
Vol. 47 No. 6 IPSJ Journal June 2006

Regular Paper

Performance Evaluation of Signed-Digit Architecture

for Weighted-to-Residue and Residue-to-Weighted Number Converters

with Moduli Set (2n − 1, 2n, 2n + 1)

Shuangching Chen† and Shugang Wei†

High-speed signed-digit (SD) architectures for weighted-to-residue (WTOR) and residue-to-
weighted (RTOW) number conversions with the moduli set (2n, 2n − 1, 2n + 1) are proposed.
The complexity of the conversion has been greatly reduced by using compact forms for the
multiplicative inverse and the properties of modular arithmetic. The simple relationships
of WTOR and RTOW number conversions result in simpler hardware requirements for the
converters. The primary advantages of our method are that our conversions use the modulo
m signed-digit adder (MSDA) only and that the constructions are simple. We also investigate
the modular arithmetic between binary and SD number representation using circuit designs
and a simulation, and the results show the importance of SD architectures for WTOR and
RTOW number conversions. Compared to other converters, our methods are fast and the
execution times are independent of the word length. We also propose a high-speed method
for converting an SD number to a binary number representation.

1. Introduction

In a binary number system, the carry propa-
gation during addition limits the speed of arith-
metic operation. A well-known property of the
residue number system (RNS) is that the ith
residue digit of the sum, difference, and product
of the operands is exclusively dependent on the
ith digits 1),2). Digital signal processing hard-
ware based on RNS is currently considered im-
portant for high-speed and low-cost hardware
realization 3). However, residue number arith-
metic cannot be used for some applications, be-
cause RNS does not have weights in the residue
digits. Moreover, fast conversions between the
residue numbers and weighted numbers are re-
quired. Residue number arithmetic with the
moduli set (2n − 1, 2n, 2n + 1) has been widely
used, because residue addition can be imple-
mented using a binary adder 4),5). When the or-
dinary binary number system is used in residue
arithmetic, the binary arithmetic speed which
is bounded by the size of the numbers is the
prncipal cause of timing problems.

The redundant binary number representation
was first introduced by Avizienis in 1961 6).
A radix-two signed-digit (SD) number sys-
tem 6),7), which has a set of {-1,0,1} and no
need for a separate sign digit, is well known to
offer advantages in an arithmetic circuit imple-

† Department of Computer Science, Gunma Univer-
sity

mentation without the carry propagation. Such
number representation systems possess suffi-
cient redundancy to allow for the annihilation
of carry or borrow chains, and hence result in
fast propagation-free addition and subtraction.
A novel residue arithmetic hardware algorithm
using a radix-two SD number representation
has been proposed to implement the modulo m
multiplication for the symmetric RNS 8),9). The
key to increasing the computation speed of such
multiplication is to perform fast modular addi-
tions with a large modulus. The advantages
of fast multiplication and addition have been
clearly demonstrated, although output decod-
ing is difficult when comparing the magnitudes
of two residue numbers.

The weighted-to-residue (WTOR) and re-
sidue-to-weighted (RTOW) number conversions
are the crucial steps for any successful RNS
application. For general moduli sets, residue-
to-binary number conversions are based on the
Chinese remainder theorem (CRT) or mixed
radix conversion (MRC). However, a direct im-
plementation of CRT is unprofitable because it
is based on the modulo M operation where M
is large. A number of residue-to-binary num-
ber converters have been proposed 10)∼12) for
the moduli set (2n − 1, 2n, 2n + 1). The algo-
rithm of Andraos et al. 10) uses multiplicative
inverses to simplify the CRT and that of Pies-
trak 11) is an improved algorithm. Arithmetic
modulo 22n − 1 is required, and the implemen-
tation units of carry save adders (CSAs) and

1884

Vol. 47 No. 6 Weighted-to-Residue and Residue-to-Weighted Converters 1885

multiplexers improve its speed. The approach
of Conway et al. 12) uses several coefficients to
establish the dynamic range but the CRT equa-
tion becomes more complex.

The mixed radix conversion technique is an-
other method of RNS-to-binary number conver-
sion. The classical Szabo-Tanaka 1) procedure
consists of a MRC and an additional adjust-
ment that is slow and requires n computational
steps to get the result, where n is the num-
ber of residue system moduli. Several MRC
approaches have been developed 13)∼16). The
method of Huang 14) uses look-up tables only at
the first stage of the implementation, followed
by regular standard binary hardware. To get
mixed radix coefficients, the MRC method re-
quires n modulo additions and n single input
table look-up stages, where the modulo addi-
tion can be replaced using 2’s complement addi-
tion followed by a correction factor on the adder
output. The moduli set (2n − 1, 2n, 2n + 1) is a
recent variation of the well-known MRC tech-
nique 16). The reason for taking the moduli set
(2n−1, 2n, 2n +1) is that the residue adder can
be efficiently performed in an end-around-carry
adder. In addition, the multiplicative inverses
of the set result in simplified expressions for the
conversion throughout the mathematical rela-
tionships. However, the carry propagation will
arise inside the mixed radix digits during ad-
dition/subtraction and the speed of the arith-
metic is limited. In the residue-to-weighted
number conversion, the crucial work is using an
efficient multiplier and treating the subtraction.
In this paper, the SD number system is newly
introduced to avoid the carry propagation and
simplify the arithmetic for number conversions.
We also introduce the idea of multiplicative in-
verses of the most popular special moduli set
(2n − 1, 2n, 2n + 1). Therefore, a multiplier is
not needed for our conversion because the em-
bedded multiplications can be replaced by sim-
ple shift-left operations. Moreover, we also find
that the timing depends on the order of the
moduli 2n − 1, 2n and 2n + 1. The design re-
sults show that the proposed residue number
arithmetic circuits are faster than those based
on binary arithmetic.

