
IPSJ Transactions on Programming Vol.7 No.4 1–7 (Aug. 2014)

Regular Paper

An On-The-Fly Algorithm for Conditional Weighted
Pushdown Systems

Hua Vy Le Thanh1,a) Xin Li2,b)

Received: January 14, 2014, Accepted: April 18, 2014

Abstract: Pushdown systems (PDSs) are well-understood as abstract models of recursive sequential programs, and
weighted pushdown systems (WPDSs) are a general framework for solving certain meet-over-all-path problems in pro-
gram analysis. Conditional WPDSs (CWPDSs) further extend WPDSs to enhance the expressiveness of WPDSs, in
which each transition is guarded by a regular language over the stack that specifies conditions under which a transition
rule can be applied. CWPDSs or its instance are shown to have wide applications in analysis of objected-oriented
programs, access rights analysis, etc. Model checking CWPDSs was shown to be reduced to model checking WPDSs,
and an offline algorithm was given that translates CWPSs to WPDSs by synchronizing the underlying PDS and finite
state automata accepting regular conditions. The translation, however, can cause an exponential blow-up of the system.
This paper presents an on-the-fly model checking algorithm for CWPDSs that synchronizes the computing machiner-
ies on-demand while computing post-images of regular configurations. We developed an on-the-fly model checker for
CWPDSs and apply it to models generated from the reachability analysis of the HTML5 parser specification. Our
preliminary experiments show that, the on-the-fly algorithm drastically outperforms the offline algorithm regarding
both practical space and time efficiency.

Keywords: Conditional Weighted Pushdown System, model checking

1. Introduction

Pushdown systems (PDSs) are well understood as abstract
models of sequential programs with recursive procedures. By
encoding programs as pushdown systems, procedure calls and
returns are guaranteed to be correctly paired. Weighted push-
down systems (WPDSs) [4] extend PDSs, by associating a value
with each transition, and are a general framework for solving
certain meet-over-all-path problems in program analysis. Pro-
gram analysis yielded by WPDSs are context-sensitive in terms
of valid paths. Li et al. [1] further extended WPDSs to Condi-
tional Weighted Pushdown Systems (CWPDSs), in which each
transition is guarded by a regular language that specifies condi-
tions under which the transition can be applied. The extension is
motivated by the observation that, WPDSs are not precise enough
to model objected-oriented programs like Java in program analy-
sis.

CWPDSs are more expressive than WPDSs, and have wider
applications. A points-to analysis algorithm was designed in the
framework of CWPDSs, which enjoys context-sensitivity beyond
valid paths regarding heap abstraction, call graph construction,
and heap access [1]. Besides modelling objected-oriented pro-
gram features, it can yield algorithms for generating stack-based
access control policies for programs that employ stack-based ac-

1 University of Science - Ho Chi Minh City, Vietnam.
2 Corresponding author. The University of Tokyo, Bunkyo, Tokyo 113–

8654, Japan.
a) thanhvy@gmail.com
b) li-xin@kb.is.s.u-tokyo.ac.jp

cess control mechanism, such as Java or and Microsoft CLR
(common language runtime) [7]. Minamide et al. [2] adopted
conditional pushdown systems (CPDSs), an instance of CW-
PDSs, to model the HTML5 parser specification, and performed
reachability analysis over it. They proposed a new algorithm for
reachability analysis of CPDSs and successfully found several
compatibility problems of web browsers with HTML5 specifi-
cations.

It was shown that the model checking problem on CWPDSs
can be reduced to that on WPDSs, and an offline algorithm was
given, which translates CWPSs to WPDSs by synchronizing the
underlying pushdown system and finite state automata built for
regular conditions [1]. The translation, however, can cause an
exponential blow-up of the system, and prohibits the offline algo-
rithm from practical applications. The original offline algorithm
for CWPDSs generated the entire state space, whereas only part
of the space needs exploring to answer a model checking enquiry.

This paper makes the following contributions:
• We present an on-the-fly model checking algorithm for CW-

PDSs, by interleaving saturation procedures for computing
post-images with regular condition checking, and synchro-
nizing the underlying pushdown systems and finite state au-
tomata accepting regular conditions on-demand. We also
provide concrete algorithms for those steps of model check-
ing CWPDSs that are only defined in the original paper.

• We implemented the on-the-fly model checking algorithm
in terms of computing post-images, and evaluated the algo-
rithm with one of the large examples analysed in reachabil-
ity analysis of HTML5 parser specification. Our preliminary

c© 2014 Information Processing Society of Japan 1

IPSJ Transactions on Programming Vol.7 No.4 1–7 (Aug. 2014)

experiments showed that the on-the-fly algorithm drastically
outperforms the offline algorithm regarding both space and
time efficiency in practice.

