大域データ対応付けの反復実行による 細胞追跡精度の改善手法

藏重 昂平1 瀬尾 茂人1 間下 以大2 竹中 要一1 松田 秀雄1

概要:近年,イメージング技術の発展により,細胞の挙動の経時観察が可能になった.大量の観察画像から細胞の挙動を自動的に分析することは重要な課題となっている.

細胞の挙動を解析する細胞追跡手法に,大域データ対応付けを用いた手法がある.大域データ対応付けで は,フレーム単位の対応付けにより短い細胞移動の軌跡であるトラックレットを生成し,細胞移動の仮説 の尤度に基づきトラックレットの対応付けを行うことで,全体の軌跡を最適化する.しかし,細胞移動の 仮説の適切な尤度計算は難しく,トラックレット対応付けの間違いが生じる問題がある.

本研究では、大域データ対応付けを一定フレーム領域でスライドしながら反復実行することによる、細胞 追跡精度の改善手法を提案する.重力下におけるブラウン運動のシミュレーションデータおよび、濃度勾 配に従い遊走する破骨細胞の観察画像に対して実験を行い、本手法により細胞追跡の精度が向上したこと を確かめた.

キーワード:細胞追跡,大域データ対応付け,反復実行

1. はじめに

近年,イメージング技術の発展により,生物学的現象を 観察をすることが可能となった.多くの観察データが得ら れるようになり,扱うデータの爆発的な増加をもたらし た.細胞増殖,分裂,および遊走といった挙動を解析する ことは,生物学や医学の研究に重要である.大量のデータ を手動で解析するためには膨大な時間がかかり困難である ため,コンピュータによる自動化が必要とされている.

細胞の挙動を解析するために、様々な解析手法が提案されてきた. 画像処理での解析手法の1つに、トラッキングを用いた手法がある. トラッキングは一般的に、セグメン テーション、アソシエーションという2つの画像処理ステッ プからなる. セグメンテーションステップで回像から各細 胞の検出をし、アソシエーションステップでフレーム単位 で同一の細胞を対応付けることで、細胞移動の軌跡を得る. しかし、フレーム単位の対応付けでは、母娘関係の正確さ の面で高い精度を達成することはノイズに影響されやすく 困難である. 例えば、誤検出による偽陽性 (False Positive, FP)のセグメンテーションが近くに現れると母娘関係のエ ラーを引き起こす可能性がある. その問題を解決するため にはグローバルな時間的情報が必要であり、本研究の対象 である大域データ対応付け (Global Data Association) が 提案された [2].大域データ対応付けを用いた細胞追跡で は、まずフレーム単位の対応付けに基づいて検出反応をリ ンクすることにより短い細胞移動の軌跡であるトラック レットを生成する.次にトラックレットの対応付けを最大 事後確率 (Maximum a posteriori, MAP) 問題として定式 化する. MAP 問題は線形計画法により解く.この時、ト ラックレットの対応付けは、細胞移動の仮説およびその尤 度に基づき線形計画法を解くことで行われるが、尤度の計 算はトラックレットのデータに依存するため、正解の対応 付けよりも尤度の合計が大きくなるような対応付け仮説が 存在し、間違いが生じてしまうという問題がある.

本研究では、大域データ対応付けを反復実行することに より、トラックレットの対応付けの間違いを減らし、より 高い精度で細胞追跡を行うことを目的とした手法を提案 する.提案手法では、画像の全フレームに存在するトラッ クレットではなく、一定分のフレームに存在するトラック レットに対して大域データ対応付けを行う.これをフレー ム全体にわたり反復して実行し、反復して得られた対応付 け仮説の頻度に応じて対応付けを行う.また、本手法の有 効性を示すために、シミュレーションデータによる実験お よび実データによる実験を行い、提案手法により細胞追跡 の精度が改善されたことを示す.

¹ 大阪大学大学院情報科学研究科

² 大阪大学サイバーメディアセンター

2. 大域データ対応付けを用いた細胞追跡手法

本章では、本研究の従来手法とする、木構造の大域デー タ対応付け [2] を用いた細胞追跡手法について紹介する.

2.1 手法の概要

この手法では、まず画像のセグメンテーションにより細胞の検出をする.次に,アソシエーションにより細胞の対応付けを行い,短い細胞移動の軌跡であるトラックレットを生成する.大域データ対応付けにより生成したトラックレットの対応付けを行い,細胞移動の軌跡を得る.

2.2 トラックレット生成

フレーム単位の対応付けによって得られる長い細胞移動 の軌跡は、短いものに比べるとノイズや他の細胞と対応付 けられる可能性が高くなり, 間違いを含む可能性が高くな る.したがって、セグメンテーションされた細胞から信頼 性の高いトラックレットを生成する. 追跡対象の周辺に他 にターゲットになり得る細胞がなく,連続したフレーム間 で、ターゲットとその候補の細胞のユークリッド距離が十 分小さい細胞を対応付けすることで生成したトラックレッ トは信頼性が高いと言える.1フレーム後の距離が大き く離れている,検出されなかった偽陰性 (False Negative, FN)の細胞により候補が存在しない、細胞同士が接触して 複数の細胞が近くに存在する場合、その時点で対応付けを 終了する.図1にトラックレットの生成例を示す. TP は 正しく検出された真陽性(True Positive)の細胞である. 対応付けされなかった1つの細胞もトラックレットとし, 生成されたトラックレットの集合を $X = \{X_i\}$ と表す.