In the following section, we give the defi-
nition and several properties of a redundant
modular representation for RNS, by which an
efficient arithmetic algorithm with radix-two
SD numbers can be constructed. In Sec-
tion 3, novel weighted-to-residue and residue-

to-weighted number conversion algorithms are
proposed. The conversion process depends
on simple mathematical relationships without
multiplications. Section 4 shows the hardware
design and the simulation results, including the
performance of our proposed conversions. Fi-
nally, Section 5 concludes this work.

2. Residue Number System and
Residue Arithmetic with SD
Number Representation

We consider a residue number system that
has a set of relatively prime moduli, {2n, 2n −
1, 2n + 1}. A residue digit with respect to a
modulus mi is represented by the number set:

lmi
= {0, · · · , (mi − 1)}. (1)

Let M =
∏3

i=1 mi = 2n(2n − 1)(2n + 1). Szabo
et al. 1) proved that if 0 ≤ A < M , then the
integer A has a one-to-one correspondence to its
RNS representation. The integer A is uniquely
represented by a 3-tuple (A1, A2, A3), where

Ai = |A|mi
= A − [A/mi] × mi, (2)

for i = 1, 2, 3. In the above equation, [A/mi]
is the integer part, and each residue digit is de-
fined as the remainder of least magnitude when
A is divided by mi.

A residue number x can be represented by an
n-digit radix-two SD number representation as
follows:

x = xn−12n−1 + xn−22n−2 + · · · + x0 (3)

where xi ∈ {−1, 0, 1}, which can be denoted as
x = (xn−1, xn−2, · · · , x0)SD. In the SD number
representation, x has a value in the range of
[−(2n − 1), 2n − 1]. However, it is difficult to
know if x is in lm, because of the redundancy of
the SD number representation. (The subscript
i is omitted.)

To simplify the manipulation of the modular
operation in an SD number representation, we
apply the definition that each residue digit has
the following redundant residue number set:

Lm = {−(2n − 1), · · · , 0, · · · , (m − 1),
· · · , (2n − 1)}, (4)

Thus, x must be in Lm when it is expressed
in an n-digit SD number representation. Obvi-
ously,

−x = −(xn−1, xn−2, · · · , x0)SD

= (−xn−1,−xn−2, · · · ,−x0)SD

1886 IPSJ Journal June 2006

is also in Lm.
[Definition 1] Let X be an integer and m be
a modulus. Then x = 〈X〉m is defined as an
integer in Lm. When |X|m �= 0, x has one of
two possible values:

x = 〈X〉m = |X|m, (5)
and

x = 〈X〉m = |X|m − sign(|X|m) × m, (6)
where

sign(x) =
{ −1 x < 0

1 x ≥ 0 .

When |X|m = 0 and m = 2n − 1, x has three
possible values, that is, −m, 0 and m. �

The integer set lm in (1) is a partial set of
Lm. The intermediate results calculated in Lm

are used for fast residue arithmetic. If neces-
sary for a final result, they can be converted
into lm. Thus, the addition, subtraction and
multiplication of 3-tuples A = (A1, A2, A3) and
B = (B1, B2, B3) in an RNS can be represented
as follows:

A ± B = (〈A1 ± B1〉m1 , 〈A2 ± B2〉m2 ,

〈A3 ± B3〉m3), (7)
A × B = (〈A1 × B1〉m1 , 〈A2 × B2〉m2 ,

〈A3 × B3〉m3). (8)

Obviously, the following properties exist in
the redundant modular representation.
[Property 1]

Let a and b be integers. Then
(a) abs(〈a〉m) ≤ 2n − 1,
(b) 〈a + b〉m ≡ 〈〈a〉m + 〈b〉m〉m,
(c) 〈a × b〉m ≡ 〈〈a〉m × 〈b〉m〉m,

and
(d) 〈−a〉m ≡ −〈a〉m,

where abs(x) is the absolute value of x and ≡
indicates binary congruent modulo m. �

3. Mixed Radix Number System

The basic structures of our converters are
shown in Fig. 1. A good way to approach this
paper is to consider that the RNS with the
SD number representation is integrated with
the weighted number system by WTOR and

Fig. 1 Architecture of arithmetic operation.