Related Work
Esparza et al introduced solutions for model checking LTL on

pushdown systems with regular valuation. As an application, they
introduced a formal model called pushdown systems with check-
points, and showed that the reachability problem of the model is
EXPTIME-complete. The underlying CPDSs of CWPDSs can
be regarded as an instance of the model, and also shares the
EXPTIME-hardness for reachability checking. So our on-the-fly
algorithm for CWPDs is designed to hopefully be practical by
exploring the state space relevant to model checking enquiries.

Minamide et al. adopted CPDSs as a formal model for reach-
ability analysis of HTML5 parser specification and then checked
compatibility of web browsers with specifications. The authors
proposed a new algorithm for computing regular pre-images
of CPDSs, by extending P-automata with regular lookahead.
Though the algorithm also has exponential complexity, it aimed
to avoid the exponential blow-up of the system state space due
to the translation. Preliminary experimental results in Section 4
indicate that our on-the-algorithm is also competitive in avoiding
the exponential blow-up before reachability analysis.
Organization The remainder of the paper is organized as follows.
Section 2 recalls CWPDSs and the off-line model checking algo-
rithm. Section 3 presents an on-the-fly algorithm for CWPDSs,
and an example that illustrates the procedure. Our empirical study
is given in Section 4, which compares performance of the on-the-
fly algorithm and the off-line algorithm. Section 5 concludes the
paper.

2. Preliminary

2.1 Weighted Pushdown Systems
Definition 2.1 A pushdown system P is (Q, Γ,Δ, q0, ω0)

where Q is a finite set of control locations, Γ is a finite stack al-
phabet, Δ ⊆ Q×Γ×Q×Γ∗ is a finite set of transitions, q0 ∈ Q and
ω0 ∈ Γ∗ is the initial control location and stack contents, respec-
tively. A transition (p, γ, q, ω) ∈ Δ is written as 〈p, γ〉 ↪→ 〈q, ω〉.
A configuration is a pair 〈q, ω〉 with q ∈ Q and ω ∈ Γ∗. A
computation relation ⇒ is defined on configurations, such that
〈p, γω′〉 ⇒ 〈q, ωω′〉 for all ω′ ∈ Γ∗ if 〈p, γ〉 ↪→ 〈q, ω〉, and the re-
flexive and transitive closure of⇒ is denoted by⇒∗. Given a set
of configurations C, we define pre∗(C) = {c′ | ∃c ∈ C : c′ ⇒∗ c}
and post∗(C) = {c′ | ∃c ∈ C : c ⇒∗ c′} to be the (possibly
infinite) set of pre- and post- images of C, respectively.

A pushdown system is a variant of pushdown automata without
input alphabet. It is not used as language acceptors but a model
of system behaviors.

Definition 2.2 A bounded idempotent semiring S is (D,⊕,
⊗, 0̄ , 1̄), where 0̄, 1̄ ∈ D, and
• (D,⊕) is a commutative monoid with 0̄ as its unit element, and
⊕ is idempotent, i.e., a ⊕ a = a for all a ∈ D;

• (D,⊗) is a monoid with 1̄ as the unit element;
• ⊗ distributes over ⊕, i.e., for all a, b, c ∈ D, a ⊗ (b ⊕ c) =

(a ⊗ b) ⊕ (a ⊗ c) and (b ⊕ c) ⊗ a = (b ⊗ a) ⊕ (c ⊗ a) ;
• for all a ∈ D, a ⊗ 0̄ = 0̄ ⊗ a = 0̄;

• A partial ordering � is defined on D such that a � b iff a⊕b = a

for all a, b ∈ D, and there are no infinite descending chains in
D.
Definition 2.3 A weighted pushdown system W is

(P,S, f), where P = (Q, Γ,Δ, p0, ω0) is a pushdown system,
S = (D,⊕,⊗, 0̄, 1̄) is a bounded idempotent semiring, and
f : Δ→ D is a weight assignment function.