2.3 大域データ対応付け

この節では、木構造の大域データ対応付けについて説明 する. $T = \{T_k\}$ を、画像全フレームにわたる細胞軌道の 木の仮説集合とする.それぞれの木 T_k は、対応付けられ たトラックレットで形成される. T_k に関する木構造の仮 説は次の表記を用いて定義する.

(1) $E_k = \{E_{ki}\}$. 木 T_k の辺集合. 各エッジはトラッ クレットの順序リストとして定義される. つまり, $E_{k_i} = \{X_{k_i}^j\}$. $X_{k_i}^j$ はエッジ E_{k_i} の j 番目のトラック レットを表す. また, E_{k_0} は木のルートエッジを表す.

- (2) $B_k = \{B_{k_i}\}$. 木 T_k の分岐ノードの集合. 各分 岐ノード B_{k_i} は親子関係を定義する. $B_{k_1} = \{E_{k_{p_i}}, E_{k_{c_{i1}}}, E_{k_{c_{i2}}}\}$. $E_{k_{p_i}}$ は親を, $E_{k_{c_{i1}}}, E_{k_{c_{i2}}}$ は子 を表す.
- (3) $L_k = \{E_{kl_i}\}$. 木 T_k のリーフエッジの集合.

X を観測されたトラックレットの集合とすると, 最善の 仮説 *T** を解くために事後確率を最大限にする.

$$T^* = \arg \max_{T} P(T|X)$$

= $\arg \max_{T} P(X|T)P(T)$
= $\arg \max_{T} \prod_{X_i \in X} P(X_i|T) \prod_{T_k \in T} P_{Tree}(T_k)$ (1)

式 (1) では、与えられた T に入力トラックレットの尤度 は条件付独立であり、 $T_k \in T$ は互いに重なることはない と仮定する.つまり、 $T_k \cap T_l = \phi, \forall k \neq l$ である.観測さ れたトラックレット X_i の尤度は、次で表される.

$$P(X_i|T) = \begin{cases} P_{TP}(X_i), \text{ if } \exists T_k \in T, X_i \in T_k \\ P_{FP}(X_i), \text{ otherwise} \end{cases}$$
(2)

 $P_{TP}(X_i)$ は X_i が真陽性である確率, $P_{FP}(X_i)$ は偽陽性である確率を表す. $P_{tree}(T_k)$ はマルコフ連鎖としてモデル化される.

$$P_{tree}(T_k) = P_{ini}(E_{k_0}) \times \prod_{E_{k_i} \in T_k} P_{edge}(E_{k_i}) \\ \times \prod_{\{E_{k_{p_i}}, E_{k_{c_{i1}}}, E_{k_{c_{i2}}}\} \in B_k, B_k \in T_k} \\ P_{div}(E_{k_{c_{i1}}}, E_{k_{c_{i2}}} | E_{k_{p_i}}) \\ \times \prod_{E_{k_{l_i}} \in L_k, L_k \in T_k} P_{term}(E_{k_{l_i}})$$
(3)

 P_{ini} は木のルートの始端確率で、 P_{term} はリーフの終端確 率である、 $P_{div}(E_{k_{c_{i1}}}, E_{k_{c_{i2}}}|E_{k_{p_i}})$ はエッジ $E_{k_{p_i}}$ が2つの エッジ $E_{k_{c_{i1}}}, E_{k_{c_{i2}}}$ に分裂するエッジ分裂確率である、マ ルコフ仮定のもとで、エッジ確率は次のように定式化さ れる、

$$P_{edge}(E_{k_i}) = \prod_{j=1:N_{k_i}-1} P_{link}(X_{k_i}^j | X_{k_i}^{j-1})$$
(4)

 $P_{link}(X_{k_i}^j|X_{k_i}^{j-1})$ はトラックレット $X_{k_i}^j$ と $X_{k_i}^{j-1}$ が一緒に 繋がる確率で、 N_{k_i} はエッジ E_{k_i} のトラックレットの数で ある. $X_{k_i}^0$ を E_{k_i} の最初のトラックレット、 $X_{k_i}^{end}$ を最後 のトラックレットとする、マルコフ仮定のもとで、始端、 終端、分裂確率はそれぞれ、次のように定式化される.

