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Test compression/decompression schemes using variable-length coding, e.g., Huffman cod-
ing, efficiently reduce the test application time and the size of the storage on an LSI tester.
In this paper, we propose a model of an adaptive decompressor for variable-length coding and
discuss its property. By using a buffer, the decompressor can operate at any input and output
speed without a synchronizing feedback mechanism between an ATE and the decompressor,
i.e., the proposed decompressor model can adapt to any test environment. Moreover, we pro-
pose a method for reducing the size of the buffer embedded in the decompressor. Since the
buffer size depends on the order in which test vectors are input, reordering test vectors can
reduce the buffer size. The proposed algorithm is based on fluctuations in buffered data for
each test vector. Experimental results show a case in which the ordering algorithm reduced

the size of the buffer by 97%.

1. Introduction

As the size and complexity of VLSI circuits
increase, the size of test sets for the circuits
also increases. The increase in test set size re-
quires larger storage and a longer time to trans-
port test sets from the storage device of a VLSI
tester (ATE) to a circuit-under-test (CUT).
Compression/decompression of test data is an
efficient method of overcoming this problem.
In this scheme, a given test input set T is
compressed into T” using a data compression
technique and stored in a VLSI tester storage.
While a CUT on a chip is tested, the com-
pressed test input set T” is transported to a de-
compressor on the chip, and then it is restored
to T. The compressed test set can reduce the
time for test transportation, not only the size
of the test storage device.

Several compression methods for test in-
put sets have been proposed )~ These
methods are based on data compression tech-
niques such as run-length coding®, binary
coding 2", XOR-Network ®), Huffman cod-
ing ¥-°):9~11) " Golomb coding®, FDR cod-
ing™, and VIHC coding®. These methods
can be divided into two categories based on the
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lengths of codewords: fixed-length coding )~

and variable-length coding®~'"). The former
methods assign test vectors, partitioned into
blocks, to fixed-length codewords; the latter as-
sign them to variable-length codewords. For ex-
ample, Huffman coding assigns frequently ap-
pearing blocks to short codewords. Variable-
length coding like Huffman coding is expected
to enable higher compression than fixed-length
coding.

Even if such variable-length codewords are
applied to a decompressor from an ATE at a
constant speed (or frequency), the output speed
of the decoded test data to the CUT is not
constant, unlike when fixed-length codewords
are used. This fact complicates the test ap-
plication of variable-length codewords. To de-
compress such codewords appropriately, previ-
ous researchers 9~8) assumed that a decompres-
sor has a synchronizing feedback mechanism,
which informs the ATE of whether the decom-
pressor can receive the compressed test data.
In Refs.4), 5), 11), instead of having such a
synchronizing feedback mechanism, a sufficient
condition must be satisfied concerning the rela-
tionship between the speeds of the compressed
input data and decompressed output data. In
Ref. 5), the ratio of the input and output speeds
(clock frequencies) is restricted according to the
minimum length of codewords.

In this paper, we propose a model of an adap-
tive decompressor based on the decompressor
proposed in Ref.5). This model introduces a
buffer that permits the decompressor to oper-
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ate at any input/output speed without a syn-
chronizing feedback mechanism so that it can
adapt to various test environments. Moreover,
we analyze the relationship between the in-
put/output speed and the buffer size. From the
viewpoint of the area overhead of the buffer, the
size of the buffer should be small. We therefore
determine a lower bound for the buffer size, and
then attempt to decrease the buffer size to the
lower bound. Since the buffer size depends on
the order in which test vectors are input, re-
ordering the test vector can reduce the size of
the buffer. Our proposed test vector reorder-
ing algorithm can significantly reduce the buffer
size, making it close to the introduced lower
bound.

This paper is organized as follows. In Sec-
tion 2, we explain a compression method using
Huffman coding® and points out a drawback
of the decompressor. In Section 3 we propose a
model of a decompressor with a buffer and dis-
cusses the relationship between the buffer size
and the input/output speed. Section 4 intro-
duces an algorithm to reduce the buffer size by
reordering test vectors. Section 5 gives some
experimental results of the proposed vector re-
ordering algorithm, and Section 6 concludes
this paper.

