組込みプロセッサ用分離式BTBのFPGA実装と電力評価

福田 孝作^{†1,a)} 孟 林^{†1,b)} 熊木 武志^{†1,c)} 小倉 武^{†1,d)}

概要:近年,情報化社会の進化と共に,FPGAを用いたソフトウェアプロセッサが多く存在し,高性能な組 込みプロセッサも求められる.分岐予測はプロセッサ性能向上の有効な手段である.しかし,分岐予測ミ スの時に,ミスペナルティも生じる.そのため,分岐予測精度の向上が重要な課題となる.分岐予測は,分 岐予測器を用いた分岐方向 (Taken, Not-Taken)の予測と,BTB (Branch Target Buffer)を用いた分岐先 のアドレスの予測である.BTB 予測ミスの時に,分岐方向が正しく予測されても,継続して命令をフェッ チできないため,プロセッサの性能向上に影響する.現在,我々は既存のBTB を条件分岐命令用 BTB と 無条件分岐命令用 BTB に分離し,無条件分岐命令用 BTB を CAM(Content Addressable Memory)で実 現する方式を提案し,SimpleScalar により性能向上を確認した.本論文では,FPGA を用いて,回路規模 及び,電力評価を行い,BTB の最適化を行う.実験結果から,従来の BTB に無条件分岐用 BTB を 128 エントリ追加することにより,3.12%の性能向上が得られた.更に無条件分岐用 BTB の更新はローテー ション法が有効であると分かった.

1. はじめに

近年は命令パイプライン段数を深くし、命令発行の幅を 広くすることで動作周波数を向上させている.しかしこれ らの傾向に伴い分岐予測ミスが増加傾向である.このため、 分岐予測精度の更なる向上はプロセッサの性能向上にとっ て重要な課題となり、過去に BTB (Branch Target Buffer) を用いて、分岐予測の提案が行われた [1], [2], [3], [4].そ の中の一つとして、条件分岐命令と無条件分岐命令の BTB を分けることにより、分岐予測精度の向上させる方式が提 案されている.

また、FPGA のソフトウェアプロセッサも、組込みプ ロセッサとして幅広く使われる。高性能の組込みシステム が求められると同時に、組込み用プロセッサの性能向上が 重要な課題となる.さらに、組込みプロセッサにおいて、 BTB を用いた高速化の研究も行っている [6], [7].

本論文は提案されている分離式 BTB と既存の BTB を FPGA 上に実装し,回路規模及び,消費電力を比較するこ とで,分離式 BTB の優位性を述べる.

2. 先行研究

2.1 ソフトウェアプロセッサ

FPGA は現在,急速的に高集積化,低価格化しており, 様々な製品や環境で多く採用されている.FPGA を使えば 開発費のコスト削減,開発期間の縮小に繋がる為,ASIC や ASSP,マイクロプロセッサのような既存のデバイスから 置き換わりが進んでいる.ここで、ソフトウェアプロセッ サとしては、xilinx 社の MicroBlaze, Altera 社の Nios が挙 げられる。

表1 FPGAとASICの比較

	FPGA	ASIC
プロトタイプ納期	即日	1.5~2 週間
コスト (NRE)	0円	100 万円から
量産期間	即時	最短 5 週間から
最低生産数量	1個	100 個から
配置・配線	ユーザ側で可能	ベンダ側で実施
マスク管理	不要	プロジェクトごとに管理

表1に FPGA と ASIC の比較を示す. 表から分かるように, 組込み向けプロセッサを開発する上でも, FPGA は 効率の良い設計が可能である.

^{b)} menglin@fc.ritsumei.ac.jp

^{†1} 現在, 立命館大学

Presently with Ritsumeikan University

 $^{^{}a)}$ ri0008xr@ed.ritsumei.ac.jp

 $^{^{\}rm c)} \quad {\rm kumaki@fc.ritsumei.ac.jp}$

 $^{^{\}rm d)} \quad togura@se.ritsumei.ac.jp$

図 1 現在の BTB

2.2 BTB

分離式 BTB の比較対象として,基本形 BTB の構成を 図 1 に示す. PC(Program Counter) には分岐命令のアド レスが格納されている. BTB は,キャッシュと同じ構成 であり,分岐命令のアドレスの上位の一部がタグ(Tag) として保存され,分岐先のアドレスがターゲットアドレス (Target Address)として保存される. BTB を用いて,分 岐先アドレスの予測と登録は以下のように行う.