- $P_{ini}(E_{k_0}) = P_{ini}(X_{k_i}^0)$ (5)
- $P_{term}(E_{k_{l_i}}) = P_{term}(X_{k_i}^{end})$ (6)

$$P_{div}(E_{k_{c_{i1}}}, E_{k_{c_{i2}}}|E_{k_{p_i}}) = P_{div}(X^0_{k_{c_{i1}}}, X^0_{k_{c_{i2}}}|X^{end}_{k_{p_i}})$$
(7)

式 (1) に式 (2.2)-(2.7) を代入した後,目的関数に対数を とったものが式 (8) になる. **IPSJ SIG Technical Report**

$$T^{*} = \arg \max_{T} \{ \sum_{X_{i} \notin T_{k}, \forall T_{k} \in T} \log P_{FP}(X_{i}) + \sum_{X_{i} \in T_{k}, \forall T_{k} \in T} \log P_{TP}(X_{i}) + \sum_{X_{k_{0}}^{0} \in E_{k_{0}}, E_{k_{0}} \in T_{k}, \forall T_{k} \in T} \log P_{ini}(X_{k_{0}}^{0}) + \sum_{X_{k_{0}}^{0} \in E_{k_{0}}, E_{k_{0}} \in T_{k}, \forall T_{k} \in T} \log P_{link}(X_{k_{i}}^{j} | X_{k_{i}}^{j-1}) + \sum_{X_{k_{i}}^{i}, X_{k_{c_{i}1}}^{i-1} \in E_{k_{i}}, \forall E_{k_{i}} \in T_{k}, \forall T_{k} \in T} \log P_{link}(X_{k_{i}}^{j} | X_{k_{i}}^{j-1}) + \sum_{\{X_{k_{p_{i}}}^{end}, X_{k_{c_{i}1}}^{0}, X_{k_{c_{i}2}}^{0} \} \in B_{k}, B_{k} \in T_{k}, \forall T_{k} \in T} \log P_{div}(X_{k_{c_{i}1}}^{0}, X_{k_{c_{i}2}}^{0} | X_{k_{p_{i}}}^{end}) + \sum_{X_{k_{l_{i}}}^{end} \in E_{k_{l_{i}}}, \forall E_{k_{l_{i}}} \in L_{k}, L_{k} \in T_{k}, \forall T_{k} \in T} \log P_{term}(X_{k_{l_{i}}}^{end}) \}$$

$$(8)$$

式 (8) の MAP 問題を整数計画問題として定式化して解 く. N_X を全シーケンスにおけるトラックレットの数,ベ クトル ρ は起こりうる全ての仮説の尤度を,行列Cは競 合する仮説を避けるための制約を格納する.Cの各行は $2N_X$ の列があり,各列は2つのトラックレットの対応付 けに関するトラックレットのインデックスを示す.ベクト $\mu \rho$ と行列Cのエントリは以下のの5つの仮説に基づき 計算する.hは新しい仮説のインデックスである.

(1) 始端仮説 (Initialization hypothesis)

トラックレット X_k の始端がシーケンスの始めに現れ る,画像の境界付近に現れる場合,そのトラックレッ トは始端トラックレットの候補である.行列*C*と尤度 ρのエントリは次のように定義する.

$$C(h,i) = \begin{cases} 1, \text{ if } i = N_X + k \\ 0, \text{ otherwise.} \end{cases}$$
(9)

$$\rho(h) = \log P_{ini}(X_k) + 0.5 \log P_{TP}(X_k) \quad (10)$$

(2) 終端仮説 (Termination hypothesis)

トラックレット *X_k* 終端がシーケンスの終わりに現れ る,画像の境界付近に現れる場合,そのトラックレッ トは終端トラックレットの候補である.行列 *C* と尤度 ρ のエントリは次のように定義する.

$$C(h,i) = \begin{cases} 1, \text{ if } i = k \\ 0, \text{ otherwise.} \end{cases}$$
(11)
$$\rho(h) = \log P_{term}(X_k) + 0.5 \log P_{TP}(X_k)$$
(12)

(3) 移動仮説 (Translation hypothesis)

トラックレット X_{k_1} の終端とトラックレット X_{k_2} の 始端の時空間の距離が一定以内の場合, $X_{k_1} \rightarrow X_{k_2}$ はトラックレット移動の候補である.行列 C と尤度 ρ のエントリは次のように定義する.

$$C(h,i) = \begin{cases} 1, \text{ if } i = k_i \text{ or } i = N_X + k_2 \\ 0, \text{ otherwise.} \end{cases}$$
(13)
$$\rho(h) = \log P_{link}(X_{k_2}|X_{k_1}) + 0.5 \log P_{TP}(X_{k_1}) \\ + 0.5 \log P_{TP}(X_{k_2})$$
(14)

(4) 分裂仮説 (Dividing hypothesis)

トラックレット X_p の終端が細胞分裂発生イベントの 位置に近い場合,そのトラックレットは親トラック レットの候補であり,トラックレット X_{c_1} , X_{c_2} の始 端が X_p に近い場合,それらのトラックレットは子ト ラックレットの候補である.行列 C と尤度 ρ のエン トリは次のように定義する.

