
IPSJ Transactions on Advanced Computing Systems Vol.7 No.3 37–46 (Aug. 2014)

Regular Paper

Design Aid of Multi-core Embedded Systems
with Energy Model

Takashi Nakada1,a) Kazuya Okamoto1,†1 Toshiya Komoda1,†2 ShinobuMiwa1 Yohei Sato2

Hiroshi Ueki2 Masanori Hayashikoshi2 Toru Shimizu2 Hiroshi Nakamura1

Received: December 6, 2013, Accepted: April 2, 2014

Abstract: Shifting to multi-core designs is so pervasive a trend to overcome the power wall and it is a necessary move
for embedded systems in our rapidly evolving information society. Meanwhile, the need to increase the battery life and
reduce maintenance costs for such embedded systems is very critical. Therefore, a wide variety of power reduction
techniques have been proposed and realized, including Clock Gating, DVFS and Power Gating. To maximize the effec-
tiveness of these techniques, task scheduling is a key but for multi-core systems it is very complicated due to the huge
exploration space. This problem is a major obstacle for further power reduction. To cope with it, we propose a design
method for embedded systems to minimize their energy consumption under performance constraints. This method is
based on the clarification of properties of the above mentioned low power techniques and their interactions. In more
details, we firstly establish energy models for these low power techniques and our target systems. We then explore
for the best configuration by constructing an optimization problem especially for applications which have a longer
deadline than the execution interval. Finally, we propose an approximate solution using dynamic programming with a
lower computation complexity and compare it to a brute force explicit solution. We confirm with our evaluations that
the proposed method successfully found a better configuration which reduces the total energy consumption by 32% if
compared to the manually optimized configuration, which utilizes only one core.

Keywords: low power, multi-core embedded systems, energy model

1. Introduction

For developing multi-core embedded systems, it is challeng-
ing to find an optimal design from their extensive design space.
The optimal design must meet deadline constraints and achieve
the lowest energy consumption. Our approach here is to firstly
construct energy models for low power techniques and target sys-
tems. Then we set up and solve an optimization problem by dy-
namic programming.

As the energy consumption of embedded systems is dominated
by VLSIs, low power techniques for VLSIs are highly necessary.
This energy consumption is classified into dynamic and static en-
ergy. The former is caused by switching activities of transistors
and essentially consumed by computing. On the other hand, the
latter is caused by leakage current and always consumed when-
ever power is supplied.

As technology advances static power increases more rapidly
than dynamic power [1], and now it gets comparable to dynamic
power consumption. As static power is consumed without any
contribution to computing, its reduction is strongly required. A
wide variety of power reduction techniques has been proposed
and realized, including clock gating, power gating, DVFS, and so

1 The University of Tokyo, Bunkyo, Tokyo 113–8656, Japan
2 Renesas Electronics Corporation, Chiyoda, Tokyo 100–0004, Japan
†1 Presently with NoConsulting
†2 Presently with DeNA Co., Ltd.
a) nakada@hal.ipc.i.u-tokyo.ac.jp

on.
To make full usage of these techniques, task scheduling is key

but for multi-core systems it is very complicated due to the huge
exploration space. Most previous work assumes that the deadline
equals to the execution interval to simplify this problem. Under
this assumption, only one execution interval should be consid-
ered and use its solution repeatedly. This strategy still satisfies
the application requirements. On the other hand, this strategy
limits the effectiveness of the low power techniques, due to a
smaller design space. For further power reduction, it is necessary
to make full usage of the original deadline. For example, sensing
or video/audio streaming applications allow longer deadlines by
buffering, though the throughput requirements are strict.

In this paper, we realize a method to find an optimal design
that achieves the best energy efficiency under constraints such as
the deadline. Our ultimate goal is to find the most energy effi-
cient design for a periodically executed embedded system under
deadline and other constraints with a reasonable cost. The de-
sign includes not only a hardware design such as core selection
but also a software design such as scheduling and power manage-
ment. Especially when the deadline is longer than the execution
interval, we search a larger design space to make full use of the
long deadline.

The remaining of this paper is organized as follows. Section
2 summarizes the background. Section 3 presents the description
of the target system and the constraints of delay and energy. Then
section 4 presents the design exploration strategy. Experimental

c© 2014 Information Processing Society of Japan 37



IPSJ Transactions on Advanced Computing Systems Vol.7 No.3 37–46 (Aug. 2014)

results appear in Section 5. Section 6 reviews the related work.
Finally, Section 7 concludes the paper.

2. Background

2.1 Low Power Techniques
In this section, we briefly introduce major power reduction

techniques including clock gating, power gating, DVFS, and so
on.

Clock Gating (CG) simply cuts clock delivery from a clock
oscillator. In general, the oscillator keeps running for a quick
restart. Since this technique has no performance penalty, when
there is no ready task, processor cores should switch to clock gat-
ing mode unless other low power techniques are applicable.

Power Gating (PG) is a promising way to reduce the static
power and is used mainly in embedded systems. In modern com-
puter system, all the components need not work all the time dur-
ing computation. So far, power gating is applied in a coarse-grain
manner. Recently, however, fine-grain power gating receives
much attention because finer granularity increases the chances
of PG. For example, Geyser-2 [2] and Geyser-3 [3] implement
a fine-grained run-time PG. In these processors, PG is applied
to function units (FUs). Each FU can be powered on or off in-
struction by instruction. In other words, instruction-level power
gating is implemented in these processors. Based on this obser-
vation, there exist many chances for PG in a wide range of idle
periods.