フェッチ時の分岐先予測:

はじめに PC に格納されているアドレスの下位から ibit をインデックスを生成し,インデックスの指し示 すエントリのタグを取り出す.次に,PC のインデッ クス部以外の (n-i)bit をタグとし,BTB から取り出し たタグと排他的論理和によりパターンの比較を行う. パターンが一致する場合,予測成功 (Hit) となりイン デックスが指し示すエントリのターゲットアドレス を分岐先のアドレスとして使用する.しかし一致しな い場合は予測失敗 (Miss) となるため,正しい分岐先 のアドレスが予測できず,パイプライン処理の実行ス テージで分岐先のアドレスを得るまで,新たに命令を フェッチできない.

コミット時の BTB 更新:

BTB 内の履歴表を更新する時も、フェッチ時と同様に PC の下位 ibit をインデックスとして使用する.予測 失敗の時に、インデックスが指し示すエントリに、タ グとターゲットアドレスのペアを登録する.しかし、 同じ BTB のエントリに異なる分岐命令がアクセスし た場合, 競合が発生する.その競合が原因で BTB の 性能向上を制限している.

3. 分離式 BTB と IPC 評価

3.1 分離式 BTB の構成

先行研究 [15] により,予測の失敗は条件分岐命令と無 条件分岐命令の関係が深いと判明したため,命令の種別 に条件分岐命令用の BTB (CBTB: Conditional Branch Target Buffer),及び無条件分岐命令用の BTB (NBTB: NonConditional Branch Target Buffer)を持つ分離式 BTB を提案している.分離式 BTB の構成を図 2 に示す.

図 2 提案している分離式 BTB

CBTB は従来の BTB と同じ構成であり, ハードウェア は SRAM を用いる. NBTB は PC 内の無条件分岐命令の アドレスと, 分岐先アドレスが格納される構成とし, 無条 件分岐命令のアドレスを格納する部分に CAM を用いる. 予測するときに, CAM で分岐命令のアドレスを検索し, 一致する場合は, CAM のエントリに保存された分岐先の アドレスを予測アドレスとして使用する.登録するとき は, 分岐命令のアドレスを用いて, CAM 内を検索して登 録を行う.見つからない場合は空いているエントリに登録 する.空きがない場合はローテーション法により上書きを 行う.

3.2 SimpleScalar による IPC の評価

先行研究 [1] から分離式 BTB を SimpleScalar [16] を用い て,評価を行った結果を図 3 に示す.縦軸は IPC の向上率 であり,上に行くほど性能が向上している.横軸はベンチ マークのテスト種別である.図の Average 欄は全てのベン チマークの IPC の平均向上率である.追加された NBTB のエントリ数は 32, 64, 128, 256, 512, 1024, 2048 である.

図 3 IPC による分離式 BTB の評価

図3から64エントリからIPCの向上率がプラスになり, 128エントリでは3.12%の性能向上が得られた.以上のこ とからシミュレーション上ではNBTBを128エントリ追 加した分離式 BTB が最適であると確認した.

図 4 無条件命令用 BTB の動作フロー

4. FPGA 実装法

本章では分離式 BTB を FPGA へ実装する為の手順を 紹介する. CBTB は RAM だけで構成される. NBTB は CAM と RAM を用いた構成であり,回路規模や消費電力 を抑えるために,いくつかの工夫を行っている. アドレス を持たない. 各エントリには CAM のヒットフラグとロー テータによるアクセスを行う.以下で NBTB の詳細な構 成を述べる.図4に NBTB に動作フローを示す.

NBTB の動作パターンは,何も動作を行わない **NOP(no operation)** 命令,フェッチ時に分岐先アドレスを予測する **Fetch** 命令,BTB 内の履歴表を更新する **Commit** 命令, Fetch 命令と Commit 命令を同時に行う **Fetch & Commit** 命令の4 パターンある.各命令での動作を以下に述べる.

• 分岐命令がフェッチされた時:

図5はフェッチ命令の概略図である.フェッチ命令を 受けると,CAM内のデータとPCのデータの比較を 行い,PCと同じデータが存在するかを検索する.そ して,その検索結果がフェッチヒットフラグに書き込 まれる.検索結果がヒットした場合,フェッチヒット フラグを使用し,CAMのヒットしたワードに対応す るRAM内の分岐先アドレスが読み出される.検索結 果がミスした場合,処理としては何もされず,出力は ハイ・インピーダンスとなる.

• 分岐命令がコミットされた時:

図6はコミット命令の概略図である.コミット命令を 受けると, CAM 内のデータと PC のデータの比較を 行い, PC と同じデータが存在するかを検索する.そし て,その検索結果がコミットヒットフラグに書き込ま れる.検索結果がヒットした場合,コミットヒットフ ラグを使用し, CAM のヒットワードに対応する RAM のワードに分岐先のアドレスが書き込まれる.検索結 果がミスの場合,ローテータを使用し,ローテータの ポインタが示すワードに対して,新しい PC は CAM に,分岐先アドレスは RAM にそれぞれ書き込まれる. CAM と RAM に書き込んだ後に,ローテータのポイ ンタを 1bit シフトする.

