
Vol. 46 No. 12 IPSJ Journal Dec. 2005

Recommended Paper

Role Ordering (RO) Scheduler for Distributed Objects

Tomoya Enokido†

A role-based access control model is used to make a system secure. A role concept shows a
job function in an enterprise. Traditional locking protocols and timestamp ordering schedulers
are based on principles “first-comer-winner” and “timestamp order” to make multiple con-
flicting transactions serializable, respectively. In this paper, we discuss a concurrency control
based on the significancy of roles assigned to transactions. We define a significantly dominant
relation on roles. We discuss a role ordering (RO) scheduler based on the role concept. We
evaluate the RO scheduler compared with the two-phase locking (2PL) protocol.

1. Introduction

Information systems like database sys-
tems 10),13) adopt role-based access control
(RBAC) models 3),6),9),12),15) to make the sys-
tems secure. A role shows a job function like
president and secretary, which each person per-
forms in an enterprise. We use word “role” in
software engineering field. A role is a set of ac-
cess rights. An access right is realized in a pair
〈o, op〉 of an object o and a method op. Only if
a role R which includes an access right 〈o, op〉 is
granted to a subject, the subject is allowed to
manipulate the object o through the method op.
In the discretionary approach 10),13), a subject
who is granted a role can further grant the role
to another subject.

A transaction is an atomic sequence of meth-
ods which are performed on objects 1),7). A pair
of methods conflict if and only if (iff) the re-
sult obtained by performing the methods de-
pends on the computation order. A pair of
transactions are referred to as conflict if the
transactions manipulate a same object through
conflicting methods. A collection of conflicting
transactions are required to be serializable in
order to keep objects mutually consistent. In
order to realize the serializability of multiple
conflicting transactions, locking protocols 1),7)

are widely used. Locking protocols are based
on a principle that only the first comer is a win-
ner and the others are losers. Another way is a
timestamp ordering (TO) scheduler 1). By us-
ing the TO scheduler, transactions are totally
ordered in their timestamps.

In this paper, we discuss a role ordering
(RO) scheduler to make a set of transactions

† Faculty of Business Administration, Rissho Univer-
sity

serializable based on roles associated for trans-
actions. Each job is realized to be a collection
of transactions in an enterprise. Let T1 and
T2 be a pair of transactions which are associ-
ated with roles R1 and R2, respectively, and
which manipulate an object o in a conflicting
manner. Here, the transaction T1 manipulates
the object o before T2 if the role R1 is more
significant than the other role R2, i.e. a job
function shown by R1 is more significant than
R2 in an enterprise. This means the more sig-
nificant job a transaction does, the earlier an
object can be manipulated by the transaction.
In the RO scheduler, conflicting methods issued
by transactions are ordered in the significancy
of the roles. Transactions can concurrently ma-
nipulate objects in such an order that persons
really do their jobs in an enterprise.

In Section 2, we present a system model. In
Section 3, we define significantly dominant rela-
tions among roles. In Section 4, we discuss the
role ordering (RO) serializability. In Section 5,
we discuss the RO scheduler. In Section 6, we
evaluate the RO scheduler compared with the
two-phase locking (2PL) protocol.

2. System Model

2.1 Object-based System
An object-based system is composed of ob-

jects 8) distributed in networks. An object is an
encapsulation of data and methods for manip-
ulating the data. A method is more abstract
than primitive methods like read and write.
A pair of methods op1 and op2 conflict (op1

� op2) iff the result obtained by performing

The initial version of this paper was presented at
the DPS workshop (DPSWS12) held on Dec. 2004,
which was sponsored by SIGDPS. This paper was
recommended to be submitted to IPSJ Journal by
the program chair of DPSWS12.

3089



3090 IPSJ Journal Dec. 2005

the methods depends on the computation or-
der. Otherwise, a pair of the methods op1 and
op2 are compatible (op1 � op2).