Generally speaking, coarser-grain PG can reduce more static
power but have a larger transition overhead. Thus coarse-grain
PG should be applied only for long idle period. For a short
idle period, finer-grain PG is preferable. Therefore, there ex-
ists certain idle time between PGs. The boundary times are
called Brake Even Time (BET). Dynamic Power Management
(DPM) [4] manages power states of the components based on the
BETs. In general, for a short idle time, the component that has a
short BET should be power gated, and for a longer idle time, as
much components as possible should be power gated.

DVFS has been around for more than a decade [5]. DVFS
allows the voltage and the clock frequency to be decreased dy-
namically to trade time for energy. A lot of research is done in
this area. By considering the consumed energy as a cost func-
tion, while considering deadlines as constraints, a mathematical
problem can be defined and the optimal clock frequencies can be
found for many kinds of real-time systems [6], [7].

For the combination of DPM and DVFS, tradeoffs between the
two techniques should be considered [8]. When DVFS is used,
the clock frequency is decreased to reduce the energy consump-
tion during the execution of tasks, while the execution time in-
creases and the idle time decreases.

Since the DVFS requires a variable voltage generator and a
clock oscillator, even for modern mobile processors, the imple-
mentation cost of these components is not negligible. Addition-
ally, the embedded processors are integrated with an analog pe-
ripheral circuit, which is more sensitive for supply voltage varia-
tion. Thus we exclude DVFS from our target system.

2.2 Dynamic Power Management
An overview of DPM techniques is given in a survey article [4].

DPM is important to reduce the static power when the processor
core is in an idle state.

An example of a typical set of power modes is shown in Ta-
ble 1. In active mode, all components are turned on. For a short
idle interval, Clock Gating (CG) is preferable. The processor core
can restart from the CG state instantly. In sleep mode, PG is ap-
plied to the processor core to obtain more energy reduction. To
return from this mode, several clock cycles are required and some
transition energy overhead is consumed. Vcc power gating is ap-
plied for a very long idle period. In this mode, the power supply
is completely cut off. The only way to recover from this mode
is to resume power supply. Then the processor core should fol-
low almost the same as a power on reset procedure. Therefore,
we can get the largest power reduction but both time and energy
overhead become the most costly.

As mentioned in the previous section, there exist BETs be-
tween these power modes. To determine the appropriate power
state, the length of next idle period is compared with these BETs.
This strategy can be modeled with a function of cost with the
length of the idle period. This function turns out to be piecewise-
linear, increasing and concave [9].

In embedded systems, executed tasks are fixed and periodic
and their scheduling is known. So, when an idle state is encoun-
tered, the time when the next task can be invoked is definitely
predictable. Then the length of the idle period is also predictable.
Additionally, since the restart time is predictable, wakeup over-
heads are easily hidden by a pre-wakeup technique. Therefore,
the optimal power management is easily determined by the strat-
egy. Finally, DPM related parameters include hardware parame-
ters and the length of the idle period.

In this paper, to simplify the discussion, we assume only two
power modes, active and sleep. It is easy to extend our ap-
proach to more power states to make full use of all power modes.
Namely, after the scheduling and the length of an idle period is
calculated by our scheme, the optimal sleep mode can be chosen
from the length of the idle period.

2.3 Scheduling for Multi-core System
In the case of several kinds of processors executing multiple

tasks, there exist many combinations of assignments.
In general more powerful processor core consumes more en-

ergy. There exists an empirical model between them called Pol-
lack’s Rule [10]. According to this model, the performance is
roughly proportional to the square root of a processor’s area. The
static power is proportional to the area while the dynamic power
is more complex and it can be regarded as being roughly pro-
portional to the performance since switching rates differ between
functional units and other parts (in general, they switch less fre-

Table 1 An example of power mode.

Vcc Core Clock
Active ON ON ON
Clock Gating ON ON OFF
Sleep ON OFF OFF
Vcc Power Gating OFF OFF OFF

c© 2014 Information Processing Society of Japan 38



IPSJ Transactions on Advanced Computing Systems Vol.7 No.3 37–46 (Aug. 2014)

quently than FUs). Therefore, using cores that are as small as
possible is the best from the viewpoint of energy efficiency.

In a real scheduling problem, there are many constraints such
as deadlines. To relieve this deadline constraint, we adopt
pipeline scheduling. If there is only one core in the system, the
total execution time of the task should be shorter than the input
interval regardless of the deadline. On the other hand, if we have
multiple cores and the task can be divided into subtasks, we can
assign each subtask to different cores. Then, the assigned task
size of each core is smaller and we can use a smaller and more
energy efficient core. Theoretically, a task can be divided into the
same number of subtasks as the quotient of the deadline divided
by the input interval and these subtasks can then be executed on a
multi-core processor having the same number of cores. However,
in real systems, we should consider a parallelizing overhead such
as the communication delay.

After task division and assignment to cores, we adopt Lumped

execution. If the deadline is longer than the input interval, we can
buffer several input data that are used multiple instance. Then
several subtasks are executed continuously. At the same time,
idle periods also appeared continuously. In other word, though
the activity ratio is not changed, the length of each idle period be-
comes larger and power mode transition becomes less frequent.
As a result, there exists a better opportunity of energy reduction.

In this paper, to simplify the discussion, we assume that all
the output of each subtask should be stored in an external shared
memory. Namely, all communication between cores is done via
the memory.

Finally, multi-core scheduling is expressed by the following
variables. Obviously, our goal is to find the optimal values for
these variables.
• Number of cores
• Core and memory selection
• Task and core mapping
• Scheduling in each core

2.4 Co-optimization
For global optimization, every variable should be considered

at the same time, due to their mutual dependence. For example,
an optimal number of cores depends on the type of the selected
processor core. The optimal processor cores depend on the task
scheduling and DPM. DPM and the scheduling depend on each
other.

