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Automata with Quantum and Classical Resources
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Quantum automata have been studied as simple quantum computation models. They can
be considered models of small (or restricted) quantum computers. In this paper, we give
descriptions of several kinds of quantum automata and show their power in comparison to their
classical counterparts. We also give descriptions of quantum automata that have additional
classical computational resources. Introducing classical computational resources can enhance
the power of quantum automata, since this approach relaxes such restrictions as reversible
state transitions.

1. Introduction

Several kinds of quantum finite automa-
ta 4),7),9),12),13) and quantum pushdown au-
tomata 6),9),11) have been proposed as simple
quantum computation models. In particular,
some quantum finite automata can be imple-
mented with a constant number of qubits, and
thus they are important quantum computation
models given the current scale of quantum com-
puter development.

In this paper, we give descriptions of a variety
of quantum finite automata and quantum push-
down automata and show results demonstrating
the power of quantum automata in comparison
to their classical counterparts.

We expect quantum automata to be more
powerful than their classical counterparts.
However, this is not always the case, since quan-
tum computation models are required to obey
such restrictions as reversible state transitions.
In order to overcome such restrictions, intro-
ducing classical computational resources into
quantum automata may be an effective solu-
tion. In some cases, such hybrid models can
be more powerful than purely quantum models.
In this paper we address two quantum-classical
hybrid models 4),11) and describe their power in
language recognition.

This paper is organized as follows. In Sec-
tion 2, we define several kinds of quantum fi-
nite automata and compare their power with
their classical counterparts. In Section 3, we
define quantum pushdown automata and ana-
lyze some results in language recognition. In
Section 4, we describe two quantum-classical
hybrid models: finite automata with quantum
and classical states, and quantum pushdown
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automata with classical stack operations. Sec-
tion 5 concludes this paper.

2. Quantum Finite Automata

In this section, we describe quantum finite
automata and compare them with their classi-
cal counterparts.

Finite automata are the simplest computa-
tion models. Various kinds of finite automata
can be defined according to head movements
(one-way or two-way) and types of transitions
(deterministic, non-deterministic, or probabilis-
tic). We give a definition of two-way probabilis-
tic finite automata below. Note that one-way or
deterministic finite automata can be defined as
a restricted model of the two-way probabilistic
finite automata.

Definition 1 A two-way probabilistic finite
automaton (2PFA) is defined as the following
6-tuple:

M = (Q,Σ, δ, q0, Qacc, Qrej),
where Q is a set of states, Σ is a set of input
symbols including the left and right endmarkers
{|c, $}, respectively, δ is a state transition func-
tion (δ : (Q×Σ×Q×{−1, 0,+1}) −→ [0, 1]), q0
is an initial state, Qacc (⊆ Q) is a set of accept-
ing states, and Qrej (⊆ Q) is a set of rejecting
states, where Qacc ∩Qrej = ∅.

�

In the common definition, only a set of ac-
cepting states (Qacc) is given, while no set of
rejecting states (Qrej) is given. However, in
this paper, we also give a set of rejecting states
in order to be consistent with the definition of
quantum finite automata.
δ(q, a, q′, D) = α means that the probability

of the transition from q to q′ moving the head to
D is α when reading input symbol a. Note that,
for each input symbol, the sum of the weights
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(i.e., the probabilities) of outgoing transitions
of a state must be 1. The computation of a fi-
nite automaton starts with initial state q0 and
the head position at the leftmost symbol. At
every step, a finite automaton changes its state
and the head position according to the state
transition function, and the computation halts
when it enters the accepting or rejecting states.
If the computation halts at an accepting (resp.
rejecting) state, it outputs ‘accept’ (resp. ‘re-
ject’). For language L, when a finite automaton
accepts any string in L with probability at least
1
2 +ε and rejects any string not in L with proba-
bility at least 1

2 + ε, we say that the automaton
recognizes language L with probability 1

2 + ε,
where ε is a constant that does not depend on
an input.

We define a deterministic finite automaton
as a finite automaton in which the image of a
state transition function is restricted to {0,1}.
We define a one-way finite automaton as a fi-
nite automaton in which head movements are
restricted to ‘+1’.

Next, we define quantum finite automata.
Quantum finite automata can be considered
an extended model of probabilistic finite au-
tomata, where edge weights represent ampli-
tudes. As in the case of classical finite au-
tomata, various kinds of quantum finite au-
tomata can be defined. We give the definition
of (measure-many) two-way quantum finite au-
tomata below.