By Definition 2.2, we have that 0̄ is the greatest element.
Definition 2.4 Given a weighted pushdown system W =

(P,S, f) where P = (Q, Γ,Δ, p0, ω0). Let σ = [r1, . . . , rk] ∈
Δ∗ denote a sequence of pushdown transition rules, and define
val(σ) = f (r1) ⊗ · · · ⊗ f (rk). For any c, c′ ∈ Q × Γ∗, we denote by
path(c, c′) the set of sequences of transition rules that transform
configurations from c into c′. Given regular sets of configurations
S ,T ⊆ Q × Γ∗, the meet-over-all-valid-path (MOVP) problem
computes

MOVP(S ,T) = ⊕{val(σ) | σ ∈ path(s, t), s ∈ S , t ∈ T }
WPDSs [4] solve the MOVP problem in program analysis, of

which data domains comply with the bounded idempotent semir-
ing. When applying WPDSs to program analysis, PDSs typically
model (recursive) control flows of the program, weights encode
transfer functions, ⊗ corresponds to the reverse of function com-
position, and ⊕ joins data flows.

2.2 Computing Post Images
Definition 2.5 Given a PDS P = (Q, Γ,Δ, q0, ω0). A P-

automaton A = (Q′, Γ,→,Q, F) is a non-deterministic finite au-
tomaton, where Q′ is the finite set of states, Γ is the input alpha-
bet, →⊆ Q′ × Γ × Q′ is the set of transitions, and Q ⊆ Q′ and
F ⊆ Q′ are the set of initial and final states, respectively. We
define→∗⊆ Q′ × Γ∗ × Q′ as the smallest relation such that
• p

ε−→∗ p for any p ∈ Q′;
• p

γ−→∗ p′ if (p, γ, p′) ∈→;
• p

ωγ−→∗ p′ if p
ω−→∗ p′′ and p′′

γ−→∗ p′ for some p′′ ∈ Q′.
A configuration 〈p, ω〉 is accepted by A if p

ω−→∗ q for some
q ∈ F. A set C of configurations is accepted by A if each c ∈ C

is accepted by A. A set C of configurations is regular if it is
accepted by some P-automaton, denoted byAC .

A key property of pushdown systems is that, a regular set of
configurations is closed under forward and backward reachabil-
ity. Therefore infinite configurations can be represented by finite
means of P-automata, and pre- and post-images can be computed
by saturating the automaton.

We illustrate in Fig. 1 the saturation rules for computing
post∗(C) of a regular set C of configurations. The saturation pro-
cedure takes as input the P-automatonAC that recognizes C, and
augments AC with new edges and states by the saturation rules
until convergence, and the stabilised automaton accepts post∗(C).
In the figure, solid edges and states reside in the current automa-
ton, and dashed edges and states are newly added by saturation
rules.

The MOVP problem tackled by WPDSs can be solved by satu-
rating a weighted extension of P-automata when computing pre-
or post-images. Consider computing post-images as given in Al-
gorithm 2 and ignore those underlined parts. Initially, all transi-

c© 2014 Information Processing Society of Japan 2

IPSJ Transactions on Programming Vol.7 No.4 1–7 (Aug. 2014)

Fig. 1 Saturation Rules for Computing post∗(C).

tions in AC are labelled with 1̄. The saturation procedure com-
putes or updates the value for each transition when applying the
saturation rule at line 18, 21, 27 and 30, and outputs a weighted
automaton Apost∗(C) of which each transition is associated with a
value from D. The final result computed by the MOVP problem
can be read-off from Apost∗(C). Note that the time complexity is
increased from the unweighted case by a factor no more than the
maximal-length of descending chains in D [4].

2.3 Conditional Weighted Pushdown Systems
Definition 2.6 A conditional pushdown system (CPDS) Pc

is a 6-tuple (Q, Γ,C,Δc, q0, ω0), where Q is a finite set of con-
trol locations, Γ is a finite stack alphabet, C is a finite set of
regular languages over Γ, Δc ⊆ Q × Γ × C × Q × Γ∗ is the
set of transition rules, and q0 ∈ Q and ω0 ∈ Γ∗ are the ini-
tial control location and stack contents, respectively. We write

〈p, γ〉 L
↪→ 〈q, ω〉 if (p, γ, L, q, ω) ∈ Δc. A computation relation

⇒c on configurations is defined such that 〈p, γω′〉 ⇒c 〈q, ωω′〉
for all ω′ ∈ Γ∗ if 〈p, γ〉 L

↪→ 〈q, ω〉 and ω′ ∈ L. Given a set of con-
figurations C, we define cpre∗(C) = {c′ | ∃c ∈ C : c′ ⇒∗c c} and
cpost∗(C) = {c′ | ∃c ∈ C : c ⇒∗c c′} to be the (possibly infinite)
set of pre- and post- images of C, respectively.

A CPDS extends a PDS by further associating each transition
with regular languages over the stack that specify conditions un-
der which the transition can be applied

Definition 2.7 A conditional weighted pushdown system
Wc is a triplet (Pc, S, fc), where Pc = (Q, Γ,C,Δc, q0, ω0) is a
CPDS, S = (D,⊕,⊗, 0̄, 1̄) is a bounded idempotent semiring, and
fc : Δ→ D is a weight assignment function.