2. Test Compression/Decompression
Using Variable-length Coding

In this section, first, we explain the method
proposed in Ref. 5) as an example of test com-
pression using variable-length coding. To en-
code a given test set, a test vector in the test
set is partitioned into several n-bit blocks; i.e.,
each block is an n-bit pattern. A test set that
consists of six test vectors partitioned into three
4-bit blocks is shown in Fig. 1. The reason for
partitioning a test vector into blocks is to keep
down the complexity of a decompression cir-
cuit and decompression delays. Each block pat-
tern is mapped to a variable-length codeword.
The length of a codeword depends on the fre-
quency with which each pattern appears in the
test set. The more frequently a pattern occurs,
the shorter the length of the codeword for it.
Table 1 shows the frequency, f;, of the occur-
rence of each distinct pattern, p;, in the test set
of Fig.1 and the corresponding Huffman code-
word, ¢;. The compression ratio, r, is defined
by (D—D.)/D, where D and D, are the sizes of
a test set before and after compression, respec-
tively. In this example, r = (72—32)/72 ~ 0.56.
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t1 | 0000 0000 0000 | 4
ta | 0000 0000 0001 | t5 | 0001 0000 0000
ts3 | 0000 0000 0010 | ts | 0110 0000 0100

Fig.1 Test vector set T

0000 0011 0000

Table 1 Huffman table for T

i | distinct pattern p; | freq. f; | codeword c¢;
1 0000 12 1
2 0001 2 00
3 0110 1 0101
4 0010 1 0100
5 0100 1 0111
6 0011 1 0110
decompressor
v [bit/sec.]
»  Huffman
input from decoder
i ouiputto
u [bit/sec.]
serializer

Fig.2 Decompressor proposed in Ref. 5).

The decompressor proposed in Ref.5) is
shown in Fig. 2. It consists of a Huffman de-
coder and a serializer. A codeword is decoded
to the corresponding block pattern after it is
entirely fed to the Huffman decoder. The de-
compressed block pattern is stored in the seri-
alizer and scanned out into a (single) internal
scan chain of the CUT. The input and the out-
put speeds of the decompressor are v and u, re-
spectively. Here, because we assume both the
numbers of primary input and output are sin-
gle, the operation frequencies of the Huffman
decoder and the serializer are also v and u, re-
spectively.

Jas, et al.® introduce a condition concerning
the input and output speeds to guarantee that
Huffman codewords are decoded appropriately,
instead of having synchronizing feedback from
the CUT to the ATE. The condition is

U b

- > 1
v — min_code_length (1)

where min_code_length is the length of the
shortest of all the codewords, and b is the
size of a partitioned block. Since b >
min_code_length, the output speed u must be
greater than the input speed v; i.e., the CUT
must operate faster than the ATE.

As an example, Fig. 3 shows a time chart for
a case in which the condition in Inequality (1)
is not satisfied. In this case, three codewords,
(1,0110, 1), shown in Table 1, i.e., test vector
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time 1[2]3]4]5][6]7]s8 decompressor
input |10 1 1 o]1] v [bit/sec
0000 loooo [ ] | Huffman
v 001 1" % input from decoder .
output |00 0 0 Jo0 0 1 1 ATE # bIoits] | tput to
Fig.3 Time chart of case in which Inequality (1) is pUﬁef SUT
not satisfied. (size: B) u [bit/sec.]

t4, are applied to the decompressor in order.
The output speed is equal to the input speed,
ie, u/v = 1. Each codeword is immediately
decoded into the corresponding block pattern.
For example, at time 1, codeword 1 is applied
and decoded immediately into the correspond-
ing block pattern, 0000. The block pattern goes
through the output of the decompressor from
times 1 through 4. Similarly, at time 6, code-
word 1 is decoded into block pattern 0000. This
block pattern, however, does not go through the
output of the decompressor because the prior
block pattern, 0011, corresponding to codeword
0110 is still read out from times 5 through 8. In
this case, because the block size b is 4 and the
minimum codeword length min_code_length is
1, Inequality (1) is not satisfied.