$$C(h,i) = \begin{cases} 1, \text{ if } i = p \text{ or } i = N_X + c_1 \text{ or} \\ i = N_X + c_2 \\ 0, \text{ otherwise.} \end{cases}$$
(15)

$$\rho(h) = \log P_{div}(X_{c_1}, X_{c_2} | X_p) + 0.5 \log P_{TP}(X_p) + 0.5 \log P_{TP}(X_{c_1}) + 0.5 \log P_{TP}(X_{c_2})$$
(16)

(5) 偽陽性仮説 (False positive hypothesis)
 全てのトラックレットは偽陽性である可能性がある。
 トラックレット X_k が偽陽性の候補である場合,行列
 C と尤度 ρ のエントリは次のように定義する.

$$C(h,i) = \begin{cases} 1, \text{ if } i = k \text{ or } i = N_X + k \\ 0, \text{ otherwise.} \end{cases}$$
(17)
$$\rho(h) = \log P_{FP}(X_k)$$
(18)

 N_X 個のトラックレットで M 個の仮説を作った後,式 (8)の MAP 問題は,任意の木が互いに重ならないという 制約下で, ρ に対応する要素の和が最大になるようなCの 行の部分集合を選択することとみなすことができる.これ は次のような整数計画問題として定式化される.

$$x^* = \arg\max\rho^T x, \text{ s.t. } C^T x = 1$$
(19)

 $x \ k \ M \times 1 \ 0$ バイナリベクトルで, $x_k = 1 \ k \ k \ mathbf{a}$ 韻約 $C^T x = 1$ は,各トラックレットが対応付けされるか偽陽性トラック レットであることを保証する.図2に整数計画問題の例を 示す.図2左のようなトラックレットを考え,可能性のあ る仮説に関して,定義に基づきベクトル ρ と行列 C のエン トリを計算する.その後,式(19)の整数計画問題を解き, 解を求める.オレンジ色の部分が解として選択されたもの を表す.

2.4 仮説の確率推定の実装

この節では、本研究における各仮説の確率推定の実装方

図 2 整数計画問題の例([2] より)

法について説明する.

(1) 偽陽性確率 P_{FP}

トラックレット X_i が誤検出である確率. α を細胞検 出器の誤検出率, $|X_i|$ をトラックレット X_i を構成す る細胞の数とする.

$$P_{FP}(X_i) = \alpha^{|X_i|} \tag{20}$$

(2) 真陽性確率 PTP

トラックレット X_i が正検出である確率.

$$P_{TP}(X_i) = 1 - P_{FP}(X_i)$$
(21)

(3) 始端確率 Pini

トラックレット X_i が始端トラックレットである確率. R_{i_0} はトラックレット X_i の最初の検出反応, $dt_0(R_i)$ は初期フレームから検出反応 R_i が現れるまでの時間 距離, $ds(R_i)$ は検出反応 R_i と画像の境界との空間距 離である. θ_t は時間しきい値, θ_s は距離しきい値で, このしきい値以内のトラックレットに関して確率を計 算する. また, $\lambda_1 \ge \lambda_2$ は調整用のパラメータである.

$$P_{ini}(X_i) = \begin{cases} e^{-\frac{dt_0(R_{i_0})}{\lambda_1}}, \text{ if } dt_0(R_{i_0}) \le \theta_t \\ e^{-\frac{ds(R_{i_0})}{\lambda_2}}, \text{ if } ds(R_{i_0}) \le \theta_s \\ \eta, \text{ otherwise. } (\eta \approx 0) \end{cases}$$
(22)

(4) 終端確率 Pterm

トラックレット X_i が終端トラックレットである確 率. $R_{i_{end}}$ はトラックレット X_i の最後の検出反応, $dt_{end}(R_i)$ は最終フレームから検出反応 R_i が現れるま での時間距離である.

$$P_{term}(X_i) = \begin{cases} e^{-\frac{dt_{end}(R_{i_{end}})}{\lambda_1}}, \\ \text{if } dt_{end}(R_{i_{end}}) \leq \theta_t \\ e^{-\frac{ds(R_{i_{end}})}{\lambda_2}}, \text{ if } ds(R_{i_{end}}) \leq \theta_s \\ \eta, \text{ otherwise. } (\eta \approx 0) \end{cases}$$
(23)

(5)連結確率 P_{link}

トラックレット X_j と X_i が繋がる確率. $ds(R_{j_0} - R_{i_{end}})$ はトラックレット X_j の最初の検出反応と トラックレット X_i の最後の検出反応の空間距離, $dt(R_{i_{end}} - R_{j_0})$ はトラックレット X_j の最初の検出反応の時間距離 である. また、 λ_3 は調整用のパラメータである.

$$P_{link}(X_j|X_i) = e^{-\frac{ds(R_{j_0} - R_{i_{end}})}{\lambda_3}},$$

if $dt(R_{i_{end}} - R_{j_0}) \le \theta_t$ and
 $ds(R_{j_0} - R_{i_{end}}) \le \theta_s$ (24)

(6) 分裂確率 P_{div}

トラックレット X_i が細胞分裂する確率.本研究において,扱うデータの細胞は細胞分裂をしないため,細胞分裂の検出はない.したがって,分裂確率に関しては考慮しない.