Li et al. lifted the MOVP problem in Definition 2.4 to CWPDSs
by replacing the underlying PDSs with CPDSs, denoted by
MOVPc(S , T), and showed that model checking problems can be
reduced to that on WPDSs.

Given a regular language L, a condition automaton A =

(S ,Γ, δ, ṡ, F) with respect to L is a total deterministic finite au-

tomaton that recognizes L, where S is the set of states, Γ is the
input alphabet, δ : S×Γ→ S is the transition function, ṡ is the ini-
tial state, and F ⊆ S is the set of final states. Let C = {L1, . . . , Ln}
in Pc, and let LR denote the set of reversed words of words from
L.
∏

1≤i≤n Ai is defined as a Cartesian product of all condition au-
tomata Ai with respect to conditions LR

i , and it is not hard to see
being total and deterministic, i.e., a condition automaton. We de-
note by si the ith component of a state s in Ŝ .

Let Ai = (S i, Γ, δi, ṡi, Fi) for 1 ≤ i ≤ n, and let
∏

1≤i≤n Ai =

(Ŝ ,Γ, δ̂, ṡ, F̂), where δ̂(s, γ) = (δ1(s1, γ), . . . , δn(sn, γ)) for any s ∈

Ŝ , ṡ = (ṡ1, . . . , ṡn), and F̂ = {(s1, . . . , sn) | ∃1 ≤ i ≤ n : si ∈ Fi}.
The authors proposed an offline algorithm TRANS that translates
a CWPDSWc to a WPDSWt, by synchronizing the underlying
pushdown system and

∏
1≤i≤n Ai. TRANS translates transitions δ

in the left to δ′ in the right

〈p, γ〉 Ai
↪→ 〈q, ε〉 〈p, (γ, r)〉 ↪→ 〈q, ε〉

〈p, γ〉 Ai
↪→ 〈q, γ′〉 =⇒ 〈p, (γ, r)〉 ↪→ 〈q, (γ′, r)〉

〈p, γ〉 Ai
↪→ 〈q, γ′γ′′〉 〈p, (γ, r)〉 ↪→ 〈q, (γ′, t)(γ′′, r)〉

where r ∈ Ŝ , ri ∈ Fi and δ̂(r, γ′′) = t, and f (δ′) = fc(δ).
A configuration 〈p, (γn, rn)(γn−1, rn−1 . . . (γ0, r0)〉 ofWt is con-

sistent if r0 = ṙ and δ̂(ri, γi) = ri+1 for each 1 ≤ i ≤ n − 1. Let
ρ(〈p, (γn, rn)(γn−1, rn−1) . . . (γ0, r0)〉) = 〈p, γn . . . γ0〉, and let ρ−1

be the inverse. The computation ofWt over consistent configu-
rations and the computation ofWc are bisimilar, and as such the
model checking problems onWc is reduced toWt over consis-
tent configurations. Note that the time complexity increases from
the unconditional case by a factor that is polynomial in the size
of Ŝ , and |Ŝ | can be exponentially large.

3. An On-The-Fly Algorithm for CWPDSs

The offline algorithm synchronizes the underlying pushdown
system and condition automata, and generates the entire space
of transitions that may explode due to the potential blow-up of
|Ŝ |. However, a large part of the transitions in Wt may never
be used in answering the model checking enquiry. We present
an on-the-fly algorithm to compute MOVPc(C, T) that synchro-
nizes the two computing machineries on-demand while comput-
ing post-images. An on-the-fly algorithm in terms of computing
pre-images can be similarly constructed. Given a P-automaton
AC that recognizes a regular configuration C.

The on-the-fly model checking algorithm consists in consecu-
tive four steps,
(1) building a P-automatonAC′ that recognizes consistent con-

figurations C′ of Wt such that C′ = {ρ−1(c) | c ∈ C}, as
given in Algorithm 1, and

(2) applying the saturation procedure to computing a P-
automaton Acpost∗(C′) that accepts cpost∗(C′), by synchro-
nizing the pushdown system and condition automata on-
demand, as given in Algorithm 2, and

(3) building a P-automatonAT ′ that recognizes consistent con-
figurations T ′ of Wt such that T ′ = {ρ−1(c) | c ∈ T },
as done in Step (1), and computing a P-automaton B by
B = AT ′ ∩ Acpost∗(C′), and

(4) computing MOVPc(C, T) by running Algorithm 3 on B,
which is based on Algorithm 4 in Fig. 19 of Ref. [4].

c© 2014 Information Processing Society of Japan 3

IPSJ Transactions on Programming Vol.7 No.4 1–7 (Aug. 2014)

Note that, AC′ and AT ′ are unweigthed automata, and
Acpost∗(C′) is a weighted automaton. They all accept consistent
configurations ofWt, althoughWt is not explicitly constructed
at all in the on-the-fly algorithm. The intersection of AT ′ and
Acpost∗(C′) is done the same way as standard, except that the
weights of Acpost∗(C′) are carried over to B.