As a result, especially for multi-core systems, the search space
to find an optimal design can easily explode. To solve this prob-
lem, an efficient search method is strongly required.

3. System Description and Constraint Model-
ing

In this section, we describe our target system in order to find
an optimal design. First, we briefly overview our target system,
then explain a detailed description for each part.

3.1 Target System
Our target multi-core embedded system is shown in Fig. 1.

This system consists of a multi-core processor, buffer memories,

Fig. 1 Target system.

Fig. 2 Task.

input device and output device. The multi-core processor consists
of heterogeneous cores that support DPM.

For buffer memories, we assume there exists a tradeoff between
the access energy and the access speed, that is, a faster memory
consumes a larger energy. As mentioned in Section 1, an input
device such as a sensor is integrated with a small memory con-
troller and stores data into the buffer memory by itself. Thus the
input data is periodically available in the input buffer memory.

A target application is called a task. We assume the task has al-
ready been divided into several subtasks by a programmer and the
subtasks have sequential dependency from input to output. The
task is invoked repeatedly. We also assume the execution time
of each subtask is fixed and already measured for any candidate
core.

3.2 Description
Description parameters of the target system are categorized

into the following parts.
• Task
• Hardware component
• Scheduling with pipeline and lumped execution
In these parameters, the task and the hardware component pa-

rameters are given. On the other hand, to find an optimal solution
of the scheduling, which is expressed with some parameters, is
our goal. In other words, the task and the hardware parameters
are input and the scheduling parameters are output of the multi-
core system design.

Each parameter is described in the following sections.
3.2.1 Task Description

As previously mentioned, the target task has been divided into
several subtasks. The divided task is shown in Fig. 2. Each sub-
task has an ID s. The first subtask has s = 1, and the last subtask
has s = smax. Additionally, we defined NIO and NDep to cover a
wide variety of task types. NIO stands for ratio of input and output
throughput. NDep stands for how many sets of input data depend
on an output. Thus, when both NIO and NDep are equal to 1, we
call this type of task Data Processing Task (Fig. 3-(a)). When
both NIO and NDep are equal but larger than 1, we call this type
of task Average Processing Task (Fig. 3-(b)). When NDep is larger
than NIO, we call this type of task Moving Average Processing

Task (Fig. 3-(c)).
All parameters related to the task are as follows.

c© 2014 Information Processing Society of Japan 39



IPSJ Transactions on Advanced Computing Systems Vol.7 No.3 37–46 (Aug. 2014)

Fig. 3 Variation of task type.

Fig. 4 Hardware model.

{sn} Set of subtask IDs in task
TgIn Input interval of task
TgDl Total deadline of task
NsIO[s] NIO of subtask s

NsDep[s] NDep of subtask s

3.2.2 Hardware Description
The outline of our target hardware is shown in Fig. 4. We di-

vide the total execution into several stages. Each stage is exe-
cuted by one processor core. The core executes one or more than
one successive subtasks. For communication between subtasks,
a dedicated buffer area is assigned. We assume each stage has its
own buffer memory.

All parameters related to the hardware are as follows.
PpStby[p] Static power of processor core p in stand-by mode
PpStat[p] Static power when processor core p is in active mode
EpDpm[p] Overhead energy when PG is applied to processor

core p

EpDyn[p][s] Dynamic energy of a subtask s on processor core p

Tproc[p][s] Processing time of a subtask s on processor core p

Eread[r][s] Dynamic energy when subtask s reads its input data
from memory r

Tread[r][s] Data read latency for input data of subtask s from
memory r

Ewrt[r][s] Dynamic energy when subtask s writes its output data
to memory r

Twrt[r][s] Data write latency for output data of subtask s to
memory r

PrStat[r][s][n] Static power of memory r that can hold n input

Fig. 5 Lumped scheduling.

data of subtask s

As we mentioned, all power and execution time related param-
eters have to be measured in advance.
3.2.3 Scheduling Description

As we mentioned in Section 2.3, the target task is divided into
several tasks and some of them are assigned for one processor
core. In this section, we describe a scheduling within a core.

All parameters related to the scheduling are as follows.
umax # of stages
Asub[u] The first subtask ID of stage u

Aproc[u] Core ID of stage u

Aram[s] Memory ID for subtask s’s input
BeSlp[u] 1: enter stand-by mode after stage u, 0: stay in active

mode
NLmp[u] # of instances of lumped execution in stage u

Here Asub[u] represents task assignment. Namely, from sub-
task Asub[u] to Asub[u + 1] − 1 are assigned to stage u. NLmp[u]
represents the number of lumped instances. Figure 5 shows an
example scheduling when NLmp[u] = 2. In this example, 7 in-
puts are required for the lumped 2 instances. When the last input
(i = 6) is available, every subtasks related to the input are exe-
cuted continuously. Other preceding tasks should be scheduled
earlier properly.

Since our design space exploration is done offline and its re-
sult is static, when the best configuration of these parameters are
found, hardware and software configurations are statically deter-
mined. The hardware configuration is directly determined from
umax, Aproc[u] and Aram[s]. The task assignment is determined
from Asub[u]. Finally, the task scheduling is determined from
NLmp[u] and BeSlp[u]. When each core wakes up and starts ex-
ecution is easily and statically calculated from these scheduling
parameters and the task parameters.

3.3 Modeling
In this section, we model delay constraints to guarantee a

proper execution and energy constraints to find the minimum en-
ergy consumption.

