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Non-scan Design for Single-Port-Change Delay Fault Testability
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We propose a non-scan design-for-testability (DFT) method at register-transfer level (RTL)
based on hierarchical test generation: the DFT method makes paths in a data path single-
port-change (SPC) two-pattern testable. For combinational logic in an RTL circuit, an SPC
two-pattern test launches transitions at the starting points of paths corresponding to only one
input port (an input, which has some bits, of an RTL module) and sets the other ports stable.
Hence, during test application, the original hold function of a register can be used for stable
inputs if the hold function exists. Our DFT method can reduce area overhead compared to
methods that support arbitrary two-pattern tests without losing the quality of robust test
and non-robust test. Experimental results show that our method can reduce area overhead
without losing the quality of test. Furthermore, we propose a method of reducing over-test
by removing a subset of sequentially untestable paths from the target of test.

1. Introduction

The speed of VLSI circuits has been increased
in recent years. A high-speed circuit needs de-
lay testing to verify that its logic operates cor-
rectly at the desired clock speed. A path delay
fault, a defect that cumulative propagation de-
lays along a path exceed an upper limit 1), is
one of the delay fault models and can model
the delay between two flip-flops (FFs). To de-
tect a path delay fault, a vector pair (two-
pattern test) is required for FFs that are the
starting points of the target path and other re-
lated paths. However, it is impossible to apply
any two-pattern tests to the starting points. To
enhance two-pattern testability for FFs, there
are the functional justification 3) and the scan
shift 2) techniques with standard scan. How-
ever, these techniques cannot still guarantee the
application of any two-pattern. The enhanced
scan 4) (ES) approach that can apply any two-
pattern incurs high area overhead. Moreover,
scan approaches cause long test application
time because of scan-shift operation.

Non-scan design-for-testability (DFT) ap-
proaches at register-transfer level (RTL) based
on hierarchical test generation have been pro-
posed 5),6). The approaches utilize the data flow
at RTL to test a circuit. The advantages are
that the number of primitive elements at RTL
is much smaller than that at gate level, and
a number of gate-level paths between two reg-
isters are regarded as a bundled path, which
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is called RTL path 6). An RTL path is a
path passing through only combinational logic,
which starts at a primary input (PI) or a regis-
ter and ends at a register or a primary output
(PO). Hierarchical test generation consists of
two processes: (i) generating test patterns for
combinational blocks at gate-level, (ii) gener-
ating control sequences to justify the generated
patterns from PIs to registers that are inputs of
every combinational block, and generating ob-
servation paths to propagate the responses to
POs. Our previous work 6) defined hierarchi-
cally two-pattern testable (HTPT) data path,
in which any two-pattern tests can be applied to
every combinational block from PIs and the re-
sponses can be observed at POs. We presented
a DFT method to augment a given data path
to an HTPT data path, which requires lower
area overhead and test application time than
enhanced scan approach does.

In this paper, we introduce a new concept of
testability called single-port-change (SPC) two-
pattern testability. A port means an input or
an output of a primitive element at RTL, and
it has a bit width. We propose a DFT method
that guarantees to make every RTL path SPC
two-pattern testable. For a target RTL path
in a combinational block, an SPC two-pattern
test launches transitions at the starting points
of paths corresponding to the RTL path while
keeping the other related ports stable. The
method of generating SPC two-pattern tests
for a combinational block is explained in Sec-
tion 3.1, and how to generate control and ob-
servation paths is shown in Section 5. During
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test application for each combinational block,
the original hold function of a register can
be used for stable inputs if the hold function
exists on its control path. Hence, our pro-
posed DFT method can reduce area overhead
than that of HTPT using arbitrary two-pattern
tests. According to the quality of two-pattern
tests, testable path delay faults are generally
classified into three classes: robust testable,
non-robust testable and functional sensitizable
(FS) 1). SPC two-pattern tests can guarantee
robust (resp. non-robust) test for a path if the
path is robust (resp. non-robust) testable and
can also detect a subset of FS path delay faults
(shown in Section 3.2).