In the sequel, we fix a CWPDSWc = (Pc, S , f), where Pc =

(Q, Γ,C,Δc, q0, γ0), C = {L1, . . . , Ln} and S = (D,⊕,⊗, 0̄, 1̄).
Without loss of generality, we assume γ0 ∈ Γ. Let A =

{A1, . . . , An} where Ai = (S i, Γ, δi, ṡi, Fi) is the condition automa-
ton with respect to LR

i for 1 ≤ i ≤ n.

Algorithm 1 BuildInitial(AC)
Require: a P-automatonAC = (Q′,Γ,→,Q, F) that recognizes a regular set

of configuration C ⊆ Q× Γ∗, andAC has no transitions into Q states and

has no ε-transitions.

Ensure: a P-automaton AC′ = (H, Γ′,→′,Q, F′) that recognizes C′ where

C′ = {ρ−1(c) | c ∈ C}.

1: F′ := ∅;→′ := ∅; visited := ∅
2: ṡ := (ṡ1, ṡ2, . . . , ṡn)

3: for each q ∈ F do

4: F′ := F′ ∪ {(q, ṡ)}
5: H := F′

6: workset := F′

7: while workset � ∅ do

8: select and remove a state u = (p, s) from workset

9: visited := visited ∪ {(p, s)}
10: for each (q, γ, p) ∈→ do

11: t := δ̂(s, γ)

12: H := H ∪ {(q, t)}
13: →′ :=→′ ∪ {((q, t), (γ, s), (p, s))}
14: if (p, t) � visited then

15: workset := workset ∪ {(q, t)}
16: for each ((q, t), (γ, s), (p, s)) ∈→′ do

17: if q ∈ Q then

18: →′ :=→′ ∪{(q, (γ, s), (p, s))}
19: return (H, Γ′,→′,Q, F′)

Algorithm 1 gives a procedure that, given AC that accepts a
regular set C of configurations, builds the P-automatonAC′ such
that C′ = {ρ−1(c) | c ∈ C}. Since AC has no ε-transitions, it is
not hard to conclude by the algorithm construction that AC′ has
no transitions into Q states and has no ε-transitions. By properly
choosing data structures, all the needed membership test, removal
operations, etc., take constant time. Let L be the longest length of
descending chains and top be the time of performing binary oper-
ators of the semiring S. By a simple analysis over line 6 to 12,
Algorithm 1 takes O(| → | · |Q| · |Ŝ | · |top| · L) time and space.

Algorithm 2 gives the on-the-fly procedure for computing
cpost∗(C′). The synchronization points for condition check-
ing with the original procedure for computing post∗ are high-
lighted by underlines. Note that the procedure for computing and
propagating weights is kept unchanged. It is not hard to con-
clude by the algorithm construction that Acpost∗ (C′) has no tran-
sitions into Q states, given the above invariant on Algorithm 1.
The algorithm extends the one for efficiently computing Apost∗

Algorithm 2 ComputingAcpost∗(C′) On The Fly
Require: a P-automatonAC = (Q′,Γ,→,Q, F) that recognizes a regular set

of configuration C ⊆ Q× Γ∗, andAC has no transitions into Q states and

has no ε-transitions.

Ensure: a P-automaton Acpost∗(C′) = (H′,Γ′,→′,Q, F′) that recognizes

cpost∗(C) of Wt , where C′ = {ρ−1(c) | c ∈ C}; and a mapping

l : (→′)→ D.