Firstly, we define following intermediate variables, which can
be calculated from the above parameters, for convenience.
NuIO[u] NIO of stage u

TuIn[u] Input interval of stage u

TuOut[u] Output interval of stage u

NRam[s] Required memory size of subtask s’s input
Here, NuIO[u] is simply given by

NuIO[u] =
Asub[u+1]−1∏

k=Asub[u]

NsIO[k]

TuIn[u] and TuOut[u] are given by

c© 2014 Information Processing Society of Japan 40



IPSJ Transactions on Advanced Computing Systems Vol.7 No.3 37–46 (Aug. 2014)

TuIn[u] = TsIn[Asub[u]]

TuOut[u] = TsOut[Asub[u + 1] − 1] = TsIn[Asub[u + 1]]

where TsIn[s] = TgIn

s−1∏
k=1

NsIO[k]

TsOut[s] = TgIn

s∏
k=1

NsIO[k] = NuIO[s] · TsIn[s]

3.3.1 Delay Model
The total execution time Tall is given by

Tall =

umax∑
u=1

Tstg[u].

Here, Tstg[u] is the total execution time of stage u and given by

Tstg[u] = Twait[u] + Texec[u]

where Twait[u] = (NuIO[u] · NLmp[u] + NsDep[Asub[u]]

−1) · TuIn[u]

Texec[u] = TpLat[u][NuIO[u]] + TrLat[u][NuIO[u]].

Here Twait[u] corresponds to the delay between the first input
and the last input in the lumped execution in stage u. Thus, if
NLmp[u] is larger, Twait[u] also becomes longer. After the last in-
put data is available, the final instance, which depends on the last
input, is executed sequentially. Note that earlier instances have
already been invoked as shown in Fig. 5. This execution time
corresponds to Texec[u]. TpLat[u][NuIO[u]] and TrLat[u][NuIO[u]]
represent the execution times by the core and the memory access
latency respectively, namely they are given by

TpLat[u][NuIO[u]] =
Asub[u+1]−1∑

s=Asub[u]

Tproc[Aproc[u]][s]

TrLat[u][NuIO[u]] =
Asub[u+1]−1∑

s=Asub[u]

(Tread[Aram[u]][s] +

Twrt[Aram[u]][s]).

The total deadline constraint is simply given by

TgDl ≥ Tall =

umax∑
u=1

Tstg[u]. (1)

Here, Tstg[u] is the worst case delay of stage u. This is a necessary
condition.

For each stage, the deadline constraint of stage u is given by

TuOut[u] ≥
Asub[u+1]−1∑

s=Asub[u]

Tproc[Aproc[u]][s]. (2)

If this constraint is violated, an additional delay occurs in this
stage u.
3.3.2 Energy Model

The total energy consumption Eall is the sum of each stage’s
energy consumption and is given by

Eall =

umax∑
u=1

Estg[u] ·
umax∏

u′=u+1

NuIO[u′]. (3)

The product represents that earlier stages are executed for more
instances than later stages when NIO is more than 1.

Here, Estg[u] is the total energy consumption of stage u and is
given by

Estg[u] = Edyn[u] + Estat[u] + Edpm[u].

Edyn[u], Estat[u], Edpm[u] correspond to the dynamic energy,
the static energy and the energy overhead of DPM respectively.

Edyn[u] is given by

Edyn[u] =
Asub[u+1]−1∑

s=Asub[u]

(
NsDep[s] · Eread[Aram[s]][s]

+EpDyn[Aproc[u]][s] + Ewrt[Aram[s + 1]][s]
)
.

These clauses represent the dynamic energy of the memory read,
the processor and the memory write respectively and Edyn[u] is
their sum for all subtasks in stage u. Note that the output data is
written to the next stage’s memory.

Estat[u] is given by

Estat[u] =
Asub[u+1]−1∑

s=Asub[u]

(
TuOut[u] · PrStat[Aram[s]][s][NRam[s]]

)

+

(
(1 − BeSlp[u]) · PpStat[Aproc[u]] · TuOut[u]

+BeSlp[u] ·
(
PpStat[Aproc[u]] · Tproc[Aproc[u]][s] +

PpStby[Aproc[u]] · (TuOut[u] − Tproc[Aproc[u]][s])
))
.

The first clause represents the static energy of the memory, which
is proportional to the capacity (NRam[s]). The second clause rep-
resents the sum of the static energy when PG is not applied and
the static and the stand-by energy when PG is applied. If PG
is not applied in stage u, the static power PpStat[Aproc[u]] is con-
sumed in both active and idle periods. On the other hand, if PG
is applied, the static power PpStat[Aproc[u]] is consumed only in
the active period and the smaller static power PpStby[Aproc[u]] is
consumed in the idle period.

Edpm[u] is given by

Edpm[u] = BeSlp[u] · EpDpm[Aproc[u]]/NLmp[u].

When PG is applied, the DPM overhead (EpDpm[Aproc[u]]) is con-
sumed every NLmp[u] executions.

Our goal is to find the best configuration that minimizes Eall

under delay constraints.

4. System Design Aid

4.1 Design Space
In the previous section, we have listed all input parameters and

search variables. The search variables are umax, Asub[u], Aproc[u],
Aram[s], BeSlp[u], NLmp[u].

Finding an optimal design is equal to finding the best solution
of these variables.

4.2 Brute Force Search
Since all variables are integers, it is possible to search all com-

binations by a brute force approach, namely, to find the best solu-
tion, which required the minimum energy while satisfying delay

c© 2014 Information Processing Society of Japan 41



IPSJ Transactions on Advanced Computing Systems Vol.7 No.3 37–46 (Aug. 2014)

constraints, from all combinations in the search space.
When a combination of values is chosen, the total energy con-

sumption is calculated by Eq. (3) and the delay constraints are
verified by Eqs. (1) and (2).