Definition 2 A two-way quantum finite
automata (2QFA) is defined as the following 6-
tuple:

M = (Q,Σ, δ, q0, Qacc, Qrej),
where Q is a set of states, Σ is a set of input
symbols including the left and right endmarkers
{|c, $}, respectively, δ is a state transition func-
tion (δ : (Q×Σ×Q×{−1, 0,+1}) −→ C), q0 is
an initial state, Qacc (⊆ Q) is a set of accept-
ing states, and Qrej (⊆ Q) is a set of rejecting
states, where Qacc ∩Qrej = ∅.

�

δ(q, a, q′, D) = α means that the amplitude
of the transition from q to q′ moving the head
to D is α when reading an input symbol a. A
configuration of a 2QFA is a pair (q, k), where
k is the position of the head and q is in Q.
A superposition of configurations of a 2QFA is
any element of l2(Q×ZZn) of unit length, where
ZZn = {0, 1, . . . , n− 1}. For each configuration,
we define a column vector |q, k〉 as follows:

• |q, k〉 is an n|Q| × 1 column vector.
• The row corresponding to (q, k) is 1, and

the other rows are 0.
For input string x, we define time evolution op-
erator Ux as follows:

Ux(|q, k〉) =∑
q′∈Q,D∈{−1,0,1}

δ(q, x(k), q′, D) |q′, k +D〉 ,

where x(k) is the k-th input symbol of input
x. If Ux is unitary (for any input string x),
that is, UxUx† = Ux†Ux = I, where Ux† is
the transpose conjugate of Ux, then the corre-
sponding 2QFA is well-formed.

The computation of a quantum finite au-
tomaton starts with initial state q0 and the head
position at the leftmost symbol. We define |ψ0〉
as |ψ0〉 = |q0, 0〉. We also define Eacc, Erej,
and Enon as follows:

Eacc = span{|q, k〉 |q ∈ Qacc},
Erej = span{|q, k〉 |q ∈ Qrej},
Enon
= span{|q, k〉 |q ∈ Q \ (Qacc ∪Qrej)}.

We define observable O as O = Eacc ⊕ Erej ⊕
Enon. We also define the outcome of a mea-
surement corresponding to Eacc, Erej and
Enon as ‘acc’, ‘rej’ and ‘non’, respectively.

The 2QFA computation proceeds as follows:
(a) Ux is applied to |ψi〉. Let |ψi+1〉 =

Ux |ψi〉.
(b) |ψi+1〉 is measured with respect to observ-

able O. Let |φj〉 be the projection of |ψi+1〉
to Ej , where j is ‘acc’, ‘rej’ or ‘non’. Then
each outcome j is obtained with probability
| |φj〉 |2. Note that this measurement causes
|ψi+1〉 to collapse to 1

||φj〉| |φj〉, where j is
the obtained outcome.

We call the above (a) and (b) ‘one step’ collec-
tively. We repeat the above (a) and (b) until
‘acc’ or ‘rej’ is measured. The language recog-
nized by a 2QFA is defined in the same way as
that by a classical finite automaton.

We define a one-way quantum finite automa-
ton (1QFA) as a quantum finite automaton in
which head movements are restricted to ‘+1’.
In this case, it can be shown that for a well-
formed 1QFA, there exists a unitary operator
Uσ for each σ ∈ Σ such that

δ(q, σ, q′,+1) = 〈q′|Uσ |q〉 .
Then we describe a configuration of a 1QFA
as |q〉 (q ∈ Q). The 1QFA computation starts
with the initial configuration |q0〉 (= |ψ0〉) and
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proceeds as follows:
(a) Uσi

is applied to |ψi〉, where σi is the i-th
input symbol. Let |ψi+1〉 = Uσi

|ψi〉.
(b) |ψi+1〉 is measured with respect to the ob-

servable O = Eacc ⊕ Erej ⊕ Enon, which
is defined similarly as in the definition of
2QFAs.

We repeat (a) and (b) until we obtain ‘acc’ or
‘rej’.

Note that a configuration of a 1QFA can be
described by a basis vector of a finite dimen-
sional Hilbert space. Thus, a 1QFA can be im-
plemented with a constant number of qubits,
while 2QFAs needs O(logn) qubits to be im-
plemented, where n is the input length. This
causes a computational gap between the one-
way and the two-way models. The following
theorems 7) show that 2QFAs are strictly more
powerful than 1QFAs.