We also address the reduction of over-testing.
We propose a method of identifying RTL paths
that never propagate a value from the start-
ing register to the ending register within one
clock period at normal operation. We refer
to such paths as control-dependent untestable
paths (CUPs). By removing CUPs from the
target of test, over-testing is reduced and test
application time is also reduced. Moreover, it
may be possible to reduce hardware overhead
if an RTL path that cannot apply SPC two-
pattern tests without DFT is judged as CUP.

Our experimental results show that the pro-
posed method can reduce area overhead and
test application time compared to those for
HTPT.

2. Target Circuit and Fault

An RTL design generally consists of a con-
troller and a data path, and they are connected
each other by control signal lines and status sig-
nal lines. Our target part is the data path sep-
arated from the controller part. All the control
signals and the status signals of the data path
are assumed to be directly controllable and di-
rectly observable, respectively. In order to re-
alize controllability and observability of control
signals and status signals, respectively, we need
some mechanism to generate control signals and
to observe status signals in test mode. In this
paper, the implementation of such mechanism
is not considered.

A data path consists of hardware elements
(e.g., PIs, POs, registers, multiplexers, opera-
tional modules, and observation modules) and
lines to connect output ports of hardware el-
ements with input ports of others. There are
two types of input ports of a hardware element:
data input ports and control input ports. Each

data input port is reachable directly or indi-
rectly from at least one PI. Each control in-
put port is connected with control signal line.
Similarly, there are two types of output ports
of a hardware element: data output ports and
status output ports. Each data output port is
reachable directly or indirectly to at least one
PO. Each status output port is connected with
status signal line. An operational module has
one or two data input ports, one data output
port and at most one status output port, and
an observation module has one or two data in-
put ports, one status output port, at most one
control input port. We assume that (i) all lines
have same bit width. (ii) There is no chain-
ing of operational modules. Note that chaining
modules can be regarded as n input and one
output operational module. We relax the sec-
ond assumption by extending the consideration
of two input modules. We target all the path
delay faults except for faults on paths that start
at control inputs or end at status outputs.

3. SPC Two Pattern Testability

3.1 SPC Two-pattern Test
In this section, a combinational block that

consists of combinational hardware elements on
an input cone to a register is considered at RTL.
We refer to an RTL path that is a target of
testing as on-path. As opposed to on-path, we
refer to an RTL path that supports the prop-
agation of a transition launched at the start-
ing point of an on-path along the on-path as
off-path. For the input port of an operational
module on an on-path, one of the RTL paths
passing through the other port can be an off-
path (See the left picture of Fig. 1). In this pa-
per, we assume that an operational module has
one or two input ports and there is no chain-
ing module, hence the number of off-paths is
at most one for each on-path. An SPC two-
pattern test is a pair of two consecutive vec-
tors that launches transitions at the port cor-
responding to the starting point of the on-path
and sets stable two consecutive vectors for the
other ports of the combinational block. When

Fig. 1 Constraints of ATPG to generate SPC
two-pattern tests.
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SPC two-pattern tests are applied to a combi-
national block, the select signal of each MUX
is fixed with an on-path or an off-path being
selected. Amin 6) showed that while the select
signal of a MUX is fixed, propagation of the
signals from the selected input to the output
is independent of the signals at the other in-
put. Therefore the on-path is testable if SPC
two-pattern tests can be applied to the starting
points of the on-path and the off-path.

SPC two-pattern tests for combinational
blocks can be generated by using a combi-
national test generation algorithm with con-
straints. To describe the constraints, we use the
notation X and H. X denotes that it is possi-
ble to generate arbitrary vector and H means
that the vector just before is held. In Fig. 1,
we show an example of constraints for ATPG.
XX for an on-path (a bold line in the figure)
denotes that it is possible to generate arbitrary
two vectors consecutively. XH denotes that the
first vector is an arbitrary vector and the sec-
ond vector is the same as the first one. This is
the input constraint for off-path. As we men-
tioned above, for the inputs other than those
on on-path, off-path and the select signal line
of each MUX, we do not care generated vectors,
hence we denote them as merely XX.

