query complexity is O(

√
N).

3.2 Intuitive Analysis
We compare the behaviors for biased and per-

fect oracles to understand a nature of the quan-
tum search algorithm. Given a perfect ora-
cle, one can see easily that the above quantum
search algorithm defined recursively works sim-
ilarly to Grover’s quantum search algorithm.
Now we focus on the k-th round of the recur-
sion. From the definitions of Gk and Ak, we
have

GkAk |0〉 = sin 3θk
αk

sin θk
|Γk〉 |1〉

+ sin 3θk
βk

sin θk

∣∣Γk

〉 |1〉
+ cos 3θk

√
1− α2

k − β2
k

cos θk
|Hk〉 |0〉

for a biased oracle, where α2
k + β2

k = sin2 θk.
Note that for the perfect oracle (βk = 0) we
have

GkAk |0〉 = sin 3θk
αk

sin θk
|Γk〉 |1〉

+ cos 3θk

√
1− α2

k

cos θk
|Hk〉 |0〉 ,

where αk = sin θk. Comparing these two cases,
if we want to amplify the success probability at
each round using the biased oracle equivalently

to the perfect oracle up to a constant factor, one
can see that we should satisfy the following two
conditions for any k: (i) αk/ sin θk is at least
a constant and (ii) βk/ sin θk is bounded by a
small constant. (Note that αk/ sin θk = 1 and
βk/ sin θk = 0 in the perfect oracle.) If these
conditions are met for any k, we can obtain a
solution by the biased oracle with a constant
probability similarly to the perfect oracle. To
achieve this task, we perform the error reduc-
tion step to decrease the amplitude of the false
positive state

∣∣Γk

〉 |1〉. However, the error re-
duction step decreases not only the amplitude
of the false positive state but also the amplitude
of the true positive state |Γk〉 |1〉. We therefore
have to decrease the false positive amplitude as
preserving the true positive one.

Intuitively, the false positive amplitude βk

becomes smaller as performing more queries in
the error reduction step. We thus need the ap-
propriate number of queries for error reduction
step. Then, it should be noted that when k is
small sin θk is also small. This fact implies that
we can save the number of the queries in the
error reduction step for small k.

We now show that the above two conditions
are met by the error reduction step with O(k)
queries. By the error reduction step, we obtain

αk+1 ≥ sin 3θk
αk

sin θk

√
1− 2−(k+5).

Since sin θk+1 is defined as sin 3θk,
αk+1

sin θk+1
≥ αk

sin θk

√
1− 2−(k+5).

We also have
∞∏

l=1

√
1− 2−(l+5) = Ω(1).

It follows that the condition (i) is met for any
k by the error reduction with O(k) queries.

On the other hand, we also have
βk+1

sin θk+1
≤ βk

sin θk

√
2−(k+5).

One can easily verify that this value is suffi-
ciently small to satisfy the condition (ii).

We next compare the query complexity of the
two cases. Let Ck be the query complexity of
Ak. If the given oracle is perfect, we obtain a re-
currence Ck+1 = 3Ck, which provides the total
query complexity O(

√
N). In the case of the bi-

ased oracles, since the error reduction step just
contributes an additive factor O(k) queries for
every k, we have Ck+1 = 3Ck+O(k), which also
provides the total query complexity O(

√
N).

Note that the number of oracle calls for er-
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ror reduction between the two oracle calls for
the amplitude amplification does not increase
linearly, but changes as follows: the number is
increased by the number of rounds (k in the
above discussion) at the end of every round in
the algorithm. Since the oracle calls for the k-
th round becomes three times as the (k− 1)-th
round, the number of oracle calls for error re-
duction is increased periodically such that the
period becomes three times as long as the pre-
vious period. In other words, we do not need
to increase the number of oracle calls for error
reduction linearly to the number of oracle calls
for the amplitude amplification, and thus we
can obtain the desired query complexity.