A transaction is an atomic sequence of meth-
ods 1). Multiple transactions are concurrently
performed on objects. Multiple conflicting
transactions are required to be serializable to
keep objects mutually consistent 1),7). Let Ti be
a transaction which issues a method op1i to an
object o1. Suppose there are a pair of trans-
actions T1 and T2 where op11 and op12 conflict
on the object o1 as well as the methods op21

and op22 on the object o2. If the method op11

is performed on the object o1 before op21, op21

is required to be performed before op22 on the
other object o2 according to the serializebility
theory 1). Let T be a set of transactions {T1,
..., Tn}. Let H be a schedule of transactions
in T, i.e., sequence of methods performed. A
transaction Ti precedes another transaction Tj

(Ti →H Tj) in H iff a method opi from Ti is per-
formed before a method opj from Tj where opi

� opj . A schedule H is serializable iff the prece-
dent relation →H is acyclic. In the timestamp
ordering (TO) scheduler 1), each transaction Ti

is assigned with time ts(Ti) showing what time
the transaction Ti is initiated on a client. A
pair of conflicting methods issued by transac-
tions T1 and T2 are performed in the timestamp
order. In the two-phase locking (2PL) proto-
col 7), the transaction T1 is performed if a pair
of the objects o1 and o2 are locked before the
other transaction T2. The transaction T2 can-
not manipulate the objects o1 and o2 until the
transaction T1 releases the objects.

2.2 Roles
In access control models 1),2),4),6),11),12),14),15),

a system is composed of two types of entities,
subject and object. A subject manipulates an
object. A role shows a job function in an en-
terprise like president. Each subject s plays a
role. A subject which plays a more significant
role should be more prioritized than less signif-
icant subjects. A task is realized as a transac-
tion. If a pair of tasks in different jobs use an
object, one task in a more significant job should
take the object earlier than the other.

A role is a collection of access rights in a role-
based access control (RBAC) model 12). An ac-
cess right is a pair 〈o, op〉 of an object o and a
method op. A subject s is first granted a role R.
Then, the subject can issue an access request op
to an object o only if an access right 〈o, op〉 is
included in R. We assume each transaction is

Fig. 1 Discretionary approach.

associated with only one role in this paper. Let
subject(T ) denote a subject which initiates a
transaction T . Let role(T ) show a role which is
associated to a transaction T .

3. Significancy on Roles

3.1 Significancy of Subjects on a Role
The relational database systems take the

discretionary approach 10),13). We take the dis-
cretionary approach to adopting the role-based
access control (RBAC) model 12) to object-
based systems. First, suppose that a subject
s0 creates a role R. Here, the subject s0 is
an owner of the role R, denoted by owner(R).
Then, the subject s0 grants the role R to an-
other subject s1. The subject s1 furthermore
grants the role R to a pair of subjects s2 and
s3 (Fig. 1). If the subject s1 changes the role
R, the role R granted to the subjects s0 and s2

is also changed.
We define a precedent relation among sub-

jects showing which subjects are more signifi-
cant than others with respect to a role R :

– A subject s1 is more significant than an-
other subject s2 with respect to a role R
(s1 �R s2) if and only if (iff) the subject
s1 grants the role R to the subject s2 or s1

�R s3 �R s2 for some subject s3.
A pair of subjects s1 and s2 are independent

with respect to a role R (s1 ‖R s2) iff s1 and s2

are granted the role R and neither s1 �R s2 nor
s2 �R s1. Because, there are no significant
relations with respect to a role R (�R) which is
defined in above between subjects s1 and s2.

3.2 Significancy of Roles
Next, we discuss which roles are more sig-

nificant than other roles. There are two types
of methods, class and object methods for a
class. Class methods are ones for creating and
dropping an object for the class. On the other
hand, object methods are ones for manipulat-
ing an object of the class. There are two types
of object methods, change and output types.
An output type of method is a method for de-



Vol. 46 No. 12 Role Ordering (RO) Scheduler for Distributed Objects 3091

riving data from an object. On the other hand,
a change type of method is one for changing a
state of an object.

