
1

A Stack-based Solution for Alias Problem in Branch Prediction
Sijie YIN, Huatao ZHAO, Takahiro WATANABE

Graduate school of Information, Productions And Systems. Waseda university.

Abstract:

 In modern embedded systems, improving

accuracy in branch prediction is one of the most

crucial problems. It’s well known that branch alias has

become one of the most serious problem that affects

the accuracy in 2-level adaptive predictor. In this

paper, we propose a stack-based solution which can

alleviate alias problem significantly and improve the

accuracy in branch prediction. Our proposed solution

extends 4 bits on the conventional PHT’s higher bits.

Experiments are carried on Simple-scalar3.0e and the

performance is verified by using SPEC2006

benchmarks. The result shows that the proposed

structure can achieve about 10.5% improvement on

IPC on average compared to the conventional

prediction, and its extra hardware cost is negligible.

1. Introduction

 There are mainly three problems that would

decrease the accuracy and even make the whole

system’s performance become low. Alias is one of

them which means that different PCs finally index to

the same entry in the Pattern History Table(PHT).

Previously a concept of level in a program was

proposed which means that we can divide the

program into several levels according to some kinds

of branch instructions such as function call, loop

statement and so on.

 According to the coherence between

instructions in a problem, we usually consider that a

branch instruction is relevant with other instructions

which belong to the same level or in the lower level

with the current branch instruction, as to those

instructions whose level is higher than the current

level, we take it as irrelevant.

The flowchart of fetch process in pipeline is shown

in Figure 1. If PC fetches a branch instruction from

cache, the branch will be delivered into the branch

prediction module so as to make a prediction.

Figure 1: The flowchart of fetch process in pipeline

2. Proposed structure:
 As shown in figure 2, a PC recorder, a stack and a

comparator and 4 bits extended on PHT’s higher bits

are added on the conventional 2-level adaptive

predictor. PC recorder is used to record the PC

corresponding to the bits in Global History Register.

Its update is at the same time with GHR. Comparator

would produce a mask code via comparing the

current PC and the element stored in PC recorder. As

to the stack, it is mainly responsible for storing the

branch instruction which has already been taken so

as to record the relationship of levels. The extending

4 bits in PHT is used for storing the relationship of

levels for each entry and waiting to be compared

with the current PC’s level.

Figure 2: Structure of stack-based prediction model

" A stack-based solution for alias problem in branch
prediction"
 The authors are with the Graduate School of
Information, Productions and Systems.
E-Mail: yinsijie@ruri.waseda.jp

Copyright 2014 Information Processing Society of Japan.
All Rights Reserved.1-95

3J-5

情報処理学会第76回全国大会

2

Prediction process can be divided into four parts:

1: Compare current PC with the elements in PC

recorder. If the element in PC recorder is in the same

layer with the current PC, the comparator outputs

“1”, otherwise it outputs “0”.

2: Compute the index for PHT. the new proposed

index is calculated with GHR bits, current PC and

mask bits.——Index=（GHR and mask）XOR PC

3: Compare the higher 4 bits in PHT with the

current PC’s layer. If match, we access the entry.

Otherwise, we access the next entry.

4: Update and push the stack after the current

branch instruction is finished. We update the result

to GHR and PC recorder. But if the result is “taken”,

we also need to push the branch instruction into the

stack and save the layer relationship.

3. Simulation

To evaluate the performance of this solution, the

extended modification of sim-outorder simulator

from simplescalar 3.0e is used as the basic simulation

module, and load 8-integer, 2-floating point

benchmarks to do 10 million instructions for each.

This experimented architecture is shown as table 1.

Table 1: Architecture of the simulated model

Fetch
6 ins/cycle, 64-kbyte,2-way set associative

I-cache, local and global branch predictor

Issue
Issues up to 4 integer and 2 floating-point,

ins/cycle, 32-entries load/store queue

Pre-

scheduling
Up to 64 ins, 6 ins/schedule-line

Functional

units

8 integer ALU, 2 integer mult, 2mem ports, 8

FPALU,1 FP mult.

Figure3 : IPC of the conventional prediction and the

proposed structure

Final result is shown in figure 3 and we can see

that compared to the conventional prediction, gcc

and mcf gain slight IPC improvement while omnetpp

and bzipz obtain significant IPC improvement. On the

whole, the proposed structure can achieve about

10.5% improvement on IPC on average.

4. Conclusion:

This paper proposes a stack-based solution for

branch alias problem by adding a PC recorder, a

comparator, a stack and extending 4 bits on PHT's

higher bits. On the basis of simulation verification,

the proposed structure can improve the IPC by 10.5%

on average contrasting to the conventional

prediction model.

Future work:

Referring to other parts in branch prediction, like

the optimization of BTB, a more optimal structure

and another set of parameters for PHT and BTB are

needed to be done in the future.

References:

[1] Akkary . H, Srinivasan .S.T et al, Perceptron-Based

Branch Confidence Estimation, Proceedings of the

10th International Symposium on High Performance

Computer Architecture, IEEE Computer Society,

pp:256-265, 2004．

[2] Seznec, A. et al, Design tradeoffs for the Alpha EV8

conditional branch predictor, Proceedings of the 29th

annual international symposium on Computer

architecture, Alaska, IEEE Computer Society, pp:295-

306, 2002．

[3] SPEC2006, Standard Performance Evaluation

Corporation, http://www.specbench.org.

[4] SimpleScalar LLC, Infrastructure for hardware

modeling and software analysis,

http://www.simplescalar.com.

[5] Abhishek Bhattacharjee, Thread criticality

predictors for dynamic performance, power and

resource management in chip muitiprocessors,

Proceedings of the 36th annual international

symposium on Computer architecture, ACM, pp:290-

301, 2009.
[6] Edward Brekelbaum, Hierarchical Scheduling

Windows. Proceedings of the 35th annual ACM／lEEE

international symposium on Micro-architecture,

Turkey, IEEE Computer Society Press, pp:27-36, 2002．

Copyright 2014 Information Processing Society of Japan.
All Rights Reserved.1-96

情報処理学会第76回全国大会