4. Recovering All the Values of Quan-
tum Biased Oracles

The quantum search algorithm shown in the
previous section can find an index i such that
ai = 1 if one exists, and output ‘no solutions’
otherwise. Therefore, it can compute the OR
function f(a1, ..., aN ) = a1∨· · ·∨aN from biased
inputs. We next review a generalization of the
quantum search algorithm, shown by Burhman,
et al. 13). Their algorithm can compute any
Boolean function from biased N inputs with
O(N) queries. Their algorithm basically recov-
ers the correct inputs (a1, ..., aN ) from biased
ones using the robust quantum search men-
tioned in the previous section.

4.1 Algorithms
We denote a unitary operator Ai, directly ob-

tained by inputting an index i to a biased ora-
cle, as

Ai |0m〉 |0〉 = αi

∣∣φ0
i

〉 |0〉+ βi

∣∣φ1
i

〉 |1〉 .
Let |αi|2 = 1 − δ if ai = 0 and otherwise
|αi|2 = δ. That is, δ means the error probabil-
ity, and we use δ (in stead of ε like the previous
sections) in this section for easy notations. We
also utilize

Ai |0m〉 |0〉 = αi

∣∣φ0
i

〉 |1〉+ βi

∣∣φ1
i

〉 |0〉
by applying the NOT operation to the second
register. We now define a unitary operator

Ai(b) =
{
Ai if b = 0,
Ai if b = 1,

Then, we can implement a unitary operation
A(x) for x = (x1, ..., xN ) ∈ {0, 1}N as

A(x) |i〉 |0m〉 |0〉 = |i〉Ai(xi) |0m〉 |0〉
from the above modifications. Their algorithm
holds (x1, ..., xN ) as temporary inputs and ap-
proaches (x1, ..., xN ) into (a1, ..., aN ) gradually.
One can easily see that if xi = ai then we get 0
from the result obtained by the application of

Ai(xi). Then, their algorithm finds an index i
such that Ai(xi) outputs 1 by the robust quan-
tum search and update x by fixing xi. There-
fore, by approaching the output of Ai(xi) into
0 for all i, we can recovery all the correct inputs
(a1, ..., aN ).

The heart of their algorithm is how to ex-
ploit the robust quantum search shown in the
previous section. If we consider a more gen-
eral biased oracle Oδ instead of a constant one
like Theorem 1, the query complexity becomes
O(
√
N/(1−δ)2). Also, we can amplify the prob-

ability detecting the no-solution case by ma-
jority voting. The following lemma, stated in
Ref. 13), summarizes this generalization.

Lemma 3 We can build a quantum algo-
rithm RobustFind(x, β, γ, λ) using A(x): If
|x| ≥ βN , it outputs an index i such that
xi = 1 with at least probability 1− γ and out-
puts ‘no solutions’ with probability at most λ.
The query complexity of this algorithm is

O

(
1

(1/2− δ)2√β log
1
λγ

)
.

Buhrman, et al. showed the following theo-
rem by building a quantum algorithm using the
algorithm in the above lemma.

Theorem 2 Given a biased oracle Oδ, we
can build a quantum algorithm that recovers
(a1, ..., aN ) with probability at least 2/3 using
O(N/(1/2− δ)2) queries.

We now describe the main algorithm, which
consists of two stages.
Recovering All the Values
[First Stage]
(1) For every i, run Ai and substitute the result
of Ai into x̃i.
(2) Run (a)-(b) from k = 1 to �log(δ(log n)2)	.

(a) Update δ′ ← δ/2k−1.
(b) Repeat (i)-(iii) �1.7δ′	 times.

(i) Call RobustFind(x̃, 0.3δ′, 1/8, 1/8).
(ii) If an index i is found then update

x̃i ← 1− x̃i.
[Second Stage]
(1) Repeat (a)-(b) until the result of Ro-
bustFind is ‘no solutions’

(a) Call RobustFind(x̃, 1/ log2N, 1/10N ,
1/10N).

(b) If an index i is found, update x̃i ← 1− x̃i.
(2) Output x̃.