Let us consider a pair of change methods
withdraw and deposit on a bank object. In our
life, a subject more carefully issues a method
withdraw than a method deposit because the
account value in the bank object is decremented
through withdraw. This example shows that
some methods are considered to be more sig-
nificant than other methods by an application.
Here, a method withdraw is referred to as more
semantically significant than another method
deposit (withdraw �� deposit). A method op1

is referred to as semantically significantly
equivalent with another method op2 (op1

∼=
op2) iff neither op1 �� op2 nor op2 �� op1.
A method op1 semantically significantly dom-
inates a method op2 (op1 �� op2) iff op1 �� op2

or op1
∼= op2.

[Definition] A method op1 is more significant
than another method op2 (op1 � op2) iff one of
the following conditions is satisfied:

1. op1 is a class type and op2 is an object
type.

2. op1 and op2 are an object type where op1

is a change type and op2 is just an output
one.

3. Object types of methods op1 and op2 are
same types and op1 �� op2.

A method op1 is significantly equivalent
with another method op2 (op1 ≡ op2) iff nei-
ther op1 � op2 nor op2 � op1. A method op1

significantly dominates another method op2

(op1 � op2) iff op1 � op2 or op1 ≡ op2.
Objects are classified into some security

classes 4),5). An object o1 is more significant
than another object o2 (o1 � o2) if o1 is more
secure than o2. A pair of objects o1 and o2 are
significantly equivalent (o1 ≡ o2) if neither o1

� o2 nor o2 ≺ o1. An object o1 significantly
dominates another object o2 (o1 � o2) iff o1 �
o2 or o1 ≡ o2.

Next, we discuss which access right 〈o1, op1〉
or 〈o2, op2〉 is more significant than the other
based on the significantly dominant relation �
of methods.
[Definition] An access right 〈o1, op1〉 is more
significant than another access right 〈o2, op2〉
(〈o1, op1〉 � 〈o2, op2〉) iff 1) o1 � o2 or 2) op1 �
op2 if o1 ≡ o2.

A pair of access rights 〈o1, op1〉 and 〈o2, op2〉
are significantly equivalent (〈o1, op1〉 ≡

〈o2, op2〉) iff neither 〈o1, op1〉 � 〈o2, op2〉 nor
〈o1, op1〉 ≺ 〈o2, op2〉. An access right 〈o1, op1〉
significantly dominates another access right
〈o2, op2〉 (〈o1, op1〉 � 〈o2, op2〉) iff 〈o1, op1〉 �
〈o2, op2〉 or 〈o1, op1〉 ≡ 〈o2, op2〉.

Finally, we discuss which role is more sig-
nificant than another role based on the signifi-
cantly dominant relation � of access rights.
[Definition] A role R1 significantly domi-
nates another role R2 (R1 � R2) if for every
access right 〈o2, op2〉 in R2, there is at least one
access right 〈o1, op1〉 in R1 such that 〈o1, op1〉
� 〈o2, op2〉 and no access right 〈o3, op3〉 in R2

such that 〈o3, op3〉 � 〈o1, op1〉.
A role R1 is significantly equivalent with

another role R2 (R1 ≡ R2) if R1 � R2 and R2

� R1. A least upper bound (lub) R1

⋃
R2 of

roles R1 and R2 is a role R3 such that R3 � R1

and R3 � R2 and there is no role R4 such that
R3 � R4 � R1 and R3 � R4 � R2. A greatest
lower bound (glb) R1

⋂
R2 is similarly defined.

4. Serializability

Let T be a set of transactions which are being
performed in a system. We define which trans-
action T1 or T2 in T is significant based on the
significantly dominant relations of subjects and
roles.
[Definition] A transaction T1 significantly
dominates another transaction T2 (T1 � T2)
iff role(T1) � role(T2) or subject(T1) �R

subject(T2) if role(T1) = role(T2) = R.
A transaction T1 is significantly equivalent

with another transaction T2 (T1 ≡ T2) if T1 �
T2 and T2 � T1. A least upper bound (lub) T1⋃

T2 of transactions T1 and T2 is a transaction
T3 where T3 � T1 and T3 � T2 and there is no
transaction T4 such that T3 � T4 � T1 and T3

� T4 � T2. A greatest lower bound (glb) T1

⋂

T2 is defined similarly. We assume that a top
transaction 
 and a bottom transaction ⊥ exist
where 
 � T � ⊥ for every transaction T .