This algorithm definitely has an exponential computation com-
plexity. This complexity is given by

O(S · Mumax ).

Here S is a number of the combination of stage selection, namely
S = (smax−1)!/((smax−1−umax)!umax!), M is a number of the pos-
sible designs of each stage namely, M is the product of the num-
bers of candidate core, memory, sleep mode and upper limit of the
NLmp[u]. The upper limit of NLmp[u] is smaller than TgDl/TuIn[u].

When smax and umax, which correspond to the maximum num-
ber of subtasks and cores respectively, are increased, the compu-
tation complexity is exponentially increased.

4.3 Dynamic Programming
To alleviate the huge computation complexity problem, we

propose a sophisticated algorithm using dynamic programming.
First we quantize the execution time t, namely t = n·Δt (n ∈ N).

In this equation, Δt is the quantization step. We call each possi-
ble assignment of the variables design of stage u and assign ID
1, 2, . . . , cmax(u). When searching the best design from every pos-
sible design for stage 1, . . . , u − 1 and design 1, . . . , c for stage u

and the total latency is shorter than t, take the lowest energy con-
sumption Ec(t, u, c). Also, when using design c for stage u, take
the total delay T (c) and the energy consumption E(c). Here, T (c)
is also quantized, namely T (c) is rounded up to the nearest n · Δt.
Then, the following equation is established.

Ec(t, 0, 0) := 0

Ec(t, u, c) = min(EcAdd, EcOther)

where EcOther := min
c′<c

Ec(t, u, c′)

EcAdd := E(c) + Ec(t − T (c), u − 1, cmax(u − 1))

Here, EcOther corresponds to the energy when the design c is
not used, and EcAdd corresponds to the energy when the design c

is used. Based on this equation, the optimal design of the target
system is found by dynamic programming.

Specifically, from the first stage (u = 1), calculate Tstg[u],
Estg[u] for design 1, . . . , c. There is a tradeoff between delay and
energy. From the designs that Tstg[u] is shorter than t, the small-
est Estg[u] is stored in Ec(t, 1, c). Then move to next stage. When
Ec(TgDl, umax, cmax) is determined, obviously, it is the minimum
energy consumption with the best configuration.

As we mentioned, t is quantized, the total number of Ec is a
polynomial of TgDl/Δt, umax, cmax. This restriction helps to re-
duce the computation complexity by providing a solution close to
the optimal.

As a result, the computation complexity of this algorithm is
given by

O(S · M · umax/Δt).

This strategy successfully avoids the exponential computation
complexity related to umax. Note that S still has an exponential
complexity on smax.

Table 2 Parameters of processor cores.

Parameter RX63N [11] RX210 [12] RL78 [13]

ID (p) 1 2 3
PpStby 1.86×10−5 W 1.35×10−6 W 6.90×10−7 W
PpStat 7.50×10−3 W 5.25×10−2 W 1.62×10−3 W
EpDpm 1.067×10−4 J 4.158×10−4 J 2.239×10−7 J

Table 3 Task related parameters of DTMF.

sn set of subtask ID {1, 2, 3, 4}
TgIn Input interval of task 12.5 µs
TgDl Total deadline of task 12.0 ms

Table 4 Task and core related parameters of DTMF.

s = 1 s = 2 s = 3 s = 4

EpDyn[p][s] p = 1 1.56e-7 7.8e-7 3.047e-7 4.875e-9
p = 2 1.999e-7 9.995e-7 3.905e-7 6.247e-8
p = 3 5.693e-8 2.847e-7 1.112e-7 1.779e-9

Tproc[p][s] p = 1 1.00e-6 5.00e-6 1.953e-6 3.125e-8
p = 2 2.115e-6 1.058e-5 4.131e-6 6.611e-7
p = 3 4.125e-6 2.063e-5 8.057e-6 1.289e-7

Table 5 Task and memory related parameters of DTMF.

s = 1 s = 2 s = 3 s = 4

Eread[r][s] r = 1 4.62e-9 9.24e-9 9.24e-9 7.22e-11
r = 2 2.64e-9 5.28e-9 5.28e-9 4.13e-11

Tread[r][s] r = 1 1.0e-8 2.0e-8 2.0e-8 1.56e-10
r = 2 2.0e-8 4.0e-8 4.0e-8 3.13e-10

Ewrt[r][s] r = 1 9.24e-9 9.24e-9 7.22e-11 3.61e-11
r = 2 5.28e-9 5.28e-9 4.13e-11 2.06e-11

Twrt[r][s] r = 1 2.0e-8 2.0e-8 1.56e-10 7.81e-11
r = 2 4.0e-8 4.0e-8 3.13e-10 1.56e-10

PrStat r = 1 6.29e-8·n 6.29e-8·n 6.29e-8·n 3.15e-8·n
[r][s][n] r = 2 1.26e-9·n 1.26e-9·n 1.26e-9·n 6.29e-10·n

* r = 1: SRAM, r = 2: STT-RAM

5. Evaluation

5.1 Evaluation Setup
In our evaluation, we made both brute force and dynamic

programming based search programs. These programs are par-
allelized, written by Haskell and compiled by “The Glorious
Glasgow Haskell Compilation System, version 7.4.2.” These
programs are run on dual Intel(R) Xeon(R) CPU E5-2680 with
192 GB RAM.

We measured and modeled three processor cores and two kinds
of memories. Major collected parameters are shown in Ta-
ble 2. As an example of real applications, we modeled Dual-Tone
Multi-Frequency (DTMF) [14]. Major parameters are shown in
Table 3, Table 4 and Table 5. Both NsIO[s] and NsDep[s] of sub-
tasks 1, 2, 4 are 1 and 128 for subtask 3. We also use some
synthetic tasks for evaluation.