1: procedure update(t, v)

begin

2: →′ :=→′ ∪ {t}
3: newValue := l(t) ⊕ v
4: changed := (newValue � l(t))

5: if changed then

6: workset := workset ∪ {t}
7: l(t) := newValue

end

8: AC′ := BuildInitial(AC)

9: LetAC′ = (H, Γ′,→0,Q, F′)
10: →′ :=→0; workset :=→0; l := λt.0̄

11: for all t ∈→0 do l(t) := 1̄

12: H′ := H

13: while workset � ∅ do

14: take and remove a transition t = (p, (γ, u), q) from workset

15: if γ � ε then

16: for all r = 〈p, γ〉 Ai
↪→ 〈p′, ε〉 ∈ Δc with Ai = (S i,Γ, δi, ṡi, Fi) do

17: if ui ∈ Fi then

18: update((p′, ε, q), l(t) ⊗ f (r))

19: for all r = 〈p, γ〉 Ai
↪→ 〈p′, γ′〉 ∈ Δc with Ai = (S i,Γ, δi, ṡi, Fi) do

20: if ui ∈ Fi then

21: update((p′, (γ′,u), q), l(t) ⊗ f (r))

22: for all r = 〈p, γ〉 Ai
↪→ 〈p′, γ′γ′′〉 ∈ Δc with Ai = (S i,Γ, δi, ṡi, Fi)

do

23: if ui ∈ Fi then

24: let z = δ̂(u, γ′′)
25: H′ := H′ ∪ {h(p′ ,γ′),z}
26: update((p′, (γ′, z), (h(p′ ,γ′), z)), 1̄)

27: update((h(p′ ,γ′), z), (γ′′,u), q), l(t) ⊗ f (r))

28: if changed then

29: for all t′ = (p′′, ε, (h(p′ ,γ′), z)) do

30: update((p′′, (γ′′,u), q), l(t) ⊗ f (r) ⊗ l(t′))

31: else

32: for all t′ = (q, (γ′,w), q′) ∈→ do

33: update((p, (γ′,w), q′), l(t′) ⊗ l(t))

34: return ((H′,Γ′,→′,Q, F′), l)

(Algorithm 2 of Section 3) in Ref. [5], and the complexity in-
creased by a factor of n1 = |Ŝ | · |top| · L. Algorithm 2 takes
O((|Q| · |Δ| · (|H \ Q| + n0) + |Q| · | →0 |) · n1) time and space,
where n0 is the number of different pairs (p, γ) such that there
exists a rule 〈p, γ〉 ↪→ 〈p′, γ′γ′′〉 in Δc.

Remark 3.1 By the construction of Algorithm 1, we have
that s = s′ for each transition (, (γ, s′), (p, s)) of AC′ . Based
on this invariant on AC′ and the construction of Algorithm 2, the
same fact applies to transitions of Acpost∗(C′). It indicates that we
can further enhance the performance of the algorithm by first re-
moving the second components of Γ′ in Algorithm 1 and 2, and
then directly compute B = AT ∩Acpost∗(C′), instead of computing

c© 2014 Information Processing Society of Japan 4

IPSJ Transactions on Programming Vol.7 No.4 1–7 (Aug. 2014)

Algorithm 3 GenValue(B)
Require: a P-automaton B = (H, Γ,→,Q, F) that has no transitions into Q

states, and a mapping l from→ to D.

Ensure: a value d ∈ D

1: for each u ∈ H \ (Q ∪ F) do

2: Vu := 0̄

3: for each u ∈ F do

4: Vu := 1̄

5: workset := F

6: while workset � ∅ do

7: select and remove a state u from workset

8: for each t = (s, γ, u) ∈→ do

9: newValue := Vs ⊕ (Vu ⊗ l(t))

10: if newValue � Vs then

11: Vs := newValue

12: workset := workset ∪ {s}
13: val := 0̄

14: for each u ∈ Q do

15: val := val ⊕ Vu
return val

Fig. 2 Condition automata A0, A1 and A2.

Fig. 3
∏

1≤i≤n Ai.

AT ′ and B = AT ′ ∩Acpost∗(C′). Note that this optimisation would
be crucial to practical efficiency. Without this optimisation, AT ′

has to be computed, which, however, could easily explode.
Example 3.2 Consider a CPDS Pc = (Q, Γ, {A0, A1, A2, },
Δc, p0 , a), where Q = {p0, p1, p2}, Γ = {a, b}, and the reverse
of regular languages that represent regular conditions are directly
described by condition automata A0, A1, A2, as shown in Fig. 2,
where L(A0) = Γ∗, L(A1) = b∗aΓ∗ and L(A2) = a∗bΓ∗, and their
Cartesian product A is depicted in Fig. 3.

Transitions are as follows

Δc =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

〈p0, a〉 A0
↪→ 〈p0, ba〉

〈p0, b〉 A0
↪→ 〈p0, bb〉

〈p0, b〉 A0
↪→ 〈p0, ε〉

〈p0, b〉 A1
↪→ 〈p1, b〉

〈p0, a〉 A2
↪→ 〈p2, a〉

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

Given the initial P-automaton AS in Fig. 4, we are interested in
knowing whether states p1 and p2 are reachable or not, i.e., there
exists ω ∈ Γ∗ such that pi

ω−→∗ q for some final state q in the
output P-automaton, where i ∈ {0, 1}.