3.2 Quality of SPC Two-pattern Test
Smith 7) showed that a path delay fault is

testable by a robust test if and only if there ex-
its a robust single-input change (SIC) test for
this fault, and Gharaybeh 8) showed that the
same applies to non-robust tests. Their theo-
rems show that there exist SIC robust tests for
robust testable path delay faults and SIC non-
robust tests for non-robust testable path delay
faults. At gate level consideration, an SIC two-
pattern test launches a transition for 1 bit of
inputs of a combinational block, while an SPC
two-pattern test can launch transitions for any
bits of inputs of the corresponding port. Hence
SPC two-pattern test can completely cover an
SIC two-pattern test. In other words, there ex-
ists an SPC robust (resp. non-robust) test for
a robust (resp. non-robust) testable path delay
fault without loss of test quality.

The remaining testable path delay faults are
FS path delay faults. To test these faults, tran-
sitions are needed at multiple inputs. A FS
path delay fault that needs transitions for some
inputs of only on-path can be tested using an
SPC two-pattern test. However, faults that
need transitions for some inputs of both an on-

path and an off-path cannot be tested under the
concept. We will experimentally examine how
many FS faults become untestable.

3.3 SPC Two-pattern Testability
We define SPC two-pattern testability for

RTL paths. To test an RTL path that does not
pass through an operational module with two
input ports, one control path and one observa-
tion path are sufficient to test the RTL path.
Control paths are the paths to justify test pat-
terns from PIs to each register and observation
paths are the paths to propagate the responses
to POs. If we consider only one control path,
we need not care about timing conflict to justify
test patterns. Timing conflict means that more
than or equal to two values are required to the
same PI at the same time. Hence it is certainly
possible to generate a control path by using a
thru function 10), A thru function is added to
an operational module in order to propagate a
value along a control path or an observation
path without changing the value. The realiza-
tion of a thru function is shown in Section 5. To
test an RTL path p ∈ P that passes through an
operational module having two input ports, it
is necessary to justify test patterns from a PI or
PIs to appropriate registers by a pair of control
paths C1, C2 and propagate test responses from
an appropriate register to a PO by an observa-
tion path Op, where C1 is the path from a PI
to the starting register of an on-path p, and C2

is the path from a PI to the starting register of
an off-path.
Definition 1: An RTL path p is SPC two-
pattern testable if there exists a pair of con-
trol paths C1 and C2 that can apply SPC two-
pattern tests to the combinational block and Op

that can observe the test responses.
3.3.1 Conditions for Control Paths
Here, to simplify the following discussion, we

assume that there exists a thru function for each
input port of every operational module in a data
path. In the next section, we will propose an
efficient DFT algorithm to add thru function to
data paths. In order to support the application
of SPC two-pattern tests with a pair of control
paths C1 and C2, the difference between the
sequential depths of C1 and that of C2 and/or
the number of hold registers on C1 and that on
C2 should be considered. The sequential depth
of a control path Ci is the number of registers
that appear on Ci and is denoted as SD(Ci).
Let EP1 and EP2 be the ending point of C1 and
that of C2, respectively. If C1 and C2 are not
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Fig. 2 Conditions for C1 and C2.

disjoint, let C ′
1 and C ′

2 be the paths from the
diverging point of C1 and C2 to EP1 and EP2,
respectively. In the following theorem, we show
necessary and sufficient conditions for a pair of
control paths C1 and C2 to support SPC two-
pattern tests.
Theorem 1: A pair of control paths C1 and C2

can justify SPC two-pattern tests to their end-
ing points EP1 and EP2 if and only if C1 and
C2 satisfy one of the following five conditions.
( 1 ) C1 and C2 are disjoint.
( 2 ) |SD(C ′

1) − SD(C ′
2)| ≥ 2

( 3 ) There exist at least two hold registers on
C ′

1.
( 4 ) There exists at least one hold register on

C ′
2.