3. Model of Adaptive Decompressor
with Buffer

The decompressor of Ref.5) forces the in-
put and output speeds to satisfy Inequality (1).
However, a test environment does not necessar-
ily permit such a condition. We enhance the
decompressor of Ref.5) so that it can adapt to
any test environment.

A model of the enhanced decompressor is
shown in Fig.4. The difference between the
decompressor of Ref.5) and this model is that
the serializer of Fig.2 is replaced with a buffer
in Fig.4. The size of the buffer embedded in
the decompressor is denoted by B bits. Note
that the serializer of the conventional model of
Fig. 2 can be considered one block-sized (4-bit)
buffer.

The proposed decompressor can appropri-
ately decompress test sequences even when In-
equality (1) is not satisfied. The time chart of
Fig. 5 depicts a case where the test sequence
can be appropriately decompressed when the
parameters u, v, b and min_block_length are the
same as in the unsuccessful example of Fig. 3.
Block pattern 0000 corresponding to codeword
1 applied at time 6 is buffered through time 9,
and then read out.

In this model, next, we consider the relation-

Fig.4 Decompressor with buffer.

tme [1[2]3]4[5[6[7][8]9]10]11]12
input 0 1 1 0] 1
0000 000— |
0011 [ 0 00 0— buffered
\ y
ouptf o 0 0 0 Jo 0 1 1[0 0 0 0

Fig.5 Time chart with buffer. (One block is
buffered.)

Table 2 d; for distinct patterns in Table 1.

u/v=1 | uf/v=2
dy 3 2
do 2 0
d3, da, ds, dg 0 —4

ship between the input and output speeds, v
and u, and the buffer size, B. First of all, we
define the difference (increase or decrease), say,
d;, in buffered test data after applying a code-
word, ¢;, to the decompressor. It is the differ-
ence of test data outgoing from the buffer and
that incoming to the buffer and is given by the
following equation:

u
A 2
d; =b " li, (2)

where b is the block size, u/v is the ratio of the
output speed to the input speed, and I; is the
length of codeword c;. The first term on the
righthand side, b, is the amount of test data
coming into the buffer, and the second term,
u/v - l;, is the amount of test data going out
during a period of applying the codeword c;.
Table 2 shows d; for each distinct block pattern
in Table 1 when u/v = 1 and u/v = 2. For
example, the d; for the first block pattern, 0000,
is 3 when u/v = 1. This means the 4 bits, i.e.,
b = 4, of test data is incoming while 1bit, i.e.,
u-l;/v =1, of test data is outgoing.

The buffer size, B, must be equal to or larger
than the maximum amount of buffered test data
while applying all test vectors. Suppose we have
a block sequence p1, p2, ps3, ..., par such that
the blocks are obtained by partitioning each
test vector in a given test set, where M is the
number of blocks in the test set. When M block
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patterns are applied to the decompressor in the
order of (p1,p2,ps,...,pn), the buffer size B
can be expressed as

> .
B> max (s;), (3)
where
Si—1Fdi(py)  Sj—1 + dipy) > 0,
> 1
5j = 7= (4)
0 otherwise.

Here, t(p;) is the identification number of the
distinct pattern of block p;. For example, let
the distinct pattern of p; be 0000; ¢(p;1) is 1
from Table 1, and therefore, dy(,,) = d1. The
term s; is the amount of buffered test data af-
ter p; is applied. It is the accumulation of the
differences of blocks pi, pi, p2, ..., pj, ie.,
di(p)+di(py)+- - +dy(p,). Note that the amount
of buffered test data cannot be negative. Ac-
cordingly, the buffer size B is the maximum
amount of buffered test data while applying all
block patterns p1, p2, p3, -- ., Pm, as shown by
Inequality (3).