This algorithm roughly recovers the inputs
(a1, ..., aN ) in the first stage. More precisely,
this algorithm reduces the number of wrong in-
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puts to at most N/(logN)2 in the first stage.
In each round of the step (2), we obtain wrong
inputs by the robust quantum search and fix
them. Note that we may obtain correct inputs
and flip them incorrectly with small probabil-
ity. So, we repeat this procedure as improving
the precision δ′.

The algorithm next precisely recovers the
remaining wrong inputs in the second stage.
Since the number of the wrong inputs is at
most N/(logN)2 at the beginning of the second
stage, we can consume O(logN) queries for the
error reduction. Then this algorithm achieves
the overall query complexity O(N).

5. Quantum Biased Oracles with Spe-
cial Conditions

In this section, we consider two special cases
of quantum biased oracles where we relax the
conditions in Definition 2. Note that our re-
laxations seem to be fair from the view point
of classical computation, i.e., it seems almost
impossible to utilize the relaxation in the clas-
sical case. However, as we will see, the query
complexity changes dramatically in the quan-
tum world.

5.1 Quantum Biased Oracles with the
Same Bias Rate

The paper 23) discusses the case where the
bias rate ε is the same for all inputs. In the clas-
sical case this condition does not alter the query
complexity, however, does alter in the quantum
case. Formally, we can have the following the-
orem.

Theorem 3 Let Q be any quantum algo-
rithm solving some problem with probability
p using a perfect oracle O with T number of
queries. Then, there exists an algorithm Q′
solving the same problem with probability at
least (1 − 1/T )22p/3 using an ε-biased oracle
Oε with O(T

ε ) number of queries, if α2
i ≥ 1

2 + ε
for all i.
noindent Proof. First we construct the follow-
ing oracle, Õε, by using one Oε and one O†

ε as
shown in Fig. 1. In the figure, X denotes a
NOT gate, and Z denotes a controlled-Z gate.
By simple calculation, it can be shown that

Õε |i, 0m, 0〉 = (−1)ai2ε |i, 0m, 0〉+ |i, ψi〉 ,
where |i, ψi〉 is perpendicular to |i, 0m, 0〉 and
its norm is

√
1− 4ε2.

Note that, if the oracle is perfect, i.e., ε =
1/2, then it works as follows:

Õε |i, 0m, 0〉 = (−1)ai |i, 0m, 0〉 .

Fig. 1 The construction of Õε oracle.

In other words, we consider that the state
(−1)ai |i, 0m, 0〉 is a good state in the sense that
it is obtained by the perfect oracle.

The overall strategy is to construct a quan-
tum state almost equivalent to the good state
for each perfect oracle call in the original al-
gorithm Q so that the overall success proba-
bility is only constant factor worse than the
original one. To do so, first we estimate the
value of θa such that sin2 θa = (2ε)2. More pre-
cisely, we find θ̃a with probability at least 2

3 s.t.
|θa − θ̃a| ≤ θa

(π+1)T by using the biased oracle
and its inverse in O(T

ε ). This can be done by
using a similar scheme to the quantum counting
method 11).

Next we perform quantum amplitude amplifi-
cation method with the estimated value to am-
plify the amplitude of the good state. By simple
calculation, we can show the following: if a θ̃a

is given s.t. |θa− θ̃a| ≤ θa

(π+1)T , then the proba-
bility to measure the good state after quantum
amplitude amplification method with O( 1

ε ) bi-
ased oracle calls is at least

(
1− 1

T 2

)
.

Now the theorem is immediate: each sim-
ulation of one query to the perfect oracle re-
sults in the success probability at least 1− 1

T 2 .
Since for all t, n ∈ R s.t. n ≥ 1 and |t| ≤ n,(
1 + t

n

)n ≥ et
(
1− t2

n

)
, the overall success

probability is
(
1− 1

T 2

)T 2p/3 ≥ (
1− 1

T

)2 2p/3
and the overall complexity is O(T

ε ).
5.2 Quantum Biased Oracles with Re-

settable Condition
In addition to the relaxation mentioned in the

previous section, if the quantum biased oracle
does not have a work space, it is essentially the
same as the perfect oracle. That is, although a
work space does not matter in the classical case,
we cannot ignore the work space in Definition 2
for the model of the quantum biased oracles.