Theorem 1 7) For any one-way determinis-
tic finite automaton A, there exists a reversible
two-way deterministic finite automaton M such
that, for any w ∈ Σ∗, if A accepts w then M
accepts w in O(|w|) steps, and if A does not
accept w, then M rejects w in O(|w|) steps.

�

Note that a reversible deterministic finite au-
tomaton is a restricted quantum finite automa-
ton whose transition amplitudes may only take
the values 0 and 1, and also note that the class
of languages recognized by one-way determin-
istic finite automata is the same as that recog-
nized by polynomial-time two-way probabilis-
tic finite automata. This class of languages is
called regular languages. Thus Theorem 1 says
that 2QFAs are at least as powerful as 2PFAs.

Theorem 2 7) Let w ∈ {a, b}∗. For every
positive integer N , there exists a 2QFA MN

such that if w ∈ {ambm|m ≥ 1} then MN ac-
cepts w with certainty, and otherwise MN re-
jects w with probability at least 1 − 1

N . In ei-
ther case MN halts after O(N |w|) steps with
certainty.

�

Theorem 3 7) The class of languages recog-
nized by 1QFAs is a proper subset of regular
languages.

�

Some other results concerning quantum finite
automata should be reviewed. Nayak proposed
enhanced one-way quantum finite automata 13),
in which any orthogonal measurement can be
used instead of O = Eacc⊕Erej⊕Enon. It was

shown that any bounded error enhanced one-
way quantum finite automaton recognizing the
language {wa|w ∈ {a, b}∗, |w| ≤ n} has 2Ω(n)

states. Nakanishi et al. showed that nondeter-
ministic quantum finite automata are strictly
more powerful than classical non-deterministic
finite automata 12), where a non-deterministic
quantum finite automaton recognizing L is such
that it accepts an input string in L with proba-
bility greater than 0 and rejects an input string
not in L with certainty.

3. Quantum Pushdown Automata

Quantum pushdown automata were intro-
duced by Moore and Crutchfield 9). In their
definition, state transitions of quantum push-
down automata are not necessarily described by
unitary operators. Golovkins thus introduced
unitarity to quantum pushdown automata and
investigated their power 6).

Theorem 4 6) Every regular language is rec-
ognizable by some QPA.

�

Theorem 5 6) Language Leq = {w ∈
{a, b, c}∗||w|a = |w|b = |w|c} is recognizable
by a QPA with probability 2

3 , where |w|σ is the
number of occurrences of symbol σ in w.

�

Theorem 6 6) Language Lxor = {w ∈
{a, b, c}∗||w|a = |w|b xor |w|a = |w|c} is rec-
ognizable by a QPA with probability 4

7 .
�

Note that neither Leq nor Lxor can be rec-
ognized by deterministic pushdown automata.
The above results show that quantum push-
down automata can be more powerful than de-
terministic pushdown automata. However, it
remains an open question whether quantum
pushdown automata can be more powerful than
probabilistic pushdown automata. Murakami
et al. showed that in exact computation, quan-
tum pushdown automata can be more powerful
than classical pushdown automata 10).

Theorem 7 10) There exists a promise prob-
lem that can be solved by quantum pushdown
automata with certainty but cannot be solved
by deterministic pushdown automata.

�

The other models similar to quantum push-
down automata are quantum counter automata
and quantum multi-stack machines. Quan-
tum counter automata were first proposed in
Ref. 8). Comparison between 1-way quantum 1-
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counter automata and 1-way classical 1-counter
automata is discussed in Refs. 5), 15). Two-
way quantum one-counter automata and 1-way
quantum k-counter automata are investigated
in Ref. 16). Also in Ref. 14), quantum multi-
counter machines and quantum multi-stack ma-
chines are investigated in terms of simulation of
quantum Turing machines.

4. Automata with Quantum and Clas-
sical Resources

Purely quantum automata may be less power-
ful than their classical counterparts because of
restrictions such as reversible state transitions.
For example, Theorem 3 says that purely quan-
tum 1-way finite automata are less powerful
than their classical counterparts. Introducing
classical computational resources to quantum
automata may relax such restrictions. In this
section, we address two types of automata with
quantum and classical resources: two-way finite
automata with quantum and classical states 4),
and quantum pushdown automata with clas-
sical stack operations 11). Especially, later in
this section, we focus on quantum pushdown
automata with classical stack operations and
explain in detail how classical devices (classical
stacks in this case) work.