We consider a CWPDS with Pc as the underlying CPDS and

Fig. 4 The Initial P-automatonAS .

Fig. 5 AS ′ after applying Algorithm 1.

Fig. 6 Acpost∗(S ′) after applying Algorithm 2.

the semiring ({0̄, 1̄},⊕,⊗, 0̄, 1̄). The result after applying Algo-
rithm 1 and Algorithm 2 are shown in Fig. 5 and Fig. 6, respec-
tively. Given the initialP-automaton,Pc generates configurations
〈p0, b∗aa〉. We know p1 is reachable and p2 is not. The result is
correctly shown by the output automaton.

4. Experiments

4.1 Experimental Configuration
We implement all the algorithms in Java (Java Development

Kit 1.7). Our package extends the weighted pushdown sys-
tem library of jMoped [6]. We use the Java automaton li-
brary developed by Anders Moller [3] to represent regular con-
ditions associated with transitions by finite automata. The li-
brary provides facilities of a fast manipulation and easy trans-
lation from regular expressions to deterministic automata. Ex-
periments are conducted on a system with Intel�Xeon�CPU
E5-2690 0 @2.9 GHz, Windows Server 2008 R2 Standard with
32 GB RAM.

Comparison between the offline algorithm and the on-the-fly
algorithm is conducted with a big realistic example obtained
from a study of reachability analysis of HTML5 parser specifica-
tions [2], in which specifications are translated to CPDSs. Some
details of the input CPDS are:
• Initial configuration S = {〈323, X〉}.
• Size of stack alphabet |Γ| = 25.
• Number of control locations |Q| = 487.

c© 2014 Information Processing Society of Japan 5

IPSJ Transactions on Programming Vol.7 No.4 1–7 (Aug. 2014)

Table 1 A Comparison of offline and on-the-fly algorithms.

|C| |Acpost∗ | Offline algorithm On-the-fly algorithm
Time Memory Time Memory

2 31 414 1 s 61 268 0.798 s 56 949
5 31 412 8 s 1 147 307 0.82 s 57 266
10 109 960 ∞ ∞ 1 s 96 678
15 211 368 ∞ ∞ 2 s 43 877
20 418 363 ∞ ∞ 2 s 138 844
60 3 445 895 ∞ ∞ 12 s 760 871
70 3 244 153 ∞ ∞ 12 s 877 967
80 3 331 394 ∞ ∞ 15 s 715 939
118 32 075 528 ∞ ∞ 3 m 46 s 7 410 874

• Number of pushdown transitions |Δ| = 19679.
• Each condition Li in the system is described by a regular ex-

pression, e.g.,
((Div|(Optgroup|(Option|(P|(Rp|Ruby))))))*Li(@),
where @ means any word. The corresponding condition au-
tomaton Ai may contain up to 6 states.

4.2 Experimental Results
Our experimental results are given in Table 1, which compares

the space and time efficiency of the offline and on-the-fly algo-
rithms. The first column |C| shows the number of conditions in
CPDSs, for which we first remove conditions of all transitions
and then increase conditions randomly. Recall that the number
of conditions, i.e., the dimension of the product automaton, is
the factor causing the state blow-up. The second column gives
the size of the output P-automaton, in terms of the number of
transitions, after applying Algorithm 2. The runtime and mem-
ory consumption are estimated in seconds (s) and Kilobyte (KB),
given in the next columns, and∞means either taking longer than
24 hours or getting out-of-memory.

When the number of conditions |C| is up to 5, the offline al-
gorithm is still able to work, but the resource and overhead cost
taken is at least two times more than that of the on-the-fly al-
gorithm. When the number of conditions |C| is over 5, theoreti-
cally the product of condition DFA could explode exponentially
as much as 6|C| in size, where 6 indicates the maximum number
of states in a single condition DFA. It is not surprising that the
offline algorithm run out of memory. Table 1 proves efficiency
of the on-the-fly algorithm towards performance. The last row of
Table 1 corresponds to the runtime profile of the entire example.
It shows that analysing the big example up to step (2) takes about
4 minutes and 7 GB memory. Note that, the memory usage takes
into account garbage collection. We allocated 24 GB to the Java
virtual machine for running the analysis.