( 5 ) There exists at least one hold register on
C ′

1 and SD(C ′
2) − SD(C ′

1) = 1
Examples of these conditions are shown in

Fig. 2.
Proof: An arbitrary SPC two-pattern test
(V1, V2) is represented as V1 = v11&v21 and
V2 = v12&v22. v11 and v12 are applied to an
on-path. v21 and v22 are applied to an off-path
and they are the same value.
Sufficiency : Since we assume that there exists a
thru function between each input and the out-
put of every operational module, we have only
to consider timing conflicts. If C1 and C2 satisfy
Condition 1, it is obviously possible to justify
any SPC two-pattern test from PIs to EP1 and
EP2 (see Condition 1 of Fig. 2). With regard
to Conditions 2, 3, 4 and 5, although C1 and
C2 are not disjoint, it is also possible to jus-
tify any SPC two-pattern test without a timing
conflict. In Condition 2, we first apply the first
and the second partial vectors consecutively to
the PI for the control path with higher sequen-
tial depth. Then we apply consecutively the

remaining two vectors to the same PI. In Con-
dition 3, we first load v11 and v12 into two hold
registers on C ′

1 and hold the values, secondly
we apply consecutively v21 and v22 to the PI. In
Condition 4, we first load v21 into hold register
on C ′

2 and hold the value. Then we apply v11

and v12 consecutively. In Condition 5, we first
load v11 into hold register on C ′

1 and hold v11,
then we apply v21, v22 and v12 consecutively.
Necessity : We assume that two control paths
C1 and C2 do not satisfy any of the above five
conditions. Such control paths satisfy all the
following properties.
( 1 ) C1 and C2 are not disjoint.
( 2 ) |SD(C ′

1) − SD(C ′
2)| < 2

( 3 ) The number of hold registers on C ′
1 is at

most one.
( 4 ) There is no hold register on C ′

2.
( 5 ) There is no hold register on C ′

1 if
SD(C ′

2) − SD(C ′
1) = 1.

All the possible pairs of control paths C1 and
C2 that satisfy all the above properties are as
follows.
• C1 and C2 are not disjoint and |SD(C ′

1) −
SD(C ′

2)| = 1 and there is no hold register
on both C ′

1 and C ′
2.

• C1 and C2 are not disjoint and |SD(C ′
1) −

SD(C ′
2)| = 0 and there is no hold register

on both C ′
1 and C ′

2.
• C1 and C2 are not disjoint and SD(C ′

1) −
SD(C ′

2) = 1 and there is only one hold reg-
ister on C ′

1.
• C1 and C2 are not disjoint and |SD(C ′

1) −
SD(C ′

2)| = 0 and there is only one hold
register on C ′

1.
Any pair of control paths C1 and C2 de-

scribed above can not guarantee SPC two-
pattern test. Therefore five conditions are the
only conditions for a pair of control paths C1

and C2 to justify SPC two-pattern tests from a
PI or PIs to EP1 and EP2. �

Here we consider relaxation of the assump-
tion of the number of input ports of an oper-
ational module. The following theorem shows
the sufficient conditions for an operational mod-
ule with n input ports.
Theorem 2: n control paths support the ap-
plication of SPC two-pattern tests for an RTL
path p if either of the following conditions is
satisfied.
( 1 ) Any pair of n control paths are disjoint.
( 2 ) With regard to each pair of control paths

for off-paths that are not disjoint, the
mutually disjoint parts from the diverg-
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ing point to both ending points cross at
least one hold register.

The proof of this theorem is similar to that of
Theorem 1.

As we mentioned in this subsection, to guar-
antee SPC two-pattern test, a register with hold
function is needed even if the difference be-
tween sequential depths of C1 and that of C2

is zero. However to guarantee arbitrary two-
pattern test in such case, we need more complex
hardware element for DFT.

3.3.2 Conditions for Observation
Paths

To observe a test response, the value captured
at the ending register of an RTL path has to be
propagated to a PO without changing its value.
Fortunately, we need not care about timing con-
flict because only one observation path is suf-
ficient to propagate the value. Hence to guar-
antee the propagation, it is sufficient to add a
thru function to each operational module on the
observation path.