5.2 Exploration Speed and Accuracy
As we mentioned, a tradeoff between the computation com-

plexity and accuracy depends on Δt. To find the best Δt, we eval-
uate the optimal configuration for several Δt with a DTMF task
as shown in Table 6.

From this result, when Δt becomes smaller, errors of energy
and latency also become smaller. When Δt is 0.0003, both errors

c© 2014 Information Processing Society of Japan 42



IPSJ Transactions on Advanced Computing Systems Vol.7 No.3 37–46 (Aug. 2014)

Table 6 Tradeoff between computation time and accuracy (umax = 2).

Δt [s] Energy [J] Latency [s] Exec time [s]

0.01 no configuration found 0.08
0.003 2.153e-4 1.163e-2 2.2
0.001 2.153e-4 1.163e-2 2.5
0.0003 2.146e-4 1.193e-2 4.0
0.0001 2.146e-4 1.193e-2 5.8
0.00003 2.145e-4 1.199e-2 13.2
Brute Force 2.145e-4 1.199e-2 11.3

Table 7 umax vs. execution time.

umax 1 2 3 4

Brute Force 0.05 s 13.1 s * *
Dynamic Programming
(proposed) 0.04 s 4.0 s 16.0 s 24.9 s

* memory overflow

Table 8 smax vs. execution time.

smax 2 4 6 8 10
umax 1 2 3 4 5
Brute Force 0.03 s 1.7 s 262.7 s * *
Dynamic Programming
(proposed) 0.08 s 0.66 s 9.0 s 143.2 s 2035 s

* memory overflow

are smaller than 1%. Thus, we conclude 0.0003 (0.3 ms) is a good
candidate for this size of applications and use this value in the rest
of this paper. This result also shows that if Δt is small enough, the
proposed algorithm can reach to the optimal solution.

Next, we evaluate the exploration speed with DTMF when umax

is from 1 to 4 as shown in Table 7. With a brute force program,
we cannot get any result when umax is larger than 2 due to memory
overflow. In contrast, our dynamic programming based algorithm
can find the optimal configuration within 25 seconds.

We also evaluate the exploration speed with a wide variaty of
smax for a synthetic task which consists of several subtasks whose
sizes are the same. The number of subtasks (smax) are varied from
2 to 10 for the evaluation. The maximum number of the cores
(umax) are set to half of smax. Input interval TgIn and Total dead-
line TgDl are 10 ms and 100 ms respectively.

The results are shown in Table 8. With a brute force program,
we cannot get any result when smax is larger than 6 due to mem-
ory overflow. In contrast, our algorithm can still find the optimal
configuration in a reasonable time. However, these results also
show that the execution time inreased exponentialy with smax.

From these results, we conclude that the evaluation speed is
fast enough for current emmbedded systems and applications.
However, a further speed upgrade is also important for more com-
plicated systems and applications in the future.

5.3 Lumped Execution
We measured the effectiveness of a lumped execution with a

simple sampling application on an RX63N (p = 1). This task
consists of one subtask, which consumes 12.5 µJ per instance.
We evaluate it with a variety of sensing intervals (TgIn). TgDl is
set to 10 times of TgIn.

The result is shown in Fig. 6. Always On and Always PG rep-
resent no lumped execution and always “On” and “PG” in idle
period regardless of the length of it respectively. Lumped & PG

represents lumped execution with PG. The y-axis represents the

Fig. 6 Input interval vs. efficiency (sampling task).

Fig. 7 Task size vs. efficiency (synthetic task).

energy consumption per sensing.
This result shows that as the sensing interval becomes longer

the energy of Always On also increases due to its large static
power. On the other hand, the energy of Always PG consumes
almost a constant energy by reducing the static power. How-
ever, when the sensing interval is short, the energy consumption
is larger than that of Always On due to its large PG overhead.

In contrast, Lumped & PG successfully reduce the energy con-
sumption. In this execution, 10 instances are lumped (NLmp[u]
=10) and the PG frequency becomes 1/10. As a result, Lumped

& PG achieve 81% of energy reduction compared to Always PG.

5.4 Case Study
5.4.1 Synthetic Task

To observe the general trend, we use a synthetic task which
consists of 10 subtasks whose sizes are the same. The sizes of
subtasks are varied for the evaluation. And we evaluate for a
wide variety of subtask size. The input interval TgIn and the total
deadline TgDl are 10 ms and 100 ms respectively.

The result is shown in Fig. 7. The lines show the best configu-
ration when umax is set to 1, 2 and 3. The x-axis shows the relative
task size normalized to the maximum executable size on a single
smallest core (p = 3). The y-axis shows the energy efficiency
that is also normalized to the energy efficiency of the smallest
processor (p = 3).

This result shows that 1-core configuration is the best when the
task size is smaller than 1. When the task size is very small, the
static energy is not negligible. Thus, a multi-core configuration
is not preferable. a 2-core configuration is the best when the task
size is between 1 and 2. When the task size is larger than 1, a

c© 2014 Information Processing Society of Japan 43



IPSJ Transactions on Advanced Computing Systems Vol.7 No.3 37–46 (Aug. 2014)

Fig. 8 Energy breakdown of DTMF.

single smallest core (p = 3) cannot execute this task. Thus, a
bigger core, which is less efficient, should be used. On the other
hand a dual smallest core can execute this task and achieve the
best efficiency. Similarly, a triple smallest core is the best when
the task size is more than 3.