Here, consider a case where the buffer size B
is zero in the proposed model. Clearly, one such
case is that d; < 0 for all distinct block patterns
p; according to Inequality (3) and Eq. (4). From
Eq. (2), this case is represented by

u _ b

02 (5)
From the definition of min_code_word, the in-
equality b/min_code_word > b/l; is satisfied.
Therefore, this case in which the buffer size is
zero has the condition

U b

v = min_code_word’ (6)
This inequality coincides with Inequality (1).
Namely, the proposed model of the decompres-
sor includes the model proposed in Ref. 5).

4. Test Vector Reordering

An embedded buffer should be small. In this
section, we propose a method of minimizing the
buffer size using test vector reordering.

4.1 Order of Applied Blocks and

Buffer Size

As shown in Inequality (3) and Eq.(4), the
buffer size B depends on the order of blocks
shifted into the decompressor. A time chart il-
lustrating a case where codewords (0110,1,1)
are applied into the decoder in order is shown
in Fig.6. This order of codewords is the re-
ordered one of Fig. 5, (1,0110, 1). In this chart,
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tme | 1[2[3]4]5][6]7[8]9]10]11]12]13
input [0 1 1 o[ 1] 1]
[ buffered
[o000 ]
00 buffered
A 4 Y
output [o 0o 1 1Jo o o oJo o©

Fig.6 Time chart when block order is
(0110, 1, 1) (Two blocks are buffered).

two block patterns corresponding to codeword
1’s applied at times 5 and 6 are buffered be-
cause the first block pattern, 0011, correspond-
ing to codeword 0110 is still using the output of
the decompressor from times 4 through time 7.
When we compare Fig. 5 with Fig. 6, the buffer
required in Fig. 6 is larger. This shows that an
appropriate order of applied codewords exists
to minimize the buffer size.

How can block reordering minimize the buffer
size? As a possible answer, here, we can give a
lower bound of the buffer size, which is a neces-
sary amount of buffered test data, however you
reorder blocks.

Theorem(Lower bound of buffer size): Let
N be the number of distinct block patterns, d;
be the difference of distinct block pattern p;,
and f; be the frequency® of appearance of dis-
tinct block pattern p; in a given test set. A
lower bound of the buffer size, LB, is given by

N
LB=Y d;- i (7)
=1

Proof: Again, consider a sequence of blocks,
P1, P2, P3, - .-, PMm, Where M is the number of
blocks included in the given test set, and the
buffer size is derived from Inequality (3) and
Eq. (4). Instead of Eq.(4), here, we introduce
an equation, sj = s._; + dy(,,;), which is ob-
tained by omitting the second case of Eq. (4).
Since s’ is an arithmetic series whose common
difference is dy(;,), s can be simply represented

i)y O]
by

J
5; = Zdt(:ﬂi)' (8)
=1

Clearly, s; > s’;. Therefore, from Inequality (3)
and the definition of the function max(-), we
have

> N> Y > sh
Bz max (sj) 2 max (sj) > sy (9)

Note that from (8), s/, is the sum of the d;
for all M blocks, so it is uniquely determined

Y This corresponds to the frequency f; in Table 1.
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irrespective of the order of blocks, unlike s/, s},

ey Sy
From M = fi+ fo+--- + fn,

P
:Zd1+2d2+"'+idN
] i i=1

N
—S i (10)

Consequently, from Inequality (9) and Eq. (10),

N
B> max (s;) > Y d;- fi = LB.
i=1

1M
(Q.E.D.)

The lower bound LB can also be com-
prehended intuitively as follows. Block pat-
terns (or codewords) can be classified into two
groups: block patterns p; whose differences
dy(p,) are positive and negative. As expressed in
Eq. (4), the former blocks increase the amount
of buffered data, and the latter blocks decrease
it. Therefore, the sum of the d; for all blocks,
i.e., LB, is the difference resulting from adding
the amount that the buffered test data increases
and the amount that it decreases. Since the
buffer size must be greater than this gap, LB
is a lower bound.