4. The Conditions to Identify CUPs

We can obtain information about state tran-
sitions of a controller and control signals from
the controller to a data path at each state by
analyzing the RTL description of the circuit.
By considering the timing of data transfer be-
tween registers and the structure of a data path,
we identify RTL paths as control-dependent
untestable paths (CUPs). Some control signals
may depend on status signals. Status signals
are determined depending on data in a data
path. Such control signals are not determined
uniquely by analyzing a controller part alone.
In this paper, we eliminate such control signals
during CUP identification.

Let P be a set of RTL paths in a data path.
Now, we consider whether p ∈ P is a CUP or
not. Let Rs be the register that is the starting
point of p, and let Re be the register that is the
ending point of p. Let CRs and CRe be load en-
able signals of registers Rs and Re, respectively.
If the load enable signal of a register is equal to
‘1’, the register loads a value, otherwise, holds
its value. Note that in case the register does
not have hold function, we assume that a load
enable signal line is connected to the register,
and the value of that signal is always ‘1’. In
case the starting point of p is a PI or the end-
ing point of p is a PO, the PI or the PO is
treated as a register with no hold function. Let
Mi and CMi

(1 ≤ i ≤ n) be a MUX on p and

its select signal, respectively (n is the number
of MUX on p). Let Ck

Mi
be a control value of

CMi
at time k. When Mi selects the input on

p at k, the value of the select signal is denoted
as Ck

Mi
= pMi

. Let Si and Sj be states of the
controller. Si and Sj is said to be consecutive
if there exists a direct transition from Si to Sj .
Let (Ck

Mi
, Ck+1

Mi
) be a select signal pair of con-

secutive two states.
Definition 2: An RTL path p is control-
dependent untestable path (CUP) if either of
following two conditions is satisfied for any con-
secutive two states.
( 1 ) (Ck

Rs, C
k+1
Rs ) = (0,−) ∨ (Ck

Re, C
k+1
Re ) =

(−, 0) −: don’t care
( 2 ) ∨n

i=1{(Ck
Mi

, Ck+1
Mi

) �= (−, pMi
)}

Theorem 3: All the gate-level paths corre-
sponding to an RTL path p are non-robust
untestable if p is CUP.
Proof: For the first condition of Definition 2,
Rs does not launch a transition at Si, or Re

does not capture the response at Sj . For the
second condition, p is not selected at Sj and this
prevents propagation of transitions from Rs to
Re. Therefore, p is non-robust untestable. �

5. DFT Method for RTL Data Path

In this section, we propose a DFT method
that makes RTL paths except for CUPs in data
paths SPC two-pattern testable.

5.1 DFT Element
Additional hardware elements of DFT are

multiplexer (MUX), hold function and thru
function. We use a MUX to make a new RTL
path from a PI to a register. A hold function is
added to a register for the purpose of holding
the value according to need, and it is realized by
adding a MUX just before the register to feed-
back a value from the output to the input. A
thru function is explained briefly in Section 4.
For a common module, such as adder or multi-
plier, it is realized by providing a constant value
to the other input. It can be provided by adding
a mask element. A mask element generates a
constant depending on its control signal. For
a more complex module or a module with one
input port, we cannot realize the thru function
by only providing a constant, then we deal with
the thru function by bypassing the module us-
ing a MUX.

5.2 Algorithm for Adding DFT
Elements

The flow of the proposed DFT algorithm is
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Fig. 3 Flow of our DFT algorithm.

shown in Fig. 3.
Step 1: We extract CUPs according to condi-

tions of Theorem 3, and remove them from the
consideration for test.

Step 2: There are some RTL paths that start
at a register and go back to the same register.
There are many cases where SPC two-pattern
tests cannot be applied to such an RTL path
because it is structurally difficult to satisfy the
conditions of Theorem 1. Since it is only possi-
ble to make such an RTL path SPC two-pattern
testable by adding MUX (hold function cannot
solve this problem) and making a new control
path from a PI, we first find such structures.
To find RTL paths forming a loop we consider
a circuit as a circuit graph consisting of four
types of nodes, R, Op, Fo and M , and directed
edges. The nodes of type R, Op, Fo and M cor-
respond to a register, an operational module, a
fanout and a MUX, respectively, and they are
connected by directed edges corresponding to
the signal lines of the circuit. We refer to the
loop that starts at R-type node and go back
to the same node without passing through any
other R-type node as a self-loop.