2.5 大域データ対応付けの問題点

大域データ対応付けにより,偽陽性のセグメンテーショ ンによる対応付けの間違いを減らすこと,偽陰性のセグメ ンテーションにより途切れたトラックレットの対応付けが 可能になった.しかし,トラックレット対応付けの仮説の 尤度計算は,トラックレットのデータに依存し,短いトラッ クレットが多い場合や,偽陰性のセグメンテーションが多 い場合に適切な値を計算することは難しい.本来は正解と なるべき対応付けでもトラックレット同士が離れており尤 度が小さい値になる場合がある.最適化した結果,正解よ り尤度の和が大きくなるような対応付け仮説が存在し,間 違った対応付けが生じる問題がある.

大域データ対応付けの反復実行による細胞 追跡精度の改善手法

2章で、大域データ対応付けを用いた細胞追跡手法とその問題点について述べた.本章では、トラックレットの対応付けの間違いが生じる問題に対して、大域データ対応付けの反復実行による細胞追跡精度の改善手法を提案する. 提案手法では、同様の尤度計算方法でも対応付けの間違い を減らし、より高い精度の細胞追跡結果を得ることを目的 とする.

3.1 手法の概要

トラクレットの生成までは従来手法と同様である.提案 手法では、次に一定フレーム間で大域データ対応付けをず らしながら反復実行し、そのデータをもとにトラックレッ トの対応付けを行う.最後に追跡結果の出力をし、細胞移 動の軌跡を得る.

尤度の定義により,全フレームでの大域データ対応付け と一定フレーム間での大域データ対応付けでは,解として IPSJ SIG Technical Report

選ばれる対応付けの仮説に違いが生じる.一定フレーム間 をずらしながら大域データ対応付け反復実行し,解として 選ばれた回数が多い対応付け仮説は正しいと考え,その頻 度に基づき対応付けを行う.

3.2 大域データ対応付けの反復実行

ここでは大域データ対応付けの反復実行について説明す る.従来手法では、大域データ対応付けを画像全フレーム のトラックレットに対して行うが、提案手法では一定分の フレームに存在するトラックレットを取り出し、その取り 出されたトラックレット間で行う.アソシエーションの結 果は出力せず、取り出されたトラックレット間における解 の対応付け仮説の情報を行列 N_{ij} に解として選ばれた対応 付け仮説の回数を保存する.N_{ij} は次のように定義する.

 $N_{ij} = 0(\overline{\eta} \, \overline{\eta} \, \overline{\eta$

$$N_{h_1h_2} = N_{h_1h_2} + 1 \tag{26}$$

i はトラックレット,始端仮説の集合 (*i* = {*X*,*ini*}), *j* はトラックレット,終端仮説,偽陽性仮説の集合 (*j* = {*X*,*term*,*FP*}) である. *h*₁,*h*₂ は解の対応付け仮 説を表す.例えば,トラックレット *X*₁ の始端仮説は (*h*₁,*h*₂) = (*ini*,*X*₁),トラックレット *X*₁,*X*₂ の移動仮 説は (*h*₁,*h*₂) = (*X*₁,*X*₂),トラックレット *X*₂ の終端仮説 は (*h*₁,*h*₂) = (*X*₂,*term*),トラックレット *X*₃ の偽陽性仮 説は (*h*₁,*h*₂) = (*X*₃,*FP*) と表す.

これを初期フレームから最終フレームに至るまで1フ レームずつずらしながら反復実行し,保存した仮説の頻度 をもとに整数計画法を解きアソシエーションを行い,細胞 移動の軌跡を得る.

3.2.1 トラックレットの取り出し

ここでは、トラックレットの取り出しについて説明す る. t フレーム目の場合を考える. 図 3 のように. トラッ クレットの出現フレームまたは消失フレームが t フレーム 目から $t + \beta$ フレーム目までに存在するトラックレットを 取り出す. 取り出されたトラックレット X_i' は式 (27) で 表される. $dt_t(R_{i_0})$ は t フレーム目からトラックレット X_i の出現フレームまでの時間距離, $dt_t(R_{i_{end}})$ は t フレーム 目からトラックレット X_i の消失フレームまでの時間距離 である.

$$X'_{i} = \{X_{i} | (0 \le dt_{t}(R_{i_{0}}) < \beta) \lor (0 \le dt_{t}(R_{i_{end}}) < \beta)\}$$
(27)

このトラックレット X_i に関して,従来手法と同様にト ラックレット対応付け仮説の尤度を計算し,整数計画問題 を解き対応付けの解を求める.その解の対応付け仮説の情 報は保存しておく.始端確率および終端確率の計算方法に ついては,初期フレームと最終フレームの定義が変わるた

め、それぞれ以下のように計算方法を変更した.