The lower bound LB of the buffer size is use-
ful for the test vector reordering algorithm pro-
posed in the next section.

4.2 Reordering Strategy

In Section 4.1 we considered reordering blocks
(or codewords). However, whether you can re-
order blocks arbitrarily depends on the design
for testing of a given CUT. Here, we assume full
scan design (or combinational circuits). In full-
scan design, the order of the test vectors in a
given test set does not affect the desired fault ef-
ficiency of the test set, and thus, reordering test
vectors is acceptable, though reordering blocks
is not. Hereafter, we consider a method for re-
ordering test vectors to minimize the buffer size.

Transitions in the amount of buffered test
data for two orders of test vectors are shown in
Fig. 7. The solid line corresponds to the case
in which the sequence of test vectors applied is
(t1,ta,t3,ts,t5,t6). In this case, the maximum
buffered test data is 14 bits, and therefore the
buffer size also must be larger than or equal to
14 bits. The broken line corresponds to the case
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14 buffered blocks [bits]

12+
10+
< 5 e " -
6T e ,

4 Voo A re-

2 4 4 \ ’ \ ’

0 : : % % : tir:ne
t1 t2 3 t4 t5 16
------ t1 4 6 3 t2 1

Fig. 7 Transitions in amount of buffered
data in two test vector orders.

>

}buffered data [bits]

3_
ol dax(ta)=2

1/ dinfty)=0

0 — :
11 b Wbs time
-2+ ‘

Fig.8 Fluctuation for vector t4.

of the order (t1,t4, 16, t3,t2,t5). The buffer size
required by this test vector order is 8 bits, which
is smaller than that required by the former or-
der. Consequently, test vector reordering, in
a similar way as block pattern (codeword) re-
ordering, effectively minimizes the buffer size.

Our proposed test vector reordering algo-
rithm is straightforward. The algorithm picks
one test vector, ¢, out of a given test set, V', ac-
cording to our selection rules described below
and appends t at the end of the sequence, S, of
the selected test vectors. S is initially empty.
The test vector selection is repeated until V' be-
comes empty. The sequence S is returned as a
resultant reordered test sequence.

The selection rules for test vectors are based
on the fluctuation in buffered test data for a test
vector, which is represented by concatenating
the differences d; for codewords composing the
test vector. Consider test vector t4 in Fig. 1.
It is composed of two distinct block patterns,
0011 and 0000, whose differences of buffered
test data are d; and dg, respectively. When
u/v = 2, the fluctuation for test vector ¢4 is
shown in Fig.8. We focus on two points in
the fluctuation. One is d;,q.(t), which denotes
the peak amount of buffered test data raised
by a test vector ¢. The other is dj;,(t), which
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is the final amount of buffered test data. Note
that the dy,q.(t) indicates how the buffer size
increases after applying test vector ¢, while the
dyin(t) indicates how the amount of buffered
test data varies after applying test vector ¢.

The rules for test vector selection are as fol-
lows. The first rule is that we select a test vec-
tor that does not increase the buffer size, if pos-
sible. This is a basic rule to greedily keep the
buffer size small. The second rule is that we
select a test vector whose d;q.(t) is maximum
if multiple test vectors can be selected accord-
ing to the first rule. Without increasing the
buffer size, this second rule can select as many
test vectors as possible with large dqz, i.e.,
undesirable test vectors that tend to increase
the buffer size. Furthermore, as the third rule,
if more than one test vector is selected using
these two rules, we select the test vector whose
d i is the smallest of all the test vectors. This
rule can enhance the possibility of selecting as
many test vectors as possible according to the
first rule in the subsequent vector selection.