We consider a self-loop. It is impossible to ap-
ply SPC two-pattern tests to the RTL path cor-
responding to the self-loop if there is no M -type
node, which can be reached from a PI without
passing through the self-loop, between the Op-
type node and the R-type node. If one of the
RTL paths that starts at Ri and passes through
Opj is not CUP, the RTL path should be mod-
ified into SPC two-pattern testable. Such an
RTL path can be solved by inserting a MUX
between Opj and Ri, and adding a new path
from a PI to the MUX. Here we consider the
self-loop, R1-m1-m2-Add1-m5-R1 in Fig. 4 as
an example, and corresponding nodes in its cir-
cuit graph are named R1, M1, M2, Op1 and M5,

Fig. 4 LWF benchmark circuit.

respectively. There is no M -type node between
Op1 and R1 which can be reached from PI with-
out passing through the self-loop. If one of the
RTL paths starting at R1 is not CUP, a MUX
is added to the place between Op1 and R1 then
a new RTL path PI1-MUX-R1 is made. When
there are some PIs in a circuit, we select the PI
such that the pair of control paths is disjoint to
satisfy the first condition of Theorem 1. How-
ever if there is only one PI in the circuit, we
make a new RTL path from the PI. In this
case, if the pair of control paths may not sat-
isfy any conditions from second to fifth, hold
function is added in Step 4.

Step 3: In this step, candidates for control
and observation paths to each register are se-
lected using heuristics. The decision of control
and observation paths will be made in Step 4.

In order to reduce area overhead and test
application time, control paths is selected as
they form trees whose source nodes are PIs,
accordingly each register is reachable from a
PI via a control path with the minimum se-
quential depth. To search such control paths,
we represent the data path as a port graph
G = (V, E) 10). V is the set of all input ports
and output ports of modules, and E is the set
of all directed edges corresponding to the signal
lines in the data path and relation between an
input and an output of each module (we call
the latter edge inside edge). We apply breadth
first search (BFS) with respect to the number
of registers to the port graph. From the re-
sult of the search, we obtain trees that contain
the information of control paths with the min-
imum sequential depth from PIs to registers.
The search ends when all the registers become
reachable. In Refs. 6) and 10), to search control
paths they also make use of BFS. In this paper,
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Fig. 5 The port graph and candidates of control
paths for LWF.

we add a new condition for search which takes
advantage of the feature of SPC two-pattern
testability. Considering the conditions of The-
orem 1, it is desirable that there exists a hold
register on a control path. Therefore we choose
a path starting at a hold register if there are
some paths that can be chosen at the same se-
quential depth. Figure 5 shows the port graph
for LWF and candidates of control paths for
each register in LWF.

Next we search observation paths with the
minimum depth. The search from each register
to a PO makes use of observation trees. Obser-
vation trees are made by performing the BFS
from each PO on the port graph that is gener-
ated by reversing the direction of edges, then
the BFS prioritize the path on a control tree to
share thru function between control paths and
observation paths if there is a branch.

Step 4: For one of the RTL paths that are
not SPC two-pattern testable, we modify it
into SPC two-pattern testable path by adding
a hold function to its starting register. In this
step, RTL paths that are not CUPs, i.e., the
RTL paths need to be tested, and whose pairs
of control paths have not yet been determined
are dealt with. We first judge RTL paths one
by one whether it satisfies one of the condi-
tions of Theorem 1 or not. If the RTL path
is SPC two-pattern testable, the pair of control
paths generated in Step 3 is determined. How-
ever, if the RTL path has no pair of control
paths satisfying any one of the five conditions
at all, it is sufficient to add a hold function
to one of the registers that can be the start-
ing points of off-paths in order to satisfy con-
dition 4 of Theorem 1. Among the registers, a