A schedule H is an execution sequence of
methods from transactions in T. A transac-
tion T1 precedes another transaction T2 in the
schedule H (T1 →H T2) iff a method op1 from
T1 is performed before a method op2 from T2

which conflicts with op1. A schedule H is
serializable iff the precedent relation →H is
acyclic according to the traditional theory 1). A
schedule H of a transaction set T is shown in a
partially ordered set 〈T,→H〉.
[Definition] A transaction T1 significantly
precedes another transaction T2 in a schedule



3092 IPSJ Journal Dec. 2005

H of a transaction set T (T1 ⇒H T2) iff T1 →H

T2 and T1 � T2, i.e. T1 ⇒H T2 if op1 and op2

conflict and op1 is performed before op2 for ev-
ery pair of methods op1 and op2 from T1 and
T2, respectively.

Suppose a transaction T1 precedes another
transaction T2 in a schedule H. Here, if T1

� T2, a precedent relation “T1 →H T2” is legal
in a schedule H. On the other hand, if T1 ≺
T2, “T1 →H T2” is illegal in a schedule H. A
schedule H = 〈T,→H〉 is legal iff T1 →H T2 if
T1 � T2 for every pair of transactions T1 and
T2 in a schedule H in T. This means, for every
pair of conflicting methods op1 and op2 from
transactions T1 and T2 where T1 � T2, op1 is
performed before op2.

In order to make a schedule legal, methods
from transactions are required to be buffered
until all the transactions are initiated. How-
ever, the throughput of the system is degraded.
In order to increase the throughput, only some
number of transactions in T which are initiated
during some time units are scheduled.

A schedule H = 〈T,→H〉 is partitioned into
subschedules H1, ..., Hm where each subsched-
ule Hi = 〈Ti,→Hi

〉 (i = 1, ..., m) satisfies the
following conditions:
[Role ordering (RO) partition conditions]

1. Ti ∩ Tj = φ for every pair of subsched-
ules Hi and Hj and T1 ∪ · · · ∪ Tn = T.
That is, every pair of Ti and Tj in T are
independent.

2. A precedent relation T1 →H T2 is legal in
a schedule H if T1 →Hi

T2 for every pair
of transactions T1 and T2 in Ti of a sub-
schedule Hi.

3. For every pair of subschedules Hi and Hj ,
if Ti1 →H Tj1 for some pair of transactions
Ti1 in Hi and Tj1 in Hj , there are no pair of
transactions Ti2 in Hi and Tj2 in Hj such
that Tj2 →H Ti2.

A role is assigned to each transaction when
the subject initiates the transaction. Signifi-
cantly dominant relations among transactions
are defined based on the significancy of roles
assigned to each transaction, which we defined
at the beginning of this section. Here, suppose
that six transactions are initiated (see Fig. 2)
and a transaction T1 significantly dominates a
transaction T2 (T1 � T2), T3 � T2, T4 � T5,
T4 � T6, T4 � T2, and T6 � T3. In addition,
suppose that a schedule H is RO partitioned
into a pair of subschedules H1 with T1 = {T1,

Fig. 2 Schedule H.

T2, T3} and H2 with T2 = {T4, T5, T6}. If the
subschedule H2 is started before another sub-
schedule H1 is not completed, a pair of trans-
actions T2 and T4 are concurrently performed
and T2 may be completed before T4 (T2 →H

T4) although T2 � T4. Similarly, T3 may be
completed before T6 (T3 →H T6) although T3

� T6. Therefore, the schedule H may become
illegal. In this case, since T2 � T4 and T3 �
T6, the transactions T4 and T6 cannot be per-
formed as long as every transaction completes
in the subschedule H1.
[Definition] Let T be a set of transactions.
A history H of T is RO serializable iff the
schedule H is RO partitioned.