When the task size exceeds the execution ability of the smallest
core, a bigger core is chosen. Within a single core, the efficiency
immediately drops to 0.43, which is the efficiency of the biggest
core. In contrast, with a dual- or triple-core, the efficiency drops
gradually. While the efficiency is between 1.0 and 0.43, a hetero-
geneous multi-core is the best configuration.
5.4.2 Real Application

We evaluate with DTMF as an example of real applications and
the result is shown in Fig. 8. The y-axis shows the total energy
consumption per output. The left bar of each pair is the result
with a lumped execution and the right bar is that of without any
lumped execution. In each bar, the solid parts (Dynamic) repre-
sent the dynamic energy of each core, hatched parts (Overhead)
represent the static energy and power gating overhead of each
core and the black part (memory) represents all memory related
energy. These results show that the lumped execution success-
fully achieve overhead energy reduction and the total energy con-
sumption is reduced from 17% (2core) to 37% (1core) while the
dynamic energy does not change. The memory related energy
is less than 1% of the total energy consumption and negligible.
Meanwhile, the leftmost bar corresponds to the best configura-
tion with a single core. We assume this single core configuration
is a limit of manually optimization. Compared with this result, a
3-core configuration reduced 32% of energy consumption.

With a 4-core configuration, the energy consumption is slightly
bigger than that of a 3-core configuration. This is because of a
static energy overhead.

6. Related Work

The wide variety of scheduling techniques is proposed to make
full usage of various low power technologies. In this paper, we
focus on deadlines that are longer than input intervals and observe
a lumped execution is important.

However, most previous work assumes that deadlines of tasks
are equal to their input intervals. Therefore, a lumped execution
is not applicable [15], [16]. One exception is Ref. [8], they lump

two instances by scheduling one instance at the end of a time
period and the next instance at the beginning of the next time
period. However, this approach cannot lump more than two in-
stances. Another similar approach is found in Ref. [17]. They
focus on several tasks that execute on the same processor and
lump multiple instances of the different tasks. Since they also as-
sume deadlines are the same as input intervals, multiple instances
of the same task cannot be lumped.

Their assumption is helpful to limit a search space and/or es-
tablish scheduling algorithms. However, from the limited search
space, a limited optimal scheduling can be found.

We have solved this computation complexity problem by mod-
eling and dynamic programming.

7. Conclusion

For developing multi-core embedded systems, it is challenging
to find an optimal design from their extensive design space.

In this paper, we have proposed a design method for embedded
systems to minimize its energy consumption under performance
constraints. We firstly established energy models for low power
techniques and our target systems. We then explored for the best
configuration by constructing an optimization problem. Finally,
we proposed an approximate solution using dynamic program-
ming with a lower computation complexity and compared it to a
brute force explicit solution. We confirmed with our evaluations
that the proposed method successfully found a near-optimal con-
figuration with a reasonable execution time. We also evaluated
with a real application and found a better configuration which re-
duced the total energy consumption by 32% if compared to the
manually optimized single core configuration.

We have successfully removed an exponential complexity on
the number of cores, however, an exponential complexity on the
number of subtasks still remains. To cope with this problem is an
important future work. Additionally, to validate our model with
real hardware is also an important future work.

Acknowledgments This work is supported by Normally-Off
Computing Project of NEDO in Japan.

References

[1] Puri, R., Stok, L. and Bhattacharya, S.: Keeping Hot Chips Cool, Proc.
42nd Annual Design Automation Conference (DAC ’05), pp.285–288,
ACM (2005).

[2] Zhao, L., Ikebuchi, D., Saito, Y., Kamata, M., Seki, N., Kojima, Y.,
Amano, H., Koyama, S., Hashida, T., Umahashi, Y., Masuda, D.,
Usami, K., Kimura, K., Namiki, M., Takeda, S., Nakamura, H. and
Kondo, M.: Geyser-2: The Second Prototype CPU with Fine-grained
Run-time Power Gating, 16th Asia and South Pacific Design Automa-
tion Conference (ASP-DAC), pp.87–88 (2011).

[3] Usami, K., Kudo, M., Matsunaga, K., Kosaka, T., Tsurui, Y., Wang,
W., Amano, H., Kobayashi, H., Sakamoto, R., Namiki, M., Kondo, M.
and Nakamura, H.: Design and Control Methodology for Fine Grain
Power Gating based on Energy Characterization and Code Profiling
of Microprocessors, 19th Asia and South Pacific Design Automation
Conference (ASP-DAC) pp.843–848 (2014).

[4] Benini, L., Bogliolo, A. and De Micheli, G.: A survey of design
techniques for system-level dynamic power management, IEEE Trans.
Very Large Scale Integration (VLSI) Systems, Vol.8, No.3, pp.299–316
(2000).

[5] Weiser, M., Welch, B., Demers, A. and Shenker, S.: Scheduling for
Reduced CPU Energy, Proc. 1st USENIX Conference on Operating
Systems Design and Implementation (OSDI ’94), USENIX Associa-
tion (1994).

[6] Yao, F., Demers, A. and Shenker, S.: A scheduling model for reduced

c© 2014 Information Processing Society of Japan 44



IPSJ Transactions on Advanced Computing Systems Vol.7 No.3 37–46 (Aug. 2014)

CPU energy, Proc. 36th Annual Symposium on Foundations of Com-
puter Science, 1995, pp.374–382 (1995).

[7] Huang, W. and Wang, Y.: An optimal speed control scheme supported
by media servers for low-power multimedia applications, Multimedia
Systems, Vol.15, No.2, pp.113–124 (2009).

[8] Gerards, M.E.T. and Kuper, J.: Optimal DPM and DVFS for Frame-
based Real-time Systems, ACM Trans. Archit. Code Optim., Vol.9,
No.4, pp.41:1–41:23 (2013).