If no test vector is selected according to the
first rule, i.e., any test vector increases the
buffer size, we attempt to increase the number
of the test vectors selected using the first rule in
the subsequent selection process. For this rea-
son, we select a test vector such that ds;, < 0.
This selection always decreases the amount of
the buffered test data, even though the buffer
size increases, thus increasing the possibility of
increasing the number of test vectors selected
by the first rule. If more than one test vec-
tors satisfies d s, < 0, we select the test vector
whose d,,qz 1S the smallest of these test vectors
to keep the buffer size as small as possible.

If no test vector is selected in the above cases,
i.e., any remaining test vector increases both
the buffer size and the amount of buffered test
data, we dare to select the test vector whose
dmae(t) is @ maximum. Since a test vector with
a large dyaz(t) tends to make the buffer size
large, we believe that such a test vector should
be selected at an early phase of the selection
process, when the buffer size is still small. This
is an application of the second rule®”.

The initial buffer is set to the size required
to increase the chance of selecting many test
vectors using the first rule: select a test vec-
tor with a large d;,q, without increasing the
buffer size. Therefore, the initial buffer size is
set to the lower bound obtained using Eq. (7).
If the lower bound is smaller than the maxi-
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mum d,,qz, the initial buffer size is set to the
maximum d,,qz-
4.3 Test Vector Reordering Algorithm
Based on the above strategy, we propose a
test vector reordering algorithm. Note that
steps (3-1) and (3-2) in the following algorithm
work for cases in which a test vector is selected
using the three rules mentioned above. Steps
(3-3) and (3-4) in the algorithm are for cases
in which no test vector is selected according to
the above rules.
[Test vector reordering for minimal buffer
size]
(1) Let V be a set of test vectors. Let S be the
resultant ordered test sequence. Initially,
S =¢.
(2) Set the buffer size B to max(rtrg;{dmm(t),

LB) and the initial amount of buffered test

data B, to 0.

(3) Repeat steps (3-1) to (3-5) until V = ¢.

(3-1) Set VY = {t|B. + dyaz(t) < B,t €
V.

(3-2) If VO £ ¢, then select ¢t € V° such
that dpe.(t) is maximized. If there
are multiple such test vectors, select ¢
from them such that dy;,(t) is mini-
mum. Go to step (3-5).

(3-3) Set V! = {t|dsin(t) <0,t € V}.

(3-4) If V1 # ¢, then select t € V! such
that dpae(t) is minimized. Otherwise,
select t € V such that d,,q,(t) is max-
imized.

(3-5) Append t to the end of test sequence
S. Set V.=V —{t}, B. = max(B. +
dfin(t),0) and B = max(B,B. +
dmaz(t)). Return to step (3).

(4) Return S.

We illustrate an example of the proposed al-
gorithm using Fig. 1 and Table 1. Assume that
the ratio of input and output speeds w/v is
2. Table 3 shows dyq, and dyg;, for the test
patterns in Fig.1. The resultant ordered test
sequence and the transition in the amount of
buffered data are depicted in Fig.9. The re-
sultant buffer size is 8, which is equal to the
lower bound given by Eq. (7).

Y An alternative selection is that a test vector is se-
lected with a minimum dmaz(t), according to the
first rule. Since qualitatively discussing the effec-
tiveness of the two selections may be impossible, we
experimented on these selections using some bench-
mark circuits. From the results, we could not ob-
serve a difference in their effectiveness. Therefore,
we adopted one of them.
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Table 3 dpmaa and dy;, for test vectors in Fig. 1.

dmaz dfzn dmaz dfin
t1 6 6 ta 2 0
to 4 4 ts 4 4
t3 4 0 te 0 —6

101
buffered data [bits]

8l B B

t1 t4 t6 t3 t2 t5
Fig.9 Transition in amount of buffered data for test

reordered vectors.