It is straightforward for the following theorem
to hold.
[Theorem] A history H is serializable if H is
RO serializable.

5. Role-Ordering (RO) Scheduler

5.1 One-object Model
We discuss a role-ordering (RO) scheduler

for a single object. Multiple transactions on
clients issue methods to an object o. A trans-
action lastly issues a commit (c) or abort (a)
method. An RO scheduler is composed of a re-
ceipt queue RQ and an auxiliary receipt queue
ARQ. Let Tr(op) show a transaction which is-
sues a method op. The following procedures are
supported to manipulate a queue Q:

1. enqueue(op, Q) : a method op is en-
queued into a queue Q.

2. op := dequeue(Q) : a method op is de-
queued from a queue Q.

3. op := top(Q) : a method op is a top
method in a queue Q.

4. ROsort(Q) : all methods in a queue Q

are sorted in the significantly dominant re-
lation � of transactions.

Variables E and TE show sets of methods
and transactions being currently performed on
an object o, respectively. A variable C denotes
a transaction which is performed on the object



Vol. 46 No. 12 Role Ordering (RO) Scheduler for Distributed Objects 3093

o and which is significantly dominated by ev-
ery transaction performed. Initially, C := 
.
There are following procedures to perform a
method op on an object o:

1. conflict(op, E) : false if E = φ or a
method op does not conflict with every
method in E, else true.

2. perform(op) : a method op is performed
on the object o.

Suppose methods in transactions T1, ..., Tm

are being performed, TE = {T1, ..., Tm}. Meth-
ods of the transactions T1, ..., Tm being per-
formed are stored in the variable E. Here, a
variable C shows a transaction Ti where Ti �
Tj for every i and j (i = j = 1, ..., m). If T �
C, the method op is enqueued into the receipt
queue RQ. However, if T � C, op is enqueued
into the auxiliary receipt queue ARQ.
[Delivery of a method op]

if T ∈ TE or T � C {
enqueue(op, RQ);
ROsort(RQ);

}
else { C := ⊥; enqueue(op, ARQ); }

Methods in the receipt queue RQ are per-
formed on an object o as follows:
[Execution of methods]

1. if TE = φ, {
C := �;
Every method op in ARQ is moved to RQ;
ROsort(RQ);

/*one subschedule is ended and a new sched-
ule is started.*/ }

2. op = top(RQ);

3. if conflict(op, E), return;
else{ op : = dequeue(RQ);

if Tr(op) �∈ TE, TE := TE ∪ {Tr(op)};
E : = E ∪ {op};
if Tr(op) ≺ C, C := Tr(op);
perform(op); }

If a method op completes, the following pro-
cedure is performed:
[Completion of method op]

1. E : = E - {op};
2. TE := TE - {Tr(op)} if op = c or op = a;

3. Methods in RQ are performed in the execu-
tion procedure presented here.

If a top method op1 conflicting with some
method being performed is kept waiting in the
receipt queue RQ, every other method in RQ
is required to be waited. We discuss how to
improve the performance.
[Definition] A method op is ready in a receipt

queue RQ iff op is compatible with not only
every method in being performed but also ev-
ery waiting method preceding op in the receipt
queue RQ.

We introduce the following procedures:
1. ready(op, RQ, E) : true if a method op is

ready in the receipt queue RQ, else false.
2. op1: = next(op, RQ) : op1 is a method in

the receipt queue RQ which directly follows
an method op.

Let op be a top method in RQ. If op con-
flicts with some method being performed, the
following procedure is performed:

op : = top(RQ);

if conflict(op, E), {
op : = next(op, RQ);

while(op �= NULL) {
if ready(op, RQ, E), {

op is removed from RQ; E : = E ∪ {op};
TE : = TE ∪ {Tr(op)} if Tr(op) �∈ TE;

if Tr(op) ≺ C, C := Tr(op);

perform(op);

break;

}
else op : = next(op, RQ);

}
}

[Theorem] A schedule of a transaction set
T obtained by the RO scheduler is RO-
serializable.
[Proof] A subschedule obtained from the re-
ceipt queue RQ is RO subschedule. A schedule
of the transaction set T is RO partitioned into
the subsequences.