First, we describe two-way finite automata
with quantum and classical states 4). A two-
way finite automaton with quantum and classi-
cal states (2QCFA) is a two-way finite automa-
ton that has a quantum finite state control in
addition to a classical finite state control; it has
a classical input tape, a classical tape head, a
classical finite state control, and a quantum fi-
nite state control.

The quantum portion is controlled by the
classical portion; the classical state and the in-
put symbol pointed by the classical tape head
determine the unitary operator applied to the
quantum portion. The classical portion is
partly controlled by the result of the measure-
ment of the quantum portion; the result of the
measurement, in addition to the input symbol
and the classical state, determines the state
transition of the classical portion. Note that
this model has a classical finite automaton as
its component. Thus this model is at least as
powerful as a finite automaton.

The following theorems are shown in Ref. 4).
Theorem 8 4) For any ε > 0 there exists a

2QCFA M operating as follows. For any input
x ∈ {a, b}∗, if x is a palindrome then M accepts

x with certainty, and if x is not a palindrome
then M accepts x with probability at most ε
and rejects x otherwise.

�

Theorem 9 4) For any ε > 0, there is a
2QCFA M that accepts any x ∈ {anbn|n ∈ IN}
with certainty, rejects x �∈ {anbn|n ∈ IN} with
probability at least 1− ε and halts in expected
time O(m4) where m is the length of the string
x.

�

It is known that the language in Theorem 8
cannot be recognized by 2PFAs. It is also
known that the language in Theorem 9 can-
not be recognized by 2PFAs in polynomial
time. Thus these results show that 2QCFAs
are strictly more powerful than 2PFAs.

Next, we describe a pushdown automaton
that has a quantum finite state control and a
classical stack. In purely quantum pushdown
automata, stack operation is highly restricted
since pop operation is a deleting operation and
deletion is not a reversible operation. Sacrific-
ing utilization of superposition on a stack (i.e.,
implementing a stack with a classical device),
a quantum pushdown automaton with classical
stack operations can control its stack without
such restrictions.

A quantum pushdown automaton with clas-
sical stack operations (QCPDA) has an input
tape to which a quantum head is attached and
a classical stack to which a classical stack top
pointer is attached. A QCPDA has a quantum
finite state control. The quantum finite state
control reads the stack top symbol pointed by
the classical stack top pointer and the input
symbol pointed by the quantum head. Stack
operations are determined solely by the results
of measurements of a quantum finite state con-
trol. We define QCPDAs formally as follows.

Definition 3 A Quantum Pushdown Au-
tomaton with Classical Stack Operations (QC-
PDA) is defined as the following 8-tuple:

M = (Q,Σ,Γ, δ, q0, σ,Qacc, Qrej),

where Q is a set of states, Σ is a set of input
symbols including the left and right endmarkers
{|c, $}, respectively, Γ is a set of stack symbols
including the bottom symbol Z, δ is a quan-
tum state transition function (δ : (Q×Σ× Γ×
Q × {0, 1}) −→ C), q0 is an initial state, σ is
a function by which stack operations are deter-
mined (σ : Q\(Qacc∪Qrej) −→ Γ+∪{−, pop}),
Qacc (⊆ Q) is a set of accepting states, and
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Qrej (⊆ Q) is a set of rejecting states, where
Qacc ∩Qrej = ∅. We impose a restriction that
the length of any pushed string is finite. As
another restriction, for all q, q′, a,D, if σ(q′) =
pop, then δ(q, a, Z, q′, D) = 0.

�

δ(q, a, b, q′, D) = α means that the amplitude
of the transition from q to q′ moving the quan-
tum head to D (D = 1 means ‘right’ and D = 0
means ‘stay’) is α when reading input symbol
a and stack symbol b. The configuration of the
quantum portion of a QCPDA is a pair (q, k),
where k is the position of the quantum head
and q is in Q.

For input string x and stack symbol a, we
define a time evolution operator Ux

a as follows:
Ux

a (|q, k〉) =∑
q′∈Q,D∈{0,1}

δ(q, x(k), a, q′, D) |q′, k +D〉 ,

where x(k) is the k-th input symbol of input
x. If Ux

a is unitary (for any a ∈ Γ and for any
input string x), that is, Ux

a U
x†
a = Ux†

a Ux
a = I,

then the corresponding QCPDA is well-formed.
A well-formed QCPDA is considered valid in
terms of the quantum theory. We consider only
well-formed QCPDAs.

Now we describe how the quantum portion
and the classical stack of a QCPDA work.