RTOW number conversions.
Mixed radix conversion is fairly simple in

principle. It would be usable in its given form
in a residue computation system, because the
residue computation system would be equipped
to perform the arithmetic operation modulo mi,
not modulo M as required by the Chinese re-
mainder theorem.

A number X as input or output in the ar-
chitecture for moduli set {m1, m2, m3} can be
expressed in mixed radix form:

X = a3(w3) + a2(w2) + a1(w1), (9)

where 0 ≤ ai < mi for i=1,2,3. The term
ai is mixed and w1 = 1, w2 = m1 and w3 =
m2m1 are radices. The mixed radix represen-
tation of X is denoted by (a3, a2, a1), where
the digits are listed in order of decreasing sig-
nificance. The moduli (2n − 1, 2n, 2n + 1)
residue number system has gained popularity
because a modulo m addition in this system
can be efficiently performed in an end-around-
carry adder. For this reason, this type of
RNS can be expected to play an increasing
role in an RNS with weighted-to-residue and
residue-to-weighted number conversions. Let
m3 = 2n, m2 = 2n − 1 and m1 = 2n + 1 then
w1 = 1, w2 = 2n +1 and w3 = (22n−1). Notice
that in Fig. 1, the input and output of the bi-
nary number system must be in the legitimate
range [0, m3m2m1 − 1].

We represent numbers redundantly based on
the redundant binary representation. This
mainly has the following advantages over a bi-
nary number system.

(1) Parallel operation
The carry propagation that arises in the
binary number system can be avoided using
the redundant number representation.

(2) Fast subtraction
Subtraction can be done using addition
with invers addend. In the redundant num-
ber representation, the NOT logical oper-
ation can be implemented by replacing Y
with −Y , and we do not need any gates for
the NOT logical operation.

(3) Word length
According to the SD number representa-
tion, all the residues in the moduli set
(2n, 2n−1, 2n+1) are within n-digits, so the
SD number representation is more efficient
than the binary, which needs (n + 1)-bit
binary numbers for the moduli (2n + 1).

Vol. 47 No. 6 Weighted-to-Residue and Residue-to-Weighted Converters 1887

Table 1 Rules for adding binary SD numbers.

abs(xi) = abs(yi)
abs(xi) �= abs(yi)

(xi + yi) × (xi−1 + yi−1) ≤ 0 (xi + yi) × (xi−1 + yi−1) > 0

wi 0 xi + yi −(xi + yi)
ci (xi + yi)/2 0 xi + yi

3.1 Weighted-to-Residue Number
Conversion

The proposed method for conversion from the
weighted number system to the residue num-
ber system is for a specific moduli set m3 =
2n, m2 = 2n − 1, m1 = 2n + 1. Let B be a
3n-digit number, represented as (9), and given
by

B = a3 × (m2m1) + a2 × (m1) + a1 (10)

where 0 ≤ B < 2n(2n − 1)(2n + 1). Let
b1 = B mod 2n + 1, b2 = B mod 2n − 1 and
b3 = B mod 2n, where b1, b2 and b3 are residue
digits for the moduli 2n +1, 2n − 1 and 2n. Ev-
idently, b1 = a1. Then, b2 and b3 are converted
as follows:

b2 =
∣∣∣∣|a2(2n − 1) + 2a2|2n−1 + |a1|2n−1

∣∣∣∣
2n−1

=
∣∣∣∣|2a2|2n−1 + |a1|2n−1

∣∣∣∣
2n−1

(11)

b3 =
∣∣∣∣|(22n − 1)a3|2n + |a2|2n + |a1|2n

∣∣∣∣
2n

=
∣∣∣∣ − a3 + |a2 + a1|2n

∣∣∣∣
2n

(12)

We can implement the above number conver-
sion by using binary arithmetic method. In the
definition of the SD number for RNS, the legit-
imate range of bi is [−(mi − 1), (mi − 1)]. We
use the modulo operation 〈·〉m to deal with | · |m
using the SD number representation so that we
do not consider whether the converted result is
≥ 0. Therefore, the conversion can achieve high
speed. Moreover, the bis are directly applicable
to next-generation residue SD architecture.
Algorithm A
Let a1, a2 and a3 be n-digit mixed radix num-
bers for modulo 2n + 1, 2n − 1 and 2n, and let
b1, b2 and b3 be n-digit residue numbers. The
ai and bi are represented as SD numbers for
i = 1, 2, 3.
(1) procedure for b1

b1 = a1;
(2) procedure for b2

(2A) Z1 = 〈2a2〉2n−1;
(2B) b2 = 〈Z1 + a1〉2n−1;

Fig. 2 Modulo m signed-digit adder (MSDA).