5.2 Distributed object model
In a distributed model, there are multiple

objects o1, ..., ol (l > 1) distributed in mul-
tiple servers and multiple transactions T1, ...,
Tm (m > 1) on multiple clients c1 ..., cn (n >
1). A request is written in a pair 〈oi, opi〉 of
an object oi and a method opi on the object
oi. Let mset(Tt) be a set of requests which will
be issued by a transaction Tt and oset(Tt) be a
set of objects to be manipulated, {o | 〈o, op〉 ∈
mset(Tt)} (t = 1, ..., m). Each transaction Tt

first sends mset(Tt) to every object oi to be ma-
nipulated in oset(Tt). After sending mset(Tt),
the transaction Tt issues methods to the ob-
jects. A transaction Tt lastly issues a issues a
commit (c) or an abort (a) method to every
object in oset(Tt).

Each client cs has a variable f which is initial-
ized by one (f = 1) (s = 1, ..., n). Each client



3094 IPSJ Journal Dec. 2005

cs periodically sends a fence message which in-
cludes the variable f of cs to all objects in a
system. After sending the fence message, the
client cs increments the variable f by one.

There are local receipt queues RQi1, ..., RQin

in each object oi (i = 1, ..., l). Methods and
mset(Tt) issued from transactions Tt on a client
cs to an object oi are stored in each local receipt
queue RQis (s = 1, ..., n). We assume a com-
munication network supports every pair of an
object oi and a client cs with a reliable com-
munication channel. Requests in local receipt
queues RQi1, ..., RQin are moved to a global
receipt queue GRQi on the object oi. Here, re-
quests in the queue GRQi are sorted in the sig-
nificantly dominant relation � of transactions.
The following conditions have to be satisfied for
a collection of global receipt queues GRQ1, ...,
GRQl for objects o1, ..., ol, respectively, to re-
alize the serializability of multiple transactions:
[Role-based serializability (RBS)]

1. Methods in every GRQi are sorted in the
significantly dominant relation � of trans-
actions (i = 1, ..., l).

2. For a top method opt from a transaction
Tt in each global receipt queue GRQi, if
there is a method op′u from the transaction
Tu in GRQi which the method opu precedes
and conflicts with opt, op′u precedes opt in
every global receipt queue GRQj where opt

and opu are methods form Tt and Tu, re-
spectively, and op′u and opt conflict with
one another.

We discuss how role ordering (RO) scheduler
on each object handles methods and mset(Tl)
received from multiple transactions on multiple
clients in order to satisfy the RBS conditions.
Each object oi has a variable foi

which was ini-
tialized to be one (foi

= 1).
[Receiving procedure]

If there is a fence message ks whose variable
f is equal to a variable foi

of the object oi (f
= foi

) in every local receipt queue RQis, meth-
ods and mset(Tt) preceding the fence message
ks are dequeued from every local receipt queue
RQis. Then, one of the following procedures is
performed (Fig. 3).

1. If a dequeued message is mset(Tt),
mset(Tt) is enqueued into an auxiliary
global receipt queue (AGRQi) of oi in sig-
nificantly dominant relation of transaction
Tt. Here, mset(Tt) cannot be enqueued
into AGRQi by beyond a fence message

Fig. 3 State of local receipt queues.

which has already enqueued into AGRQi.
2. If a dequeued message is a method opit

issued by a transaction Tt to the object oi,
RO scheduler searches AGRQi to confirm
where the mset(Tt) of the transaction Tt

is enqueuing into. There are three cases.
1) If mset(T ) is enqueuing between the top
of AGRQi and the first fence message k1

in AGRQi, the method opit is stored be-
tween the top of GRQi and the first fence
message k1 of GRQi in the significantly
dominant relation of transaction �. 2) If
mset(T ) is enqueuing between a pair of
fence messages kl and km of AGRQi, the
method opit is stored between a pair of
fence messages kl and km of GRQi in �.
3) If mset(T ) is enqueuing between last
fence message kn in AGRQi and the end of
AGRQi, the method is enqueued between
last fence message kn of GRQi and the end
of GRQi in �.