Let the initial quantum state and the initial
position of the head be q0 and ‘0’, respectively.
We define |ψ0〉 as |ψ0〉 = |q0, 0〉. We also define
Ew, Eacc and Erej as follows:

Ew = span{|q, k〉 |σ(q) = w},
Eacc = span{|q, k〉 |q ∈ Qacc}, and
Erej = span{|q, k〉 |q ∈ Qrej}.

We define observable O as O = ⊕jEj , where
j is w ∈ Γ+ ∪ {−, pop}, ‘acc’, or ‘rej’. For no-
tational simplicity, we define the outcome of a
measurement corresponding to Ej as j.

The QCPDA computation proceeds as fol-
lows:
For input string x, the quantum portion
works as follows:
(a) Ux

a is applied to |ψi〉. Let |ψi+1〉 =
Ux

a |ψi〉, where a is the stack top symbol.
(b) |ψi+1〉 is measured with respect to the ob-

servable O = ⊕jEj . Let |φj〉 be the projec-
tion of |ψi+1〉 to Ej . Then each outcome j
is obtained with probability | |φj〉 |2. Note
that this measurement causes |ψi+1〉 to col-
lapse to 1

||φj〉| |φj〉, where j is the obtained

outcome. Then go to (c).
The classical stack works as follows:
(c) Let the outcome of the measurement be

j. If j is ‘acc’ (‘rej’, resp.), then it outputs
‘accept’ (‘reject’, resp.), and the computa-
tion halts. If j is ‘−’, then the stack is
unchanged. If j is ‘pop’, then the stack top
symbol is popped. Otherwise, string j is
pushed (j is a string in Γ+ in this case).
Then go to (a) and repeat.

We call the above (a), (b), and (c) ‘one step’
collectively.

For language L, if there exists a constant ε
(0 ≤ ε < 1) that does not depend on inputs, a
QCPDA accepts any string in L with a prob-
ability greater than 1 − ε, and it rejects any
string that is not in L with certainty, then we
say that L is recognized by the QCPDA with
one-sided error.

For simplicity, we handle only a subclass of
QCPDAs, called simplified QCPDAs, so that
we can decompose the quantum state transition
function into two functions: one for changing
states and the other for moving the quantum
head. For a ∈ Σ and b ∈ Γ, we adopt a linear
operator Va,b : l2(Q) −→ l2(Q) for changing
states and a function ∆ : Q −→ {0, 1} for mov-
ing the quantum head. In simplified QCPDAs,
the direction of the movement of the head is de-
termined solely by the state to which the cur-
rent state makes a transition. Then transition
function δ is described as follows:

δ(q, a, b, q′, D)

=
{ 〈q′|Va,b |q〉 (∆(q′) = D)

0 (∆(q′) �= D),

where 〈q′|Va,b |q〉 is the coefficient of |q′〉 in
Va,b |q〉.

The condition of being well-formed for sim-
plified QCPDAs is shown in Ref. 11).

Theorem 10 11) A simplified QCPDA is
well-formed if, for any a ∈ Σ and b ∈ Γ, the
linear operator Va,b satisfies the following con-
dition:∑

q′
〈q′|Va,b |q1〉 〈q′|Va,b |q2〉

=
{

1 (q1 = q2)
0 (q1 �= q2).

�
It is straightforward to see that (even deter-

ministic) pushdown automata can recognize the
language {x%xR|x ∈ {a, b}∗}. However, it is
known that the language {x%x|x ∈ {a, b}∗} is
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not recognized by non-deterministic pushdown
automata. This is because of the ‘Last-in/First-
out’ manner of the stack structure. However,
QCPDAs can overcome this difficulty with ap-
propriate hints in an input string. It is known
that QCPDAs can recognize the following lan-
guage L1 with one-sided error, while probabilis-
tic pushdown automata cannot do this with
one-sided error 11).
L1 =


u#v�w�x%y

∣∣∣∣∣∣∣∣∣∣∣

u, v, w, x, y ∈ {a, b}∗,
¬

(
|u| = |v| = |w| = |x|
and v = w

)

and ¬
(

|u| = |x| and
|v| = |w| = 0

)

and (y = vR or y = wR)




.

Note that an automaton that recognizes L1

may have to check whether v = w. Infor-
mally, this is why classical pushdown automata
cannot recognize L1 with one-sided error. In
the following, we show that with the condition
|u| = |v| = |w| = |x|, which we use as a hint,
QCPDAs can recognize L1 with one-sided error.