5. 実験環境と電力評価

5.1 実験環境

実験を行う環境を図7に示す.検証用のハードウェア は,Xilinx 製 FPGA と ATMEL 製 CPU を搭載した評価 基盤を使用する.この基盤は,FPGA を評価するための 各種 I/O,スイッチ,表示器,コンフィグメモリ,A/D コンバータ,PS/2通信回路,USB コントローラを搭載し ている.FPGAの機能として,Spartan-6の XC6SLX25~ XC6SLX150 まで実装することができる.CPU を評価す るための各種 I/O,スイッチ,表示器,USB コントローラ を搭載している.FPGA と CPU が通信する手段として, CPU のバス出力と FPGA が接続されている.FPGA の 機能,容量について表2に示す.ハードウェア設計ツール は Xilinx ISE Design Suite 13.1 Project Navigator を使用 する.消費電力の測定には,TEXIO 社製のマルチメータ DL-2060 を使用する.

図7 実験環境

表 2	使用する	FPGA	の機能
-----	------	------	-----

Family	Spartan6
Device	XC6SLX150
Package	FGG484
Registers	184304
LUTs	92152
Block RAM	4824
最大ユーザ I/O	576

5.2 実装結果

NBTB と CBTB を各ワードごとに表 2 の FPGA 上に実 装し,使用されている回路規模を測定した.実験の結果を 表 3 に示す.NBTB のメモリサイズは 32,64,128,512, 1024,2048 を測定した.CBTB のメモリサイズは 2048 の 1-way と 4-way をそれぞれ測定した.回路規模を表す指標 は使用されている Registers 数と LUTs 数とする.結果よ り NBTB はエントリ数の増やすことで,Registers,LUT s 共に回路規模が増大していることが分かる.また CBTB では 1-way と 4-way では 4 倍以上,回路規模が増大してい ることが分かる.

5.3 電力評価

消費電力の測定は図7に示すように、FPGAに直接マル チメータを接続し行った.電力の評価方法としてはFPGA 上にNBTBとCBTBを実装し、その他にBTBへテスト パターンを流すためのモジュールを同時に実装した.テス トパターンの実装はBTBの回路規模に影響しないように するため、FPGA上のBlockRAM内にテストパターンを 格納するようにした.消費電力の比較方法はBlockRAM からBTBヘテストパターンを流し、BTBが分岐先を予測 しBTBとBlockRAMどちらも動作している実行状態と、 BlockRAMは動作をしているが、BTBは分岐先の予測を 行っていない待機状態を測定し、消費電力がどのように変 化するかの評価を行った.表4に各エントリの実行状態と 待機状態の電流値の差分を示す.測定したエントリは32, 64, 128, 256, 512である.この実験結果は各エントリ 200 ポイントずつ測定した値の平均である.

	Memory Config.	The average of the difference (A)			
	(Words)	NBTB	CBTB		
	32	0.006346	0.002589		
	64	0.013745	0.004832		
BTB	128	0.01877	0.008086		
	256	0.039308	0.011982		
	512	0.055326	0.021627		

表 4 BTB の消費電力の差分

表4の結果から,CBTBの方がNBTBより差分値が全体的に低い.すなわち,CBTBの方が消費電力が少ない ことが分かる.これはCBTBはRAMだけで構成されているが,NBTBには一部にCAMが使われている為,分岐 先を予測する際に,ワンステップで全てのエントリにアク セスすることから,消費電力が大きくなっていると考えられる.

	Memory Config.	Circuit size		
	(Words)	Registers	LUTs	LUT-FF pairs
	32	2036	1515	2369
	64	4055	3914	5472
	128	8090	6086	10474
NBTB	256	16157	12185	21917
	512	32288	24001	43791
	1024	64576	48002	87582
	2048	129152	96004	175164
CBTB(1-way)	2048	100388	170110	87939
CBTB(4-way)	2048	401552	680440	351756

表 3 ハードウェア検証の結果

5.4 総合的評価

図 8 に CBTB と NBTB の消費電力の差分を示す. 横軸 は BTB のサイズであり,縦軸は測定よって得られた BTB の電流値である. NBTB と CBTB 共に, 128 エントリま での消費電力の差分は 0.005(A) 程しか増加していないが, 128 エントリ以降は NBTB では 0.02(A) 増加していること から,消費電力面を考慮した最適な BTB のサイズは 128 エントリであると分かる.