(3) procedure for b3

(3A) R1 = 〈a2 + a1〉2n ;
(3B) R2 = 〈−a3〉2n ;
(3C) b3 = 〈R2 + R1〉2n ;

In (2A), we perform a modular doubling. We
first shift a2 to the left and re-insert it to the
least significant digit (LSD). In (3B) and (3C),
we use one modulo m signed-digit Addition
(MSDA) by replacing the addend with −a3.
Therefore, we need three MSDAs 8) for (2B),
(3A) and (3C). In the above algorithm, b1, b2

and b3 can be performed in parallel.
The proposed converters are constructed by

using MSDAs. A circuit diagram of an n-digit
MSDA with n SD full adders (SDFAs) is shown
in Fig.2. One SDFA consists of one ADD1
and one ADD2. The ADD1 generates the in-
termediate sum and the intermediate carry, and
the ADD2 sums the low intermediate carry and
the intermediate sum. Let ci and wi be the
carry and the intermediate sum of the ith digit
position, respectively. Their values are set as
shown in Table 1 with respect to the values
of xi, yi, xi−1 and yi−1. Thus, the modulo m
addition can be performed in parallel without
the carry propagation 8). We use ⊗ to mean a
1-by-1 multiplier.
[Example 1] We now illustrate the conver-
sion procedure for n = 3 and B = 411 =
a3(m2m1) + a2(m1) + a1 where m3 = 23, m2 =
23 − 1 and m1 = 23 + 1. Thus, the inputs,
the mixed radix digits, are a3 = 6 = (110),
a2 = 3 = (011) and a1 = 6 = (110). Encod-
ing the binary representation to the SD num-
ber representation is not difficult if a sign bit is
inserted for all binary bits. In the following pro-
cedure, the addition is replaced with an MSDA.

1888 IPSJ Journal June 2006

Hence b1 = (110), and
b2 = 〈〈2(011)〉23−1 + (110)〉23−1

= 〈(110) + (110)〉23−1

= (101)
b3 = 〈(1̄1̄0) + 〈(011) + (110)〉23

= 〈(1̄1̄0) + (001)〉23

= (11̄1)
where 1̄ = −1. Thus, the output is
((11̄1), (101), (110)). �

3.2 Arithmetic of Residue Number
System

We now consider the arithmetic of RNS. A
number in RNS is represented by the residue
of each modulus, and arithmetic operations are
accomplished based on each modulus. Suppose
that two numbers, B and D, are represented as
B = (b3, b2, b1) and D = (d3, d2, d1) in RNS for
moduli m3 = 2n, m2 = 2n −1 and m1 = 2n +1.
The arithmetic of B and D in RNS satisfies
Eqs. (7) and (8).

Because the moduli are independent of each
other, there is no carry propagation among
them. All residue digits in the binary system
are positive by the definition of the mod opera-
tion. If xi = bi−di < 0, then xi = mi+(bi−di).
However, in the SD number system, by Defini-
tion 1, we do not consider whether xi is ≥ 0
or < 0, and this enables high speed. Moreover,
no carry propagation arises during the addition
inside the residue number digits.
[Example 2] We provide an example of the
arithmetic of residue numbers with SD num-
ber representation. Let B = ((1011), (1010),
(101̄1)) and D = ((0110), (011̄0), (0101)) for the
moduli 24, 24−1 and 24 +1. Consider B +D in
RNS. We use three MSDAs to calculate it, and
this procedure is shown in Fig. 3. Note that
c−1 is evaluated using the end-around-carry.
The result is ((0001), (1̄101), (1̄11̄1̄)).

These characteristics allow RNS computa-
tions with SD number representations to be
complemented more quickly.

Fig. 3 MSDA in RNS.

3.3 Residue-to-Weighted Number
Conversion

Next, we consider the conversion of the
residue number to the weighted format with re-
spect to the moduli set (2n, 2n − 1, 2n + 1). To
recover the residue number representation of X,
the basic formula of MRC is applied.

Let X correspond to the residue (x3, x2, x1)
for moduli (m3, m2, m1) = (2n, 2n − 1, 2n + 1).
The converter computes the number X from the
3-tuple (x3, x2, x1), and the mixed radix nota-
tion is as follows:

a1 = x1 (13)

a2 =
∣∣∣∣| 1

m1
|m2 × |x2 − a1|m2

∣∣∣∣
m2

(14)

a3 =

∣∣∣∣∣|
1

m2
|m3 ×

∣∣∣∣(| 1
m1

|m3 × |x3 − a1|m3

−a2)
∣∣∣∣
m3

∣∣∣∣∣
m3

. (15)

Modulo m multiplications and modulo m sub-
tractions are needed to compute a2 and a3.
The above number conversion is usually imple-
mented using binary number arithmetic 16). As
pointed out earlier, in the SD number system,
we do not need any gates for the NOT logi-
cal operation, so the modulo m subtraction is
easily implemented by replacing Y with −Y in
the modulo m addition. In the following, we
introduce compact forms of the multiplicative
inverse for the moduli set (2n − 1, 2n, 2n + 1).
The modulo m multiplication can be imple-
mented by shifting/inverting the multiplicand.
The proof is shown in Property 2.
[Property 2] Let m3 = 2n, m2 = 2n − 1 and
m1 = 2n +1. The multiplicative inverses are as
follows:〈 1

2n − 1

〉
2n

= −1 (16)
〈 1

2n + 1

〉
2n

= 1 (17)
〈 1

2n + 1

〉
2n−1

= 2n−1. (18)