(1) 始端確率 P_{ini}

 $dt_t(R'_{i_0})$ はtフレーム目からトラックレット X'_i の最初の検出反応が現れるフレームまでの時間距離である.tフレーム以前から存在するトラックレットの始端確率に関しては1と定義した.

$$P_{ini}(X'_{i}) = \begin{cases} 1, \text{ if } dt_{t}(R'_{i_{0}}) \leq 0\\ e^{-\frac{dt_{0}(R'_{i_{0}})}{\lambda_{1}}}, \text{ if } 0 < dt_{t}(R'_{i_{0}}) \leq \theta_{t}\\ e^{-\frac{ds(R'_{i_{0}})}{\lambda_{2}}}, \text{ if } ds(R'_{i_{0}}) \leq \theta_{s}\\ \eta, \text{ otherwise. } (\eta \approx 0) \end{cases}$$
(28)

(2)終端確率 P_{term}

 $dt_{t+\beta}(R'_{i_{end}})$ は $t + \beta$ フレーム目からトラックレット X'_i の最後の検出反応が現れるフレームまでの時間距 離である. $t + \beta$ フレーム以降まで存在するトラック レットの終端確率に関しては 1 と定義した.

$$P_{term}(X'_{i}) = \begin{cases} 1, \text{ if } dt_{t+\beta}(R'_{i_{end}}) \leq 0\\ e^{-\frac{dt_{end}(R'_{i_{end}})}{\lambda_{1}}}, \\ \text{ if } 0 < dt_{t+\beta}(R'_{i_{end}}) \leq \theta_{t} \\ e^{-\frac{ds(R'_{i_{end}})}{\lambda_{2}}}, \text{ if } ds(R'_{i_{end}}) \leq \theta_{s} \\ \eta, \text{ otherwise. } (\eta \approx 0) \end{cases}$$
(29)

3.2.2 反復実行とアソシエーション

前小々節では t フレーム目について考えたが,初期フレームからから最終フレームに至るまで,1フレームずつずらしながら反復実行する.最終フレームまで終えると,取り出した部分ごとの解の対応付け仮説の数の和が *N_{ij}* に格納される.

最後に,反復実行して得られた全ての解の対応付け仮説 を用い,トラックレットの対応付けを行う.大域データ対 応付けと同様に整数計画問題を解くことで行うが,提案手 法では,解として選ばれた対応付け仮説の頻度を最大化 する.

また,フレームを部分ごとに取り出して反復実行するた め,従来手法ではないはずの始端仮説,終端仮説も解とし て選ばれる.したがって,次のように始端仮説と終端仮説 の数に重み付け処理をした.

$$N_{inij} = N_{inij} \times W \tag{30}$$

$$N_{iterm} = N_{iterm} \times W \tag{31}$$

上記の処理を加えた N_{ij} を次のように ρ' に代入する.h'は N_{ij} のエントリを表す.

$$\rho'(h') = N_{ij}(N_{ij} > 0) \tag{32}$$

C'には, ρ'に対応する仮説の制約行列を大域データ対応 付けと同様の定義で代入し,以下の整数計画問題を線形緩 和して解く.

$$x^* = \arg\max_{x} {\rho'}^T x, \text{ s.t. } {C'}^T x = 1$$
 (33)

式 (33) で得られた解が提案手法の結果となる.

4. 実験

提案手法の有効性を示すために、シミュレーションデー タに基づく実験および実データに基づく実験を行った.ト ラックレット生成までをそれぞれデータ加工、ツールを用 いて行い、位置座標およびトラックレットの情報のある データを用いて手法のテストをした.本章では実験結果を 示すとともに、実験結果に対する考察をする.

4.1 準備実験

4.1.1 シミュレーションデータに基づく実験

本研究では、実データだけでなくシミュレーションデー タに基づく実験を行った.なぜなら、細胞追跡を行うツー ルは数多くあるが、完璧に追跡できるものはないため、細 胞追跡の結果が正しいかどうかの評価は、人の手で細胞を 追跡して行うのが一般的である.しかし、大量のデータの 作成は困難であり、正解データを作成するのは容易ではな い.したがって、本研究では実データである破骨細胞の動 きに近い運動のシミュレーションデータを作成したものを 正解データとし、そのデータに実際に起こるようなセグメ ンテーションエラーを加えたものを用意し、手法のテスト を行った.

4.1.1.1 実験条件

従来手法で用いる誤検出率,調整用パラメータ,しき い値はそれぞれ次のように設定した. $\alpha = 0.3$, $\lambda_1 = 5$, $\lambda_2 = 15$, $\lambda_3 = 40$, $\theta_t = 20$, $\theta_s = 50$. また,提案手法で 新たに用いるトラックレットを取り出すフレーム幅,重み 付け値は次のように設定した. $\beta = 50$, W = 0.3.