3. If all top messages in every local receipt
queue RQi1, ..., RQin are fence message
including the same value of f , a fence mes-
sage k is enqueued into GRQi and AGRQi

of the object oi.
Next, we discuss how role ordering (RO)

scheduler on an object oi delivers methods from
GRQi to an object oi.
[Delivery procedure]



Vol. 46 No. 12 Role Ordering (RO) Scheduler for Distributed Objects 3095

1. If the top method of GRQi is a method
opit and the following two conditions are
satisfied, opit is delivered to an object oi.

1.1 The method opit does not conflict
with every method which is currently
performed on the object oi.

1.2 Transactions which conflict with the
transaction Tt and precede the trans-
action Tt in AGRQi are completed on
the object oi.

2. If the top method of GRQi is a fence mes-
sage k, the RO scheduler waits for comple-
tion of the currently performing methods
on oi. After all methods are completed, the
fence message k is removed from GRQi.

Next, we show a behavior of each object.
[Completion of a method]

1. If a method completed on an object oi is
commit (c) or abort (a) of a transaction Tt,
RO scheduler removes the mset(Tt) of the
transaction Tt from AGRQi.

6. Evaluation

We evaluate the role ordering (RO) sched-
uler for a single object system in terms of com-
putation time of each method compared with
the traditional two-phase locking (2PL) proto-
col. In the evaluation, an object o supports ten
types of methods. We assume it takes a same
time to perform every method. We assume one
method can be performed for one time unit if
there is no other transaction. The computation
ratio τ is defined to be the ratio of the total
number of methods effectively performed to the
total processing time units. If all the transac-
tions are serially performed, the computation
ratio τ is 1.0 which is the maximum. τ = 0
if no method is performed. A conflicting rela-
tion on the methods is randomly defined so that
each method averagely conflicts with 10% of the
other methods. There are five roles R1, ..., R5.
Each role Ri includes three access rights, which
are randomly selected out of ten possible access
rights on the object o (i = 1, ..., 5). There are
three subjects s0, s1, and s2. The subject s0 is
an owner of the roles R1, ..., R5. The subject
s0 grants each role to the other subjects. That
is, s0 �Ri

s1, s0 �Ri
s2, and s1 ‖Ri

s2 for every
role Ri (i = 1, ..., 5). The roles are ordered as
R1 � R2 � R3, R1 � R4 � R5, R2 ≡ R4, R2

≡ R5, R3 ≡ R4, and R3 ≡ R5. A transaction
issues five methods randomly selected from the
ten methods of the object. A role is also ran-

Fig. 4 Evaluation of one-object model.

Fig. 5 RO scheduler.

Fig. 6 Two-phase locking (2PL) protocol.

domly assigned to each transaction. The com-
putation ratio τ is calculated multiple times in
the simulation until the average value of the
computation ratio is saturated.

Figure 4 shows the computation ratio τ for
the number of transactions. The RO scheduler
implies higher throughput than the 2PL pro-
tocol. Figures 5 and 6 show average values
of processing time of the RO scheduler and the
2PL protocol, respectively, for the total number
of transactions. The processing time shows the
duration [time unit] from time when a method
in each transaction assigned with a role Ri (i
= 1, ..., 5) is issued to time when the method
completes. In the RO scheduler, a transaction
Ti which is assigned with a more significant role
can manipulate an object o earlier than trans-
actions with less significant roles. On the other



3096 IPSJ Journal Dec. 2005

hand, the computation order of transactions is
independent of the significancy of roles in the
2PL protocol.