The proofs of (16), (17), (18) are based on
the fact that |x| 1x ||mj

= 1.
Proof of (16):

|(2n − 1) · (−1)|2n = | − 2n + 1|2n

= 1
Proof of (17):

Vol. 47 No. 6 Weighted-to-Residue and Residue-to-Weighted Converters 1889

|(2n + 1) · (1)|2n = |2n + 1|2n

= 1
Proof of (18):

|(2n + 1) · (2n−1)|2n−1

= |(2n − 1)(2n−1) + 2n|2n−1

= |2n|2n−1

= |(2n − 1) + 1|2n−1

= 1
�

The most efficient order of the moduli is
m3 = 2n, m2 = 2n − 1 and m1 = 2n + 1.
The reason is as follows. Because the longest
delay path is for calculating a3 in the order
m3 = 2n,m2 = 2n−1,m1 = 2n+1, the multipli-
cation needed for a3 is | 1

m1
|m3 = 1, whose mul-

tiplication is not required, and | 1
m3

|m3 = −1,
whose multiplicative inverses are all sign dig-
its. In SD number representation, the inversion
procedure is simple.

In the following procedure, we use operation
〈·〉m instead of | · |m. Substituting Eqs. (16),
(17) and (18) into Eqs. (14) and (15) yields

a2 = 〈2n−1 × 〈x2 − a1〉m2〉m2 (19)
a3 = 〈(−1) × 〈〈x3 − a1〉m3 − a2)〉m3〉m3

=
〈
− 〈(x3 − a1)〉m3 + (a2)

〉
m3

. (20)

The coefficients imply simple shift-left opera-
tions. Note that −(m1 − 1) ≤ a1 ≤ m1 − 1,
−(m2 − 1) ≤ a2 ≤ m2 − 1, and −(m3 − 1) ≤
a3 ≤ m3 − 1.
[Example 3] Suppose that X = 43 and that
its residue representation is ((011), (011̄), (111))
for moduli 23, 23 − 1, and 23 +1. The proposed
residue-to-weighted number conversion, shown
in Fig. 4, derives the mixed radix digit a1 =
(111) = 7, a2 = (01̄1̄) = −3 and a3 = (011̄) =
1. According to (9), 1(63)−3(9)+7 = 43 = X.

�

Algorithm B
Let x1, x2 and x3 be the residue numbers for
modulo 2n +1, 2n−1 and 2n, and let a1, a2 and
a3 be mixed radix digits.
(1) procedure for a1

a1 = x1;
(2) procedure for a2

(2A) Z1 = 〈x2 − a1〉m2 ;
(2B) a2 = 〈2n−1Z1〉m2 ;

(3) procedure for a3

(3A) R1 = 〈x3 − a1〉m3 ;
(3B) R2 = 〈−R1〉m3 ;

Fig. 4 Example of residue-to-weighted number
conversion.

(3C) R3 = 〈R2 + a2〉m3 ;
In (2A), (3A) and (3C), we use MSDA by

changing the addends to −a1 and −R1. In
(2B), the most significant (n− 1) positions will
shift to the left and are re-inserted into the
LSD.

3.4 Conversion to Binary Numbers
Because one-to-one correspondence between

input and output is needed, we convert the
T = a3(22n−1)+a2(2n +1)+a1 into lm. First,
we convert a1, a2 and a3 to the 2’s complement
(n + 1)-bit binary numbers a+

1 , a−
1 , a+

2 , a−
2 , a+

3
and a−

3 , where the a+
i are the positive dig-

its and the a−
i are the negative digits for ai

(i = 1, 2, 3). Then, we use three n-bit pre-
fix adders to calculate SA = a+

1 + a−
1 , SB =

a+
2 + a−

2 and SC = a+
3 + a−

3 in parallel, where
SA, SB and SC are 2’s (n + 1)-bit comple-
ment numbers. The prefix adder is based on
the Kogge-Stone tree structure 18) which uses
the associative operator ′o′ defined in Ref. 19)

to implement the carry computation. Note that
S = SC(22n − 1) + SB(2n + 1) + SA, and that
S is an ordinary binary number. If S < 0,
then we add M to S and S will be returned to
lm, where M = 2n(2n − 1)(2n + 1). Therefore,
S+M = (2n +SC)(22n−1)+SB(2n +1)+SA.
We can consider 2n + SC to mean “add ’1’ to
the (n+1)th position of SC”. Thus, the output
is within the legitimate range [0, M − 1] and it
is also a binary number representation. Notice
that SC is an (n + 1)-bit ordinary binary rep-
resentation, and SB and SA are 2’s (n + 1)-bit
complement ordinary binary representations.