hold function is added to the register with the
smallest sequential depth. Consequently, more
control paths share the hold function because a
set of control paths forms trees. Here we con-
sider testing of RTL path R2-Add2-R4 in Fig. 5.
The control paths for R2 and R1 are PI1-R2
and PI1-Additional MUX-R1. The additional
MUX was already added between m5 and R1
in Step 2. Since the pair of control paths can-
not satisfy any conditions of Theorem 1, a hold
function is added to R1. If a hold function is
added, go back to Step 3 and make the control
trees again for the modified circuit. Then only
unsolved RTL paths will be target of Step 4
again.

Step 5: We consider how to realize shorter
test application time when there are some
choices of off-paths for testing an on-path. We
first try to select an off-path having a con-
trol path with the minimum sequential depth
among them and disjointed from the control
path for on-path. If there does not exist such an
off-path, that of the minimum depth is selected.
We assumed that thru functions are available
for all the input ports of all operational mod-
ules, however some of them may not be neces-
sary. It is indeed necessary to add a thru func-
tion between an input port and an output port,
corresponding to inside edges on control or ob-
servation paths, of an operational module. To
realize a thru function, we first search a support
path 10) considering timing conflict. A support
path is a path from a PI to an input of an op-
erational module, which can justify a constant.
If there does not exist such a path, we add a
mask element or a MUX for bypass to realize
it.

6. Experimental Results

In this section, we evaluate the effectiveness
of the proposed DFT method compared to the
previous DFT method for HTPT 6) with regard
to area overhead and test application time. The
DFT method that guarantees HTPT has simi-
lar advantages to enhanced-scan approach and
can reduce the area overhead and the test appli-
cation time. The circuit characteristics of RTL
benchmarks used in the experiments are shown
in Table 1. Paulin, LWF are widely used cir-
cuits. RISC and MPEG ☆ are more practical

☆ These circuits were provided for the Joint Research
(1997–2001) with Semiconductor Technology Aca-
demic Research Center (STARC).
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Table 1 Circuit characteristics.

Circuit BW #PIs # POs # REGs # RTL path Area
Paulin 16 2 2 7 29 10,550
LWF 16 2 2 5 19 3,322
RISC 32 1 3 40 10,108 94,302

MPEG 8 7 16 241 651 77,554

Table 2 Results of DFT and test generation.

Area overhead [%] TG time [sec] Test application time [cyc] # CUPs

Circuit BW Proposed HTPT Proposed HTPT Proposed HTPT Proposed
Paulin 8 5.13 11.56 1,956 5,828 785,136 1,645,335 11

16 3.30 7.43 - - - - 11
LWF 8 7.43 15.25 33 35 38,913 74,792 3

16 6.38 13.99 551 805 1,638,660 3,162,124 3

RISC 32 0.64 1.99 - - 3TALU+2 4TALU + 2 512

MPEG 8 4.64 9.35 - - 186TM+2,079 186TM+2,016 0

and larger circuits designed by industry. In
this experiment, we used the logic synthesis
tool Design Compiler (Synopsys). To generate
SPC two-pattern tests, we used the combina-
tional test generation algorithm that supports
constraints 11).

Our proposed method guarantees to detect
all the faults in a circuit that are detectable
in combinational logic blocks separated from
the circuit. With regard to robust and non-
robust path delay faults the fault coverage of
our method is equal to that for HTPT if CUPs
are not considered. The CPU time required for
our proposed DFT method is as follows. For
LWF and Paulin, their CPU times are about
0.1 seconds. For RISC, the CPU time is 3.94
seconds. Note that the CPU time for RISC does
not include the time to identify CUPs. Because
some control signals depend on status signals,
we manually identified only control signals in-
dependent of status signals. Table 2 shows the
results of area overhead, test generation time,
test application time and the number of CUPs.
For all benchmark circuits, area overhead of the
proposed DFT method is lower than that of
the DFT method for HTPT. Note that there is
no reduction of area overhead depending on re-
moving CUPs from target of test in this exper-
iment. The difference between area overhead
of the proposed method and that of the previ-
ous one become large if there are many registers
that are reached from the same PI and at the
same sequential depth. For 8 bit Paulin, 8 bit
LWF and 16 bit LWF, the test generation times
are shorter than that of HTPT. Test genera-
tion time with the input constraint for single-
port-change tends to become a little longer than