After the initialization (in step (1) of the pro-
posed algorithm), the initial value of the buffer
size B is set to 8 because the lower bound given
by Eq.(7) is 8, which is larger than the maxi-
mum dyqz, 1.€., maxg dmax(t) = dmax(tl) =6
(step (2)). As long as the current number of
buffered test block patterns is not over the
buffer size, 8, the test vector whose d,q. is
maximum is selected (steps (3-1) and (3-2)).
This selection is based on the three rules. Test
vector t1 is selected in this case. Since dy;n(t1)
is 6, the buffered amount B, becomes 6. The
buffer size B is still 8 (step (3-5)). Next, t4 is
selected in the same manner (steps (3-1) and
(3-2)). Then, t¢ is selected (step (3-2)) because
the other test vectors are not selectable accord-
ing to the first rule, ie., B. + dmaz(t) > B.
Next, t3 is selected (the latter part of step (3-
2)) because d;n(t3) is the smallest of the dy;y,s
for the remaining test vectors. The order of the
remaining test vectors is arbitrary; to and ¢5 are
selected in order (step (3-4)). This is because
these two vectors have the same properties, i.e.,
Amaz (tQ) = dmax (t5) and dfin(tQ) = djzn (t5)

5. Experimental Results

We implemented the proposed test vector re-
ordering algorithm in Perl and applied it to
test sets for ISCAS’89 benchmark circuits. The
target benchmark circuits and test sets are
shown in Table 4. The test sets were gener-
ated using a test generation method proposed
in Ref. 10), which is intended to produce test
sets that are highly compressible using Huffman
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Table 4 Benchmark circuits.

H#test comp.
circ. #PIs | vectors | ratio: r | short | long
$1238 32 153 0.318 1 7
59234 248 148 0.524 1 6
s13207 700 269 0.703 1 9
s15850 612 127 0.609 1 9
s35932 | 1,764 16 0.501 1 7
s38417 | 1,664 100 0.536 1 8
s38584 | 1,464 131 0.587 1 7

coding. Since the test generator'?) uses dy-
namic compaction and don’t-care specification
for Huffman coding, it can generate small and
highly compressible test sets. In the experi-
ments, each test vector in the given test sets
is partitioned into 4-bit blocks and encoded us-
ing Huffman coding. The last three columns of
Table 4 show the compression ratio, defined in
Section 2, and the lengths of the shortest and
the longest codewords. The dpq,r and dysy, of
each test vector were calculated as a pre-process
of the proposed method. The calculation time
is very small and can be neglected.

Note that Inequality (1) is satisfied when the
speed ratio is greater than of equal to 4 be-
cause the block size is four and the length of
the shortest codeword is one, as shown in Ta-
ble 4. Namely, when u/v > 4, the decompressor
requires no buffer.

The buffer size for six ratios of input/output
speeds is shown in Table 5. The orig. row de-
notes the buffer size (# of 4-bit registers) before
reordering, and the prop. row denotes that after
reordering. The ratio row shows the reduction
ratio, ((orig.) — (prop.))/(orig.). From this ta-
ble, you can see that the proposed test vector
reordering can reduce the buffer size for all cir-
cuits. For s38584, the reduction ratio reaches
97% when the speed ratio is 3.0. When the
speed ratio is 1.0, i.e., the input speed is equal
to the output speed, the reduction ratio is al-
most 0. This is because the positive d;s are few
compared to the negative ones, and thus, test
vector reordering is ineffective.