4.1.1.2 テストデータの作成

使用する破骨細胞の画像は,濃度勾配に従い画像上から下に動く.シミュレーションを行うにあたり,似たような運動である細胞の重力下におけるブラウン運動 [5] をモデルにした.モデルの運動方程式は次のように表される. 任意の細胞 i の位置ベクトルを r_i ,粒子に作用する重力を $f_i^{(g)}$,細胞 i,j間に作用する力を f_i^{g} と する.

$$m\frac{d^2r_i}{dt^2} = f_i^{(g)} + \sum_{j(\neq i)} f_{ij} + f_i^B$$
(34)

式 (34) を元に画面サイズを横 300[pixel], 縦 300[pixel] と してシミュレーションを行い, 300 フレーム分の正解とな るシミュレーションデータを作成し

次にテストデータを作成するために、シミュレーション データに対して、実際の画像で起こりうるセグメンテー ションエラーを加えた.1つは、細胞同士の接触によるセ グメンテーションエラーである。同一フレームにおける座 標データを比較し、複数の細胞が15[pixel] 以内に存在して いた場合、その細胞を取り除くことにより再現した.2つ 目は不十分なセグメンテーションによる偽陰性の細胞であ る.正検出率(True Positive Rate, TPR)を設定し、正解 データの細胞の個数からその値の個数分をランダムに取り 出して使用することにより再現した。ここでは、TPR=0.7 と設定した.2つのセグメンテーションエラーを加えたも のから、同一の細胞で連続したフレームに存在しているも のを1つのトラックレットとみなし、トラックレット生成 を行った.

また,使用したテストデータの検出精度を表1に示す.細胞総数は作成した正解データのうち画面内に存在する全細胞の数である. TP, FP, FN はそれぞれ,正検出の細胞の数,誤検出の細胞の数,セグメンテーションエラーを加えた細胞の数である.検出精度の基準には適合率 (Precision),再現率 (Recall)[1]を用いた.適合率は検出結果のうち正しく検出できた数の割合,再現率は全ての正解の数に対して正しく検出できた数の割合であり,それぞれ次の式で計算する.

$$Precision = \frac{TP}{TP + FP} \tag{35}$$

$$Recall = \frac{TP}{TP + FN} \tag{36}$$

表 1 シミュレーションデータ検出精度

細胞総数	ΤP	FP	FN	Precision	Recall		
6348	4443	0	1905	1.000	0.700		

4.1.2 実データに基づく実験

4.1.2.1 実験条件

従来手法で用いる誤検出率,調整用パラメータ,しき い値はそれぞれ次のように設定した. $\alpha = 0.3$, $\lambda_1 = 5$, $\lambda_2 = 15$, $\lambda_3 = 40$, $\theta_t = 20$, $\theta_s = 50$. また,提案手法で 新たに用いるトラックレットを取り出すフレーム幅,重み 付け値は次のように設定した. $\beta = 50$, W = 0.3.

4.1.2.2 使用画像

本研究では,濃度勾配により垂直下方向へ遊走する破骨 細胞の画像を使用した.図4は使用した画像のある時点 でのスナップショットである.また,画像のフレーム数は 272,サイズは横 416[pixel],縦 311[pixel] である.

図 4 遊走する破骨細胞の観察画像

4.1.2.3 テストデータの作成

細胞画像のセグメンテーションおよびトラックレット生 成には、オープンソースの画像処理ソフトウェアである ImageJ のプラグイン、LineageTracker[4]を用いた.LineageTrackerは、セグメンテーションの方法をいくつかか ら選択し、最近傍法によるアソシエーションのパラメータ を調節することができる自動細胞追跡のツールである.セ グメンテーションにはしきい値法を用い、1フレーム後に 7.0[pixel] 以内にある細胞に関して対応付けを行った.こ のデータに対し、正解データから細胞の ID を付与し、ト ラックレットがどの細胞の一部であるかを判断できるよう にした.また、同じ細胞 ID のもので出現フレーム昇順に トラックレットを並べ、トラックレット番号を順に付与し た.同一細胞 ID で、トラックレット番号が連続したもの が正しい対応付けであると判断する.

実験結果を評価するための正解データの作成には, ImageJ のプラグイン, MTrackJ を用いた. MTrackJ は細胞 1 つ 1 つの xy 座標, 細胞 ID, フレーム番号を出力する手 動トラッキングのツールである. このツールを使用して画 像中の細胞を手動で追跡し, 出力データを正解データとし て使用した.

また,使用したテストデータの検出精度を表2に示す. 細胞総数は MtrackJ で作成した正解データの全フレーム にわたる細胞の数である. TP, FP, FN はそれぞれ, LineageTracker で作成したテストデータのうち正検出の細胞 の数,誤検出の細胞の数,未検出の細胞の数である.