that with no constraint. However, we remove
CUPs from the target of test generation and the
number of target faults is reduced. Hence the
test generation time of our proposed method
became shorter. For 16 bit Paulin, RISC and
MPEG, we cannot evaluate the test generation
time because the number of faults is extremely
large.

For 8 bit Paulin, 8 bit LWF and 16 bit LWF,
the proposed method can reduce test appli-
cation time to about 50% of that for HTPT.
The main reason is that the number of target
faults can be reduced by removing CUPs. For
Paulin and LWF, we judged eleven and three
RTL paths as CUPs, respectively. The judged
RTL paths correspond to 50% of the total gate-
level paths in 8 bit Paulin and 22% of that in
8 bit and 16 bit LWF. However, even if all the
path delay faults on CUPs are removed from
the target of test generation, some of them on
control paths may be activated during justifica-
tion of test patterns. Analyzing the percentage
of alleviation of over-testing is our future work.
The other reason is that the previous method
adds extra registers to these circuits. In such
case, extra one cycle is necessary for loading
data into such a register. To show the influence
we also calculated test application time by as-
suming that RTL paths identified as CUPs are
not removed from the target of test. For 8 bit
Paulin, 8 bit LWF and 16 bit LWF, the test ap-
plication times are 1,594,259 cycles, 49,916 cy-
cles and 2,096,465 cycles, respectively. Those
results are smaller than that for HTPT data
path.

For 16 bit Paulin, RISC and MPEG, it is not
practical to test all paths in the data path be-
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cause the number of paths is extremely large.
Therefore we consider the critical parts that
affect the difference between test application
time of the proposed method and that of pre-
vious one. For 16 bit Paulin, a combinational
block composed of two multipliers is the criti-
cal part. In the proposed method, many RTL
paths through the block are identified as CUPs.
However, we cannot estimate the difference be-
tween the number of test patterns for the block
in the proposed method and that in the previ-
ous method. Hence, we cannot perform sym-
bolic analysis. For RISC, an ALU is critical
part and its number of tests is denoted as TALU

in the table. The proposed method can reduce
25% compared to the previous one. For MPEG,
a sub circuit composed of 64 identical structures
of modules is critical. The number of tests is de-
noted as TM in the table. For both methods,
the test application times are almost the same.
For all circuit except for MPEG, since CUPs are
identified, over-testing problem is alleviated.

In Section 3.2, we showed that SPC two-
pattern tests can test a subset of FS path delay
faults. Here, we show the number of FS path
delay faults in three simple operational modules
that can be tested by SPC two-pattern tests.
For an adder and a subtracter, there is no FS
path delay fault. All the faults in an adder or
a subtracter can be robust or non-robust path
delay faults. For an 8 bit multiplier, 947 of the
total 49,328 FS path delay faults are tested.
From these results, SPC two-pattern tests do
not always test all the FS path delay faults of an
operational module. On the other hand, if any
two-pattern test can be applied, all the FS path
delay faults are tested. For every RTL path in
an HTPT data path, we can apply any two-
pattern test. If it is necessary to test FS path
delay faults of such an operational module that
is SPC two-pattern test resistant, we can guar-
antee application of arbitrary two-pattern tests
by applying our previous DFT method only for
the module.

7. Conclusion

This paper proposed a concept of single-port-
change (SPC) two-pattern testability and pre-
sented an efficient non-scan DFT method for
data path. The proposed method can reduce
area overhead and test application time com-
pared to the previous DFT method for hier-
archically two-pattern testability without los-
ing the quality of test. Moreover, we alleviated

over-testing by removing the control-dependent
untestable paths from the consideration of test.
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