図 8 NBTB と CBTB の電力比較

次に図9は各ワードで回路規模, IPCを比較したもので ある. 横軸は BTB のサイズであり,縦軸は測定よって得 られた BTB の回路規模と IPC の向上率である. 回路規模 はエントリ数が 128 エントリまでは緩やかに増加している が,512 エントリ付近から急激に増大し,1024 エントリで は LUT は 14%, Register は 6% 増加し,2048 エントリで は LUT は 26%, Register は 16% 増加していることが分 かる. IPC は 32 エントリ,64 エントリではマイナスであ るが,128 エントリでは 3% 向上している.512 エントリ 以降はエントリ数を追加しても,IPC の向上率はあまり変 わらないことが分かる.

以上の結果より IPC,回路規模,消費電力を考慮した上 で最も良い BTB は 128 エントリであると結論づけること ができる.

6. まとめ

本稿では、CAM を用いて、FPGA 上に従来の BTB と 提案手法の分離式 BTB を実装し、IPC に加え回路規模及 び、消費電力を測定し、分離式 BTB の評価を行った.そ の実験の結果、分離式 BTB は 128 エントリが最も良いと 分かった.今後は分岐予測命令の種類やヒット率を変化さ せることで、どのように消費電力に影響を及ぼすかについ ての検証を行う予定である.さらに頻繁にミスをする分岐 予測命令の種類を調べ、それに適した BTB の提案、低消 費電力化について検討する必要がある.

参考文献

- C. H. Perleberg and A. J. Smith, "Branch Target Buffer Design and Optimization," IEEE Transactions on Computers, Vol.42, No.4, 1993.
- [2] L. Meng, K. Yamazaki and S. Oyanagi, "A Novel Branch Predictor Using Local History for Miss-Prediction Bias," Proc. of the 2012 International Conference on Computer Design (CDES' 12), pp77-83, Jul.2012.
- [3] F. Saito and H. Yamana, "The Branch Predictor referring a BTB Entry Existence," Transaction of IPSJ, Vol.45, No.7, pp.71-79, Otc.2004
- [4] Brian K. Bray and M. J. Flynn, "STRATEGIES FOR BRANCH TARGET BUFFERS," Technical Report No.

IPSJ SIG Technical Report

CSL-TR-91-480, 1991.

- [5] S. Wang, J. Hu and S. G. Ziavras, "BTB Access Filtering: A Low Energy and High Performance Design," Symposium on VLSI, pp81-86, 2008.
- [6] Yen-Jen Chang, "An Energy-Efficient BTB Lookup Scheme for Embedded Processors", IEEE Transactions on Circuits and system-II: EXPRESS BRIEFS, Vol.53, No.9, pp.817-821, 2006.
- [7] Sunwook Kim, Eutteum Jo and Hyungshin Kim, "Low Power Branch Predictor for Embedded Processors", 10th IEEE International Conference on Computer and Information Technology, pp.107-114, 2010.
- [8] http://japan.xilinx.com/tools/microblaze.htm
- [9] http://www.altera.co.jp/devices/processor/nios2/ni2index.html
- [10] T. Yamano, T. Kita, K. Murata, M. Nakanishi and T. Ogura, "A Study of the String Search System Using CAM for Network Security,"
- [11] T. Ikenaga and T. Ogura," CAM2: A Highlyparallel Two-dimensional Cellular Automaton Architecture," IEEE Trans. Comput., Vol. 47, No. 7, 1998.
- [12] Y. Ishikawa, J. Uchida, Y. Miyaoka, N. Togawa, M. Yanagisawa and T. Ohtsuki, "A CAM Processor Optimizing Method with Area Constraints," IEICE Technical Report, Vol.103, No.705, pp.13-18, 2004.
- [13] T. Kumaki, K. Iwai and T. Kurokawa, "A Flexible Multi-Port Content Addressable Memory," IEICE Transactions on Information and Systems, Vol.J87-D-1, No.1, pp.12-21, 2004. (in Japanese)
- [14] C.C.Kavar and S.S.Paramar, "Performance Analysis of LRU Page Replacement Algorithm with Reference to different Data Structure", International Journal of Engineering Research and Application, Vol.3, No.1, pp.2070-2076, 2013.
- [15] K.Fududa, L.Meng, T.Kumaki and T.Ogura, "A CAMbased Separated BTB for a Superscalar Processor," 2013 First International Symposium on Computing and Networking, pp385-388,2013.
- [16] D. Burger and T.M. Austin, "The SimpleScalar Tool Set Version2.0," Technical Report, University of Wisconsin-Madison Computer Sciences Dept. July 1997.
- [17] A. Hilton and A. Roth, "Ginger : Control independence using tag rewriting," Proc. 35th Int' l Symposium on Computer Architecture, May 2007, 436-447, 2007
- [18] Dong Ye and David Kaeli, "A reliable return address stack: microarchitectural features to defeat stack smashing", ACM SIGARCH Computer Architecture News-Special issue: Workshop on architectural support for security and anti-virus (WASSA), Vol.33, No.1, pp73-80, 2005.