7. Concluding Remarks

A role concept is widely used to design and
implement information systems. The role con-
cept shows a job function in an enterprise. In
this paper, we discussed a concurrency con-
trol based on the significancy of roles assigned
to transactions. We proposed a role ordering
(RO) scheduler which serializes multiple con-
flicting transactions according to the signifi-
cantly dominant relation of roles We discussed
the RO scheduler for single-server and multi-
server models and how to implement the RO
scheduler. We showed the effectiveness of RO
scheduler in terms of throughput and waiting
time through the evaluation of RO scheduler
compared with the traditional two-phase lock-
ing protocol (2PL).

References

1) Bernstein, P.A., Hadzilacos, V. and Goodman,
N.: Concurrency Control and Recovery in
Database Systems, Addison-Wesley (1987).

2) Bertino, E., Samarati, P. and Jaodia, S.: High
Assurance Discretionary Access Control in Ob-
ject Bases, Proc. 1st ACM Conf. on Comput-
ers and Communication Security, pp.140–150
(1993).

3) Chon, R., Enokido, T. and Takizawa, M.:
Inter-Role Information Flow in Object-based
Systems, Proc. IEEE 18th International Conf.
on Advanced Information Networking and Ap-
plications (AINA-2004 ), Vol.1, pp.196–201
(2004).

4) Denning, D.E.: A Lattice Model of Secure In-
formation Flow, Comm. ACM , Vol.19, No.5,
pp.236–343 (1976).

5) Denning, D.E. and Denning, P.J.: Cryptogra-
phy and Data Security, Addison-Wesley Pub-
lishing Company (1982).

6) Ferraiolo, D. and Kuhn, R.: Role-Based Ac-
cess Controls, Proc. 15th NIST-NCSC National
Computer Security Conf., pp.554–563 (1992).

7) Gray, J.: Notes on Database Operating Sys-
tems, Lecture Notes in Computer Science,
No.60, pp.393–481 (1978).

8) Inc., O.M.G.: The Common Object Request
Broker : Architecture and Specification, Rev.
2.1 (1997).

9) Izaki, K., Tanaka, K. and Takizawa, M.: In-
formation Flow Control in Role-Based Model
for Distributed Objects, Proc. IEEE Interna-
tional Conf. on Parallel and Distributed Sys-

tems (ICPADS-2001 ), pp.363–370 (2001).
10) Oracle Corporation: Oracle8i Concepts Vol. 1

(1999). Release 8.1.5.
11) Sandhu, R.S.: Lattice-Based Access Control

Models, IEEE Computer , Vol.26, No.11, pp.9–
19 (1993).

12) Sandhu, R.S., Coyne, E.J., Feinstein, H.L.
and Youman, C.E.: Role-Based Access Control
Models, IEEE Computer , Vol.29, No.2, pp.38–
47 (1996).

13) Sybase: Sybase SQL Server.
http://www.sybase.com/

14) Tachikawa, T., Yasuda, M. and Takizawa, M.:
A Purpose-oriented Access Control Model in
Object-based Systems, Trans. IPSJ , Vol.38,
No.11, pp.2362–2369 (1997).

15) Tari, Z. and Chan, S.W.: A Role-Based Ac-
cess Control for Intranet Security, IEEE Inter-
net Computing , Vol.1, pp.24–34 (1997).

(Received April 22, 2005)
(Accepted September 2, 2005)

(Online version of this article can be found in
the IPSJ Digital Courier, Vol.1, pp.626–633.)

Editor’s Recommendation

The author proposes a scheduling method
based on role for distributed objects. In a sense,
role may be similar to priority. They are use-
ful to schedule objects in a suited order. The
author also compares the performance of the
proposed method with a conventional method
and shows that the performance is clearly im-
proved.
(Program chair of DPSWS12 Minoru Uehara)

Tomoya Enokido was born
in 1974. He received B.E. and
M.E. degrees in Computers
and Systems Engineering from
Tokyo Denki University, Japan
in 1997 and 1999. After that he
worked for NTT Data Corpora-

tion, he joined Tokyo Denki University in 2002.
He received his D.E. degree in Computer Sci-
ence from Tokyo Denki University in 2003. He
is currently a lecturer in the Faculty of Busi-
ness Administration, Rissho University. His
research interests include distributed systems,
group communication, and distributed objects.