To discuss the above matter, we introduce the
following special quantum ε-biased oracle.

Definition 3 The following quantum ε-
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biased oracle is called a resettable biased oracle.
Oε |i〉 |0m〉 |0〉 = |i〉 |0m〉 (α |ai〉+ β |ai〉) ,

where α =
√

1
2 + ε and β =

√
1
2 − ε.

The above oracle is essentially the same as the
following one. (It is easy to verify that Õε

can be constructed by Oε and two Hadamard
gates.)

Õε |i〉 |0〉 = |i〉 ((−1)aiα |0〉+ β |1〉) , (1)
Õε |i〉 |1〉 = |i〉 (α |1〉 − (−1)aiβ |0〉) , (2)

where α =
√

1
2 + ε and β =

√
1
2 − ε.

Let V be any perfect quantum oracle which
maps |i, b, z〉 to (−1)b·ai |i, b, z〉, where i ∈
{0, 1}n and z be any qubit strings. Note that
V is the standard definition for perfect oracles
which often appears in the literature 4),5),18).

Theorem 4 If there exists a quantum algo-
rithm A solving some problem with probability
1 − δ by querying V T times, then instead of
querying V , A can solve the same problem with
probability 1 − δ by querying Oε O(T ) times,
where Oε is a resettable biased oracle for V .
noindent Proof. For simplicity, we omit the
description of z since it is left unchanged
by the oracle transformation. Suppose that
we have a quantum state |ψ〉 =

∑
i γi |i〉 |0〉

at some moment of the algorithm, where∑
i |γi|2 = 1. Then it follows that applying

oracle Oε to this |ψ〉 results in Oε

∑
i γi |i〉 |0〉

=
∑

i(−1)aiαγi |i〉 |0〉+
∑

i βγi |i〉 |1〉.
Now here comes our key technique, namely,

to use a measurement: if the measurement on
the last qubit results in the state |0〉, we know
that the quantum state after this measurement
is exactly the same as the quantum state after
calling V . Otherwise, if the state |1〉 is mea-
sured, we simply need to flip the last qubit to 0
and repeat querying Oε since the previous state
|ψ〉 is completely preserved. Note that the ex-
pected number of iteration is constant. Thus,
A can query Oε instead of V and the query
complexity is roughly the same.

The two relaxations discussed in this section
alter the query complexities unlike the classical
case. Thus, Definition 2 expresses a necessary
condition for a proper model of the quantum
biased oracle.

6. Concluding Remarks

In this paper we have discussed what is a
quantum biased oracle, and summarized the re-
lated results known so far. It should be noted

that the model of a quantum biased oracle has
nothing to do with a physical error unlike the
classical case. However, the model naturally fits
probabilistic quantum algorithms; the model
fits the cases where we consider to use some
quantum algorithms as oracles. Of course, it
should be interesting to study the properties of
this model to investigate the power of quantum
computation, even though having no relation to
a physical noise.

As mentioned in Section 5, we should be very
careful to consider some special cases of quan-
tum biased oracles. In other words, there are
much difference between classical and quantum
biased oracle, i.e., some properties that seem to
be natural in the classical case are not natural
in the quantum case.

For the case of computing OR and retrieving
all the values of oracles, the query complexity
is exactly the same as the perfect oracle cases
(when we consider the bias rate ε is a constant)
as mentioned in this paper. Therefore, it is
conjectured that the query complexity does not
change by the error of quantum biased oracles
for all the cases. Very recently, for the OIP
problem, the query complexity of biased ora-
cles matches to the lower bonds of the perfect
oracle case for most cases 22). This result may
support the above conjecture. To prove or dis-
prove the above conjecture for all the cases may
be the most interesting open problem.
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