1890 IPSJ Journal June 2006

4. Hardware Design and Performance
Evaluation

In binary logic, a single memory space is
all that is needed for a digit (bit), while in
ternary logic the sign of the digit requires an
extra space. In hardware implementation, an
SD digit x is encoded as a 2-bit binary code
defined as x = [xs, xa], where xs is the sign
and xa is the absolute value. This demands
more hardware resources, but it also reallocates
space, which affects the overall speed. We use
a hardware description language, VHDL, to de-
sign the residue arithmetic circuits for the im-
plementation of the proposed converters. Then,
we performed a simulation under the condi-
tions of 1-µm CMOS gate array technology. To
compare the performance of the proposed cir-
cuits and conventional ones, we designed a bi-
nary architecture using the same technology by
using a synthesis tool called Design Complier
from Synopsys. The implementations are rela-
tive between binary number arithmetic and SD
number arithmetic. Therefore, the performance
comparison results may have the same relative
rates under advanced design technology such as
0.3-µm CMOS gate array technology.

4.1 Proposed Architecture
The proposed weighted-to-residue number

converter consists of three MSDAs, which are
used for (2B), (3A) and (3C) in Algorithm A,
and one shift block. The WTOR converter is
shown in Fig. 5. The MSDA consists of n iden-
tical sub-blocks SDFAs, as shown in Fig.2 and
the shift block is for shifting the most signifi-
cant digit to the left and re-inserting it into the
LSD corresponding to (2A) in Algorithm A. In
Fig. 5, 	, which corresponds to (3B) in Algo-
rithm A, means to replace yi with −yi. Note
that b1, b2 and b3 can be implemented in paral-
lel by the proposed architecture.

The proposed residue-to-weighted number
converter, which consists of three MSDAs and
one shift block, is shown in Fig. 6. The three
MSDAs are for steps (2A), (3A) and (3C) in Al-
gorithm B. The shift block which corresponds
to (2B) in Algorithm B, is for shifting the most
significant (n − 1) positions to the left and re-
inserting them into the LSD.

The proposed WTOR and RTOW number
converters are very simple, and only three MS-
DAs are required for both.

Fig. 5 Weighted-to-residue number converter.

Fig. 6 Residue-to-weighted number converter.

4.2 Performance Evaluation and Com-
parison

Our aim is to enable high-speed conversion,
so drawbacks in terms of area are not prob-
lems. Because a residue number computing sys-
tem includes a number of residue number arith-
metic circuits such as adders and multipliers
(see Fig. 1), we list the evaluations of residue
adders and multipliers not only in their binary
number representations but also in SD number
representations. The performance of the MSDA
with the gate-level design is shown in Table 2.
The data in the first column is the dynamic
range for different choices of n. The simulation
results show that the delay time of MSDA is
independent of n. Kalampoukas, et al. 20) gives
a good way to deal with modulo (2n−1) adders
using parallel-prefix structure 19). Their model

Vol. 47 No. 6 Weighted-to-Residue and Residue-to-Weighted Converters 1891

assumes that each gate, excluding exclusive-
OR, counts as one elementary gate or both area
and delay. Their delay time 20) is 2 log2 n + 3
and their chip area is 3n log2 n + 4n. However,
this technique cannot be applied to the modulo
(2n + 1) adder because the end-around-carry is
negative. On the other hand, MSDA can deal
with the modulo (2n+1) adder in a manner sim-
ilar to the modulo (2n − 1) adder, because the
SD number representation is redundant. When
the modulus 2n − 1 is large, MSDA has more
advantages than Kalampoukas, et al. 20). The
relationship is shown in Fig.7.

Next, we compare the modular SD multiplier
with the binary multiplier. Efstathiou, et al. 17)

gives an efficient binary modulo 2n − 1 multi-
plier. A Booth-code method was used to reduce
the numbers of modulo 2n − 1 partial products
and thus the chip area is smaller. In the modulo
2n+1 multiplier, we calculate (n×n)-bit multi-
plication, and the result is mod (2n +1) 5). The
modular SD multiplier is designed as a binary
tree structure 8) to increase speed. The mul-
tiplier in RNS is shown in Table 3. The SD
multiplier is faster than the binary multiplier.

Tables 2 and 3 show that SD number archi-
tectures are faster than binary architectures in
RNS arithmetic. Therefore, the high-speed con-

Table 2 Performance of modulo 2n − 1 adder.

n area (gates) delay (ns)

PA 20) SD number PA 20) SD number

4 60 120 4.95 5.46
8 136 240 5.7 5.46
16 378 480 8.82 5.46

Fig. 7 Comparison of adders.

Table 3 Performance of parallel modulo 2n ± 1 multipliers.

n area (gates) delay (ns)

binary 5) binary 17) SD number binary 5) binary 17) SD number
(2n + 1) (2n − 1) (2n ± 1) (2n + 1) (2n − 1) (2n ± 1)

4 177 136 474 19.72 19.72 16.94
8 748 456 2,106 42.03 37.03 22.92
16 3,226 2,103 8,826 91.85 73.75 29.94

verters architectures for WTOR and RTOW
with SD number representation, as shown in
Fig. 1, are important. The tables show that
a residue number arithmetic system with the
SD number arithmetic can have higher perfor-
mance than that with the ordinary binary arith-
metic.