[9] Augustine, J., Irani, S. and Swamy, C.: Optimal Power-Down Strate-
gies, SIAM J. Comput., Vol.37, No.5, pp.1499–1516 (2008).

[10] Pollack, F.: Micro-32 Keynote.
[11] Renesas Electronics Corporation: RX63N, available from

〈http://japan.renesas.com/products/mpumcu/rx/rx600/rx63n 631/
index.jsp〉.

[12] Renesas Electronics Corporation: RX210, available from
〈http://japan.renesas.com/products/mpumcu/rx/rx200/rx210/
index.jsp〉.

[13] Renesas Electronics Corporation: RL78, available from
〈http://japan.renesas.com/products/mpumcu/rl78/index.jsp〉.

[14] Renesas Electronics Corporation: M3S-DTMF-Tiny, available from
〈http://japan.renesas.com/products/tools/middleware/tiny soft/
dtmf/m3s dtmf tiny/index.jsp〉.

[15] Aydin, H., Melhem, R., Mosse, D. and Mejia-Alvarez, P.: Power-
aware scheduling for periodic real-time tasks, IEEE Trans. Comput.,
Vol.53, No.5, pp.584–600 (2004).

[16] Seo, E., Jeong, J., Park, S. and Lee, J.: Energy Efficient Scheduling of
Real-Time Tasks on Multicore Processors, IEEE Trans. Parallel and
Distributed Systems, Vol.19, No.11, pp.1540–1552 (2008).

[17] Niu, L. and Quan, G.: Peripheral-Conscious Scheduling on Energy
Minimization for Weakly Hard Real-time Systems, Design, Automa-
tion Test in Europe Conference Exhibition, 2007 (DATE ’07), pp.1–6
(2007).

Takashi Nakada received his M.E. and
Ph.D. degrees from Toyohashi Univer-
sity of Technology in 2004 and 2007 re-
spectively. He has been a Project Assis-
tant Professor at the University of Tokyo
since 2012. His research interests in-
cludes Normally-Off Computing, proces-
sor architecture and related simulation

technologies. He is a member of IEEE, ACM and IEICE.

Kazuya Okamoto received his M.E. de-
gree from The University of Tokyo in
2013. He is now the President at the No-
Consulting, and an adviser at the Gen-
estream, Inc. His research interests are
processor architecture and compiler.

Toshiya Komoda received his M.E. and
Ph.D. degrees from The University of
Tokyo in 2010 and 2014 respectively. He
has been engaged in the DeNA Co., Ltd.
since 2014. His research interests are pro-
cessor architecture and compiler.

Shinobu Miwa received his Doctor of In-
formatics degree from Kyoto University
in 2007. He is now an Assistant Profes-
sor at the University of Tokyo. His re-
search interests are computer architecture,
high performance computing and embed-
ded systems. He received the Best Paper
Award in 2010 Embedded System Sym-

posium. He is a member of IEEE and IEICE.

Yohei Sato received his B.S. and M.S.
degrees from The University of Aizu in
1999 and 2001 respectively. Since 2001,
he has been involved in CMOS analog de-
velopment department, in Hitach, Ltd. and
Renesas Electronics Corporation. He de-
veloped high speed flash A/D converters
and power management IPs. His current

research interest is Normally-Off computing architecture.

Hiroshi Ueki received his B.S. and M.S.
degrees in physics and nuclear technology
from Kyoto University. Since 1991, he
has been involved in microcontroller and
SoC design, in Mitsubishi Electric Corpo-
ration and Renesas Electronics Corpora-
tion. He developed CPU and peripheral
circuits for HDD controller, flash-memory

control module for microcontroller and power management mod-
ule for SD-card controller. He is now a Section Manager of power
module design of System Integration Business Division in Rene-
sas Electronics Corporation.

Masanori Hayashikoshi received his
B.S. and M.S. degrees in electronic engi-
neering from Kobe University in 1984 and
1986 respectively. In 1986, he joined the
LSI Research and Development Labora-
tory, Mitsubishi Electric Corporation. He
is currently a Chief Professional of Core
Technology Business Division in Renesas

Electronics Corporation. Since 1986, he has been engaged in the
research and development of EEPROM’s, high density DRAM’s,
Low power SDRAM’s, embedded MRAM’s for MCUs, and
Normally-Off computing architecture as the challenge for further
low-power solution with NVRAM.

c© 2014 Information Processing Society of Japan 45



IPSJ Transactions on Advanced Computing Systems Vol.7 No.3 37–46 (Aug. 2014)

Toru Shimizu received his Ph.D. degree
of information science from The Uni-
versity of Tokyo. Since 1986, he has
been involved in microprocessor, micro-
controller and SoC design R&D, in Mit-
subishi Electric and Renesas Electron-
ics Corporation. He developed leading-
edge RISC microprocessors with embed-

ded DRAM, micro-controllers with embedded flash memory and
multi-core microprocessor. His R&D activities cover not only
LSI architecture and LSI design, but embedded software and ap-
plication system technologies. He is an IEEE Fellow and a senior
member of IEICE.

Hiroshi Nakamura received his Ph.D.
degree from The University of Tokyo in
1990. He is a Professor in the Grad-
uate School of Information Science and
Technology and a Director of Informa-
tion Technology Center at The University
of Tokyo. His research interests include
power-efficient computer architecture and

VLSI design for high-performance and embedded systems. He
is now leading the “Normally-Off Computing Project” supported
by NEDO/METI. He is a senior member of IEEE and ACM.

c© 2014 Information Processing Society of Japan 46