The LB row of Table 5 shows the lower
bounds introduced in Section 4.1. Note that the
lower bounds were calculated using Eq. (7), and
they can be negative. By comparing the lower
bounds and the buffer sizes after the test vec-
tors are reordered, when the lower bound is pos-
itive, you can see that the obtained buffer size
is close to the lower bound in almost all cases.
When the lower bound is negative, on the other
hand, the buffer size is not close to the lower
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Table 5 Buffer size reduction.
input/output speed ratio: u/v
circ. 1.0 1.5 2.0 2.5 3.0 3.5
51238 orig. 390 32 6 4 3 2
prop. 390 15 4 4 3 2
ratio 0.00 0.53 0.33 0.00 0.00 0.00
LB 388.25 —29.62 —447.50 —865.38 —1,283.25 —1,701.12
$9234 | orig. 1,802 2,747 1,232 375 87 18
prop. 4,802 2,623 461 33 14 8
ratio 0.00 0.05 0.63 0.91 0.84 0.56
LB 4,801.75 | 2,614.62 42750 | —1,759.62 | —3,946.75 | —6,133.88
s13207 | orig. 33,019 26,333 19,975 13,946 8,325 2,976
prop. 32,930 25,863 18,795 11,723 4,641 2,322
ratio 0.00 0.02 0.06 0.16 0.44 0.22
LB | 32,929.75 | 25,857.12 | 18,784.50 | 11,711.88 4,639.25 | —2,433.38
s15850 | orig. 11,793 8,418 5,651 3,723 1,928 465
prop. 11,752 7,907 4,066 411 608 20
ratio 0.00 0.06 0.28 0.89 0.68 0.96
LB 11,748.00 7,906.50 4,065.00 223.50 —3,618.00 —7,459.50
535932 orig. 3,646 1,941 669 346 224 111
prop. 3,646 1,949 327 236 117 57
ratio 0.00 —0.00 0.51 0.32 0.48 0.49
LB 3,644.75 1,939.12 233.50 | —1,472.12 —3,177.75 —4,883.38
s38417 | orig. 22,121 13,523 6,450 2,411 382 73
prop. 22,108 12,361 2,637 154 98 38
ratio 0.00 0.09 0.59 0.94 0.74 0.48
LB 22,106.25 | 12,359.38 2,612.50 | —7,134.38 | —16,881.25 | —26,628.12
38584 | orig. 28,268 19,900 13,091 7,343 3,222 701
prop. 28,028 18,062 8,096 4,003 103 57
ratio 0.01 0.09 0.38 0.45 0.97 0.92
LB | 28,018.50 | 18,054.75 | 8,091.00 | —1,872.75 | —11,836.50 | —21,800.25
buffered data N ' rises sharply to the lower bound, 427.50 regis-
[# of 4-bit registers] oonginal - ters (1,710 bits), and levels off. This transition
1000 eordered ; R
follows our reordering strategy. The resultant
buffer size is 461 registers (1,844 bits), which is
close to the lower bound. This tendency of the
transition in the amount of buffered test data
500 s for s9234 was also seen in other circuits.
LB=427.50 .
R — 6. Conclusion
We proposed an adaptive model of a decom-
‘‘‘‘‘‘‘‘‘‘‘ time [blocks] pressor with a buffer, which was based on the
0 e decompressor proposed in Ref.5). The buffer
0 2000 4000 6000 8000

Fig. 10 Fluctuation in buffered data before and after
test vector reordering for s9234.

bound (or zero) even though the buffer size is
considerably reduced. Therefore, the proposed
reordering algorithm can be improved to reduce
the buffer size in cases where the lower bound
is negative.

The transition in the amount of the buffered
test data for $9234 when the speed ratio was
2.0 is illustrated in Fig.10. Without test vec-
tor reordering, the amount of buffered data in-
creases gradually and reaches 1,232 registers
(4,928 bits). With the proposed test vector
reordering, first, the amount of buffered data

permits the decompressor to operate at any
input/output speed without a synchronizing
mechanism. Moreover, we proposed a method
of minimizing the buffer size. Since the buffer
size depends on the order in which test vectors
are input, a proper order of test vectors can re-
duce the size of the buffer. The proposed test
vector reordering algorithm in intended to min-
imize the buffer size and make it close to the
introduced lower bound.

Our experimental results show that the pro-
posed test vector reordering algorithm can re-
duce the size of the buffer by more than 90% in
some cases. The reduced buffer size is close to
the lower bound when the lower bound is pos-
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itive. Our future work includes proposing an
alternative reordering algorithm to reduce the
buffer size when the proposed lower bound is
negative.
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