4.3 Discussion
Taking the semiring containing only unit elements 0̄ and 1̄,

we computed MOVPc(S ,T) for target configurations T generated
from the study of reachability analysis of HTML5 parser spec-
ifications [2]. Since the model checking problem is EXPTIME-
complete, the runtime performance of the analysis at large de-
pends on practical instances. For instance, it always took our
package less than 2 secs to analyse targets in the form of {〈p, γω〉 |
ω ∈ Γ∗, γ ∈ S ym}, denoted by (p, S ymΓ∗), where p ∈ Q is some
control location, and S ym ⊆ Γ is a set of stack symbols. For

those form of targets, we can safely halt the analysis once any
head of the target configurations is reachable during the satura-
tion. However, our analysis run out of memory for other form of
targets during the step (3), i.e, making intersection ofApost∗ ∩ AT

(which may result in a quadratic increase in the automaton size),
for which the garbage collector keeps up hard work to gain more
space.

The algorithm in Ref. [2] computes backward saturation of tar-
get configurations and our analysis computes forward saturation
from the source configurations. The advantage of our analysis
is that Apost∗ (C) is computed once and then reused for analysing
all target configurations. In contrast, the analysis in Ref. [2] need
to compute Apre∗ (T) for each target T . However, backward sat-
uration has an inherit merit of possibly exploring smaller state
space as opposed to forward saturation. We expect that our anal-
ysis would likely excel at analysing problem instances generated
by the analysis and verification of object-oriented programs as
originally discussed in Ref. [1], which do not contain as many as
distinguished regular conditions as those in Ref. [2], and targets
of interest in program analysis and verification are in those simple
forms as discussed above.

5. Conclusion

We present an on-the-fly algorithm for model checking CW-
PDSs, to tackle the space explosion problem caused by its origi-
nal offline algorithm. The idea is to interleave condition checking
with the saturation procedures for computing post-images of reg-
ular configurations. We implemented the on-the-fly algorithm in
terms of computing post-images and conducted experiments on
realistic big examples from the study of reachability analysis of
HTML5 parser specification and compatibility checking [2]. Our
experimental results show that the on-the-fly algorithm drastically
outperforms the offline algorithm regarding both space and time
efficiency in practice. It would be interesting to apply our model
checker to analysis and verification problems of object-oriented
programs like Java.

Acknowledgments We would like to thank Yasuhiko
Minamide for sharing us with their model and test data generated
from HTML5 parser specifications. We thank Mizuhito Ogawa
for comments and support. This work is partially supported by
Kakenhi 25730039.

References

[1] Li, X. and Ogawa, M.: Conditional weighted pushdown systems and
applications, Proc. ACM SIGPLAN 2010 Workshop on Partial evalu-
ation and Program Manipulation — PEPM ’10, p.141 (online), DOI:
10.1145/1706356.1706382 (2010).

[2] Minamide, Y. and Mori, S.: Reachability Analysis of the HTML5
Parser Specification and its Application to Compatibility Testing, 18th
International Symposium on Formal Methods (2012).

[3] Moller, A.: dk.brics.automaton — Finite-State Automata and Regular
Expressions for Java (2010).

[4] Reps, T., Schwoon, S., Jha, S. and Melski, D.: Weighted pushdown sys-
tems and their application to interprocedural dataflow analysis, Science
of Computer Programming, Vol.58, No.1-2, pp.206–263 (online), DOI:
10.1016/j.scico.2005.02.009 (2005).

[5] Schwoon, S.: Model-Checking Pushdown Systems, Ph.D. Thesis,
Technische Universität München (2002).

[6] Suwimonteerabuth, D.: Reachability in Pushdown Systems: Algo-
rithms and Applications, PhD Thesis, Technische Universität München
(2009).

c© 2014 Information Processing Society of Japan 6

IPSJ Transactions on Programming Vol.7 No.4 1–7 (Aug. 2014)

[7] Xin Li and Hua, V.L.T.: Generating Stack-based Access Control Poli-
cies, arXiv.org, pp.1–18 (online), available from 〈http://arxiv.org/abs/
1307.2964v2〉 (2013).

Hua Vy Le Thanh received her M.S. in
2012 from Japan Advanced Institute of
Science and Technology. Her research in-
terests include embedded software, secu-
rity and program verification methodol-
ogy, such as model checking and program
analysis.

Xin Li received her M.S. from Shanghai
Jiao Tong University in 2004 and her Ph.D
from JAIST (Japan Advanced Institute of
Science and Technology) in 2007, respec-
tively. She worked at JAIST from 2007 to
2013, and is presently with the University
of Tokyo. Her current research interests
are program analysis and verification.

c© 2014 Information Processing Society of Japan 7