表 2 実データ検出精度							
細胞総数	総数 TP FP		$_{\rm FN}$	Precision	Recall		
11667	5495	484	6172	0.919	0.471		

4.2 実験結果

4.2.1 評価基準

評価基準として、細胞追跡の精度評価に追跡精度(Tracking Accuracy, TA), アソシエーションの精度評価に対応 付け再現率(Association Recall, AR), 対応付け適合率 (Association Precision, AP)[3]を用いた、細胞jのTA(j), AR, AP はそれぞれ次の式で計算する.

$$TA(j) = \frac{L(i,j)}{L(j)}$$
(37)

$$AR = \frac{TP}{TP + FN} \tag{38}$$

$$AP = \frac{TP}{TP + FP} \tag{39}$$

L(i, j)は細胞 j のトラックレット i が細胞 j に正しく対応付けられたフレームの長さ,L(j)は正解データの細胞 j のフレーム総数を表す.全ての細胞についての平均を TA の値とする.

また,ここでの TP は正しくトラックレットの対応付け ができた数,FP は間違って対応付けされた数,FN は正し く対応付けされなかった数を表す.例えば,図5のような トラックレットを考える.このトラックレットの正しい対 応付けは図6に示すように,1の始端仮説,1→2,2→3 の移動仮説,3の終端仮説,4の偽陽性仮説であり,この 時 TP の数は6,FP と FN の数は0となる.図7のように 間違って対応付けされた場合,TP の数は1,FP の数は6, FN の数は5となる.

4.2.2 結果

表3,表4にそれぞれシミュレーションデータ,実デー タに対し従来手法および提案手法を実行した結果を示す.

表 3 シミュレーションデータ結果

手法	TP	FP	FN	AR	AP	ТА	
従来手法	1241	46	37	0.964	0.971	0977	
提案手法	1271	7	7	0.990	0.990	0.985	

表 4 実データ結果

-							
	手法	TP	FP	$_{\rm FN}$	AR	AP	ТА
l	従来手法	450	345	424	0.566	0.515	0.570
ĺ	提案手法	483	300	391	0.617	0.553	0.585

4.3 考察

表 3,表4から,シミュレーションデータ,実データと もに評価基準 AR, AP, TA 全てにおいて,提案手法が従 来手法の数値を上回っていることがわかる.トラックレッ トの対応付けの間違いが減り,正しい対応付けが増えたた め,その分追跡精度が改善したと考えられる.

シミュレーションデータは正解データの細胞から7割を ランダムに選び作成したが、同一細胞のトラックレットが 時空間距離が少なく存在しているため、実データに比べて 数値が高くなったと考えられる.実データはセグメンテー ションの精度が高いものではなく、全細胞のうち正しく検 出できていた割合が表2より0.471であった.同一細胞の トラックレットでもフレーム差が離れて存在しているもの が多く、トラックレット対応付け仮説の尤度計算がうまく できなかったため、シミュレーションデータに比べて数値 が低くなったと考えられる.セグメンテーション精度が高 いものを用意できれば、それだけ良い結果が得られると考 えられる.

5. おわりに

本論文では、大域データ対応付けの反復実行による細胞 追跡精度の改善手法を提案した.シミュレーションデータ に基づく実験、実データに基づく実験の結果から、トラッ クレット対応付けの間違いが減り、細胞追跡の精度が向上 したことが示された.

従来手法と比べて数値上は精度が向上したが,従来手法 で追跡できていた箇所全てが提案手法でも追跡できていた 訳ではなかった.提案手法では,大域データ対応付けの反 復実行により得られたトラックレットの対応付け仮説の頻 度をもとに整数計画問題を解き,その解で対応付けを行っ たが,頻度が多いものが必ず正しいというわけではないと いうことであり,この点に改善の余地がある.

また,本論文で扱った破骨細胞のデータは遊走するのみ であったが,破骨細胞は融合することが知られている.細 胞の融合,分裂,細胞死といった他の様々な現象も扱える ように拡張することも,今後の課題として挙げられる.

参考文献

- Ryoma Bise, Kang Li, Sungeun Eom, and Takeo Kanade. Reliably tracking partially overlapping neural stem cells in dic microscopy image sequences. In *MICCAI Work*shop on Optical Tissue Image Analysis in Microscopy, Histopathology and Endoscopy (OPTMHisE), No. CMU-RI-TR-, pp. 67–77, September 2009.
- [2] Ryoma Bise, Zhaozheng Yin, and Takeo Kanade. Reliable cell tracking by global data association. In 2011 IEEE International Symposium on Biomedical Imaging: From Nano to Macro, pp. 1004–1010. IEEE, 2011.
- [3] Robert Canavan, Dr. Claire McCullough, and William J. Farrell. Track-centric metrics for track fusion systems. In *FUSION*, pp. 1147–1154, 2009.
- [4] Mike J. Downey, Danuta M. Jeziorska, Sascha Ott, T. Katherine Tamai, Georgy Koentges, Keith W. Vance, and Till Bretschneider. Extracting fluorescent reporter time courses of cell. *PLoS ONE*, June 2011.
- [5] 佐藤明. HOW TO 分子シミュレーション-分子動力学法, モンテカルロ法,ブラウン動力学法,散逸粒子動力学法-. 共立出版, 2004.