Theorem 11 11) QCPDAs can recognize L1

with one-sided error.
(Proof)

We show QCPDA M , which recognizes L1.
An outline of M is as follows. M rejects any
input that is not of the form u#v�w�x%y =
{a, b}∗#{a, b}∗�{a, b}∗�{a, b}∗%{a, b}∗, and it
consists of three components M1, M2, and M3,
each of which is a deterministic automaton. M1

processes substring u#v�w�x as follows:
( 1 ) M1 reads u taking 2|u| steps with the

stack unchanged,
( 2 ) pushes each symbol of v one by one,
( 3 ) and reads w and x taking |w| + |x| steps

with the stack unchanged.
M2 processes substring u#v�w�x as follows:
( 1 ) M2 reads u and v taking |u| + |v| steps

with the stack unchanged,
( 2 ) pushes each symbol of w one by one,
( 3 ) and reads x taking 2|x| steps with the

stack unchanged.
M3 processes substring y checking whether the
string on the stack is yR or not.
M1 and M2 process substring u#v�w�x% in

parallel using superposition. First, we consider
the case that (|u| = |v| = |w| = |x| and v = w)
or (|u| = |x| and |v| = |w| = 0). In this case, M1

and M2 push the same symbol at the same time
(or no symbol is pushed in the case |u| = |x|
and |v| = |w| = 0) and also read ‘%’ at the
same time. Thus, when reading ‘%’, M1 and

Fig. 1 QCPDA M .

M2 interfere with each other and move to the
rejecting state with certainty (See Fig. 1).

Second, we consider the case that ¬(|u| =
|v| = |w| = |x| and v = w) and ¬(|u| = |x|
and |v| = |w| = 0). In this case, the stack
operations differ between M1 and M2 at some
time. Then the measurement, whose result cor-
responds to the stack operation, causes the su-
perposition to collapse to either M1 or M2.
Thus M moves to the third component M3 with
probability 1/2 with v or w on the stack. There-
fore, if v = yR or w = yR, M accepts the input
with probability 1/4.

We define M in detail in the following.
M has the following states:
• q1,u,1,−, q1,u,0,−, q1,#,0,−, q1,v,1,−, q1,v,0,a,
q1,v,0,b, q1,w,1,−, q1,x,1,−.

• q2,u,1,−, q2,v,1,−, q2,w,1,−, q2,w,0,a, q2,w,0,b,
q2,x,1,−, q2,x,0,−, q2,%,0,−.

• q3,y,1,−, q3,y,0,pop.
• q0, qacc, qrej1, qrej2, qrej3, qrej4, qrej5,
qrej6, qrej7, qrej8, qrej9, qrej10, qrej11.

qacc is an accepting state. qrej1, . . . , qrej11 are
rejecting states. The index of qi,z,d,c denotes
that the state is used to process substring z in
Mi, ∆(qi,z,d,c) = d, and c represents the value
of σ(qi,z,d,c) as follows: the stack top symbol is
popped (c = ‘pop’), the stack is unchanged (c =
−), and c is pushed (otherwise). The initial
state is q0.

The state transition diagrams of components
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Fig. 2 M1, M2, and M3. Each edge label represents a pair of an input
symbol and a stack top symbol, where ‘*’ is a wild card.

M1, M2, and M3 are illustrated in Fig. 2. It
is straightforward to see that the correspond-
ing time evolution operators can be extended
to be unitary by properly determining thus far
undefined transitions.

�

It is also shown in Ref. 11) that L1 can-
not be recognized by nondeterministic push-
down automata. This implies that L1 cannot
be recognized by probabilistic pushdown au-
tomata with one-sided error, either. Moreover,
it is shown that any probabilistic pushdown au-
tomaton can be simulated by QCPDAs with
the same acceptance probability 11). Thus one-

sided error QCPDAs are strictly more power-
ful than one-sided error probabilistic pushdown
automata.

5. Conclusion

In this paper, we described the power of sev-
eral quantum automata in language recogni-
tion. It was shown that some models are more
powerful than their classical counterparts, while
others are not. It should be noted that criteria
other than language recognition can be consid-
ered, such as the number of states and the error
rate; actually, there have been research efforts
along this line 1)∼3).
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Restrictions such as reversible state transi-
tions sometimes make quantum automata less
powerful. However, by introducing classical re-
sources in certain parts, it may be possible to
relax such restrictions. Given the current scale
of quantum computer development, quantum-
classical hybrid models (i.e., automata that
have a small amount of quantum resources and
a large amount of classical resources) offer a
promising solution.
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