Table 4 shows a comparison of the per-
formance of WTOR number converters with
the architecture shown in Fig. 5. Because the
longest delay path is dependent on the delay
time of two MSDAs when n is large, the pro-
posed WTOR number converter is faster than
binary number converters.

The methods used for the RNS to binary
conversion are based on CRT or MRC. The
Andraos-Ahmad algorithm, which introduces
compact forms of multiplicative inverses to sim-
plify CRT, is a well-known technique. The algo-
rithm uses four adders, two of which operate in
parallel, to convert the moduli (2n +1, 2n, 2n −
1) residue number into their binary equiva-
lent. Recently, Piestrak 11) suggested a simpli-
fication of the Andraos-Ahmad technique: the
value of the −r1 modulo 22n−1 of Andraos, et
al. 10) can be easily obtained by manipulating
r1. Piestrak 11) proposed two methods. The
first method, referred to as the cost-effective
(CE) version, uses two 2n-bit CSAs and one 2n
CPA with an end-around-carry to calculate the
A+B +C−r1 of Andraos, et al. 10). The other
method, which is referred to as the high-speed
(HS) version, uses two 2n-bit CSAs and two
parallel 2n-bit CPAs followed by a multiplexer.
Our technique is comparable to Piestrak’s tech-
nique.

Now, we evaluate the proposed RTOW con-
verter design.

Table 4 Performance of weighted-to-residue number
converter.

n area (gates) delay (ns)

binary SD number binary SD number

4 116 368 12.17 10.41
8 265 736 21.31 10.41
16 627 1,472 40.67 10.41

1892 IPSJ Journal June 2006

Table 5 Performance of the residue-to-weighted number converter, with a
comparison of cost-effective and high-speed methods.

n area (gates) delay (ns)

CRT MRC CRT MRC

CE 11) HS 11) binary 16) SD number CE 11) HS 11) binary 16) SD number

4 240 345 147 376 20.06 15.25 18.73 13.75
8 480 689 329 752 32.38 22.56 38.81 13.75
16 960 1,377 727 1,504 57.02 37.19 74.62 13.75

Table 6 Performance of prefix adder.

n area (gates) delay (ns)

4 48 5.79
8 119 7.75
16 284 9.83

AreaRTOW = 3AMSDA + Ashift (21)
DelayRTOW = 2
MSDA (22)

where AMSDA and Ashift are the areas of the
MSDA and the shifter in Fig. 6, and the delay
of the MSDA is
MSDA. The execution time of
the MSDA is O(1), which is independent of n.
We find the best order is m3 = 2n − 1, m2 = 2n

and 2n + 1 16). Their longest delay path is in
calculating a3, and the inversion can be easily
replaced using 1’s complement representation.
A comparison between the proposed converter
and CRT 11) is provided in Table 5. The re-
sults show that our converter is very fast and
that the delay time is independent of n.

To convert SD number representation to
binary number representation, we use prefix
adders, as mentioned in Section 3.4. The per-
formance of one prefix adder is illustrated in
Table 6, which shows that the conversion is
fast. The binary number representation is a
2’s complement representation, but it is ≥ 0.
The 2’s complement representation is suitable
for our converter.

5. Conclusion

We presented simple weighted-to-residue
and residue-to-weighted number converters for
moduli 2n, 2n − 1 and 2n + 1. Our method re-
quires only addition for WTOR and RTOW
number conversion. The proposed convert-
ers have many advantages, which have been
demonstrated throughout this paper using ex-
amples and analysis. Our simulation shows that
the performance of our converters is compa-
rable to that of binary architectures and that
the proposed schemes are high-speed architec-
tures. The RNS arithmetic operation based on
the SD number system has been shown to be

more efficient than the binary number system.
In addition, the experimental results show that
the proposed WTOR and RTOW number con-
verters, which can be easily implemented on
hardware and make the calculation less com-
plicated and more efficient, are high-speed ar-
chitectures. Thus, our method is more efficient
and less complicated than the binary number
system in the arithmetic operation. We also
provided a method for converting an SD num-
ber to a binary number representation.

References

1) Szabo, N.S. and Tanaka, R.I.: Residue Arith-
metic and Its Applications to Computer Tech-
nology, New York, McGraw-Hill (1967).

2) Paliouras V. and Stouraitis T.: Novel high-
radix residue number system architectures,
IEEE Trans. circuits and systems II., Vol.47,
No.10, pp.1059–1073 (Oct. 2000).

3) Sonderstrand, M.A., Jendins, W.K., Junllien,
G.A. and Taylor, F.J.: Residue Number Sys-
tem Arithmetic: Modern Applications in Dig-
ital Signal Processing, IEEE Press, New York
(1986).

4) Skavantzos, A. and Rao, P.B.: New multipliers
modulo 2n − 1, IEEE Trans. Comput., Vol.41,
No.8, pp.957–961 (Aug. 1992).

5) Hiasat, A.: New memoryless mod (2n ± 1)
residue multiplier, Electronics Letters, Vol.28,
No.3, pp.314–315 (Jan. 1992).

6) Avizienis, A.: Signed-digit number represen-
tations for fast parallel arithmetic, IRE Trans.
Elect.Comput., EC-10, pp.389–400 (Sep.1961).

7) Parhami, B.: Carry-free addition of recoding
binary signed-digit numbers, IEEE Trans.com-
put., Vol.37, No.11, pp.1470–1476 (Nov. 1988).

8) Wei, S. and Shimizu, K.: A novel residue arith-
metic hardware algorithm using a signed-digit
number representation, IEICE Trans. Inf. &
Syst., Vol.E83-D, No.12, pp.2056–2064 (Dec.
2000).

9) Wei, S. and Shimizu, K.: Compact residue
arithmetic multiplier based on the radix-
4 signed-digit multiple-valued arithmetic cir-
cuits, IEICE Trans.Electron., Vol.E82-C, No.9,
pp.1647–1645 (Sep. 1999).

Vol. 47 No. 6 Weighted-to-Residue and Residue-to-Weighted Converters 1893

10) Andraos, S. and Ahmad, H.: A new efficient
memoryless residue to binary converter, IEEE
Trans. Circuits Syst., Vol.CAS-35, pp.1441–
1444 (Nov. 1988).

11) Piestrak, S.J.: A high-speed realization of a
residue to binary number system converter,
IEEE Trans. Circuits Syst.II, Vol.42, No.10,
pp.661–663 (Oct. 1995).

12) Conway, R. and Neison, J.: Fast converter for
3 moduli RNS using new property of CRT,
IEEE Trans. Comput., Vol.48, No.8, pp.852–
860 (Aug. 1999).

13) Baraniecka, A. and Jullien, G.: On decod-
ing techniques for residue number system re-
alizations of digital signal processing hard-
ware, IEEE Trans. Circuits Syst., Vol.CAS-25,
pp.935–936 (Nov. 1978).

14) Huang, C.: A fully parallel mixed-radix con-
version algorithm for residue number applica-
tions, IEEE Trans.Comput., Vol.C-32, pp.398–
402 (Apr. 1983).

15) Chakraborti, N., Soundararajan, J. and
Reddy, A.: An implementation of mixed-radix
conversion for residue number applications,
IEEE Trans. Comput., Vol.C-35, pp.762–764
(Aug. 1986).

16) Ananda Mohan, P.V.: Evaluation of fast con-
version techniques for binary-residue number
system, IEEE Trans. Circuits Syst.-I, Vol.45,
No.10, pp.1107–1109 (Oct. 1998).

17) Efstathiou, C., Vergos, H.T. and Nikolos, D.:
Modified booth modulo 2n − 1 multipliers,
IEEE Trans. Comput., Vol.53, No.3, pp.370–
374 (Mar. 2004).

18) Kogge, P.M. and Stone, H.S.: A parallel algo-
rithm for the efficient solution fo a general class
of recurrence equations, IEEE Trans. Comput.,
Vol.22, No.8, pp.783–791 (Aug. 1973).

19) Brent, R.P. and Kung, H.T.: A regular lay-
out for parallel adders, IEEE Trans. Comput.,
Vol.31, No.3, pp.260–264 (Mar. 1982).

20) Kalampoukas, L., Nikolos, D., Efstathiou, C.,
Vergos, H.T. and Kalamatianos, J.: High-speed
parallel-prefix modulo 2n − 1 adders, IEEE
Trans. Comput. Vol.49, No.7, pp.673–680 (July
2000).

(Received September 15, 2005)
(Accepted March 2, 2006)

(Online version of this article can be found in
the IPSJ Digital Courier, Vol.2, pp.328–337.)

Shuangching Chen was
born in Kaohsiung, Taiwan on
July 18, 1972. He received the
B.E. degree in Applied Mathe-
matic from Feng Chia Univer-
sity, Taiwan, Republic of China
in 1994, and the M.E. degree

in Computer Science from Gunma University,
Kiryu, Japan in 2002. He is currently a doc-
toral student at the Department of Computer
Science, Gunma University. His research in-
terests include parallel computer architecture,
residue architecture, VLSI design and digital
signal processing. He is a student member of
IPSJ and IEICE.

Shugang Wei was born in
Harbin, China on September 19,
1957. He received the B.E. de-
gree in Radio Engineering from
the Harbin Institute of Technol-
ogy, Harbin, China, the M.E. de-
gree in Computer Science from

Gunma University, Kiryu, Japan and the Dr.
Eng. degree in Electronic Engineering from
Tohoku University, Sendai, Japan, in 1982,
1987, and 1990, respectively. He was an As-
sistant Professor with the Department of Ra-
dio Engineering, Harbin Institute of Technol-
ogy from 1982 to 1984. In 1990 he joined Mat-
sushita Communication Industrial Co., Ltd.,
Yokohama, Japan. At present he is an Asso-
ciate Professor in the Department of Computer
Science, Faculty of Engineering, Gunma Uni-
versity. His research interests include logic de-
sign, high-speed arithmetic circuits, VLSI sys-
tems and digital audio signal processing. Dr.
Wei is a member of the Acoustical Society of
Japan, IEICE and IEEE.

