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Robust gait recognition using adaptive random depth subspace from 

depth information 
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Abstract—Depth information provided by depth sensors, such as Kinect, contains the information of physical distance from the 

sensor to a human body part at each pixel while walking, and it shows good performance in gait recognition. In this paper we 

proposed an adaptive random depth subspace (ARDS) framework to explore the applicability of depth information for robust gait 

recognition of individuals. Without assuming specific clothes type and baggage carrying condition for each input test sequence, 

proposed method is able to segment human body into very small regions and adaptively select more unaffected random depth 

subspaces as the reconstructed gait features for classification, which is realistic for real-world applications. Experiments are 

conducted on a new depth gait database captured with Microsoft Kinect assuming several walking conditions. Experimental 

results showed the effectiveness compared with other methods using depth information. 
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1. Introduction     

  Identifying individual is a challenging task and has been 

studied extensively. Human gait is advantageous for recognition 

over other traditional biometric modalities such as face, DNA 

and fingerprint. Since gait features neither can be easily imitated 

nor hidden. Furthermore, walking data acquisition doesn‟t 

require a closer distance and higher quality sensors. In addition, 

the complete unobtrusiveness without cooperation or contact of 

the subject also makes gait attractive in many applications such 

as access control, biomedical research and criminal 

investigation.  

  Over the last twenty years, researchers presented numerous 

successful gait recognition techniques with RGB images. These 

techniques were classified into two major categories called 

model-based and appearance-based approaches [1]. The major 

limitation of model-based approaches [7] is that it requires high 

quality gait images and high computational cost for motion 

model construction on each body part.  

In contrast, as a representative appearance-based approach, 

Gait Energy Image (GEI) is a spatio-temporal template 

calculated by averaging all images extracted from video in a full 

gait cycle [2]. This method achieves good experimental results 

with less computational cost. Nevertheless, appearance-based 

approaches are view dependent and perform best when a side 

view point is utilized. Because the directions of legs‟ movement 

are invisible in the human body silhouettes while subject walks 

toward the sensor. In addition, as the limitation of the high 

sensitivity for the body shape changing, GEI is hard to provide 

reliable performance in some real-life scenarios, such as 

variations of clothes and carrying a baggage. 

  Recent depth sensor provided superiority to solve the problem 

of viewpoint dependency that the depth information of physical 

distance from the sensor to a human body part at each pixel can 

be captured efficiently. Based on this advantage, the accuracy of 

frontal gait recognition in appearance-based method has great 

potential to be improved. However, compared with the number 
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of algorithms that are applied for RGB images in gait 

recognition, studies on depth gait recognition is relatively 

smaller. Sivapalan et al. [3] improved the concept of GEI to 3D 

and proposed a new gait representation called Gait Energy 

Volumes (GEV) for depth gait recognition in frontal view point 

image. Meanwhile, Hofmann et al. [4] proposed an effective 

method for depth gait representation. Motivated by the idea of 

histograms of oriented gradients (HOG) [9], depth gait sequence 

is represented by a Depth Gradient Histogram Energy Image 

(DGHEI) which improves the accuracy in depth gait recognition. 

Both of these two methods demonstrated very low accuracy by 

different cofactors like as clothes, carrying objects, since they 

treated each body part equally.   

In this work, we concentrate on exploring the applicability of 

depth information for robust gait recognition of individuals from 

frontal viewpoint, and propose an appearance-based approach 

named adaptive random depth subspace (ARDS) for improving 

accuracy, motivated by Isam et al. [5]. Their approach is based 

on a strong assumption where the clothing types appear in both 

probe (test) set and training stage.  Based on their assumption, 

each body part has a fixed weight for every sequence in probe 

(test) set ignoring the clothing types. To overcome this problem, 

we apply an automatic feature selection algorithm to extract 

features in each body part adaptively, which is realistic for 

assumed applications. Moreover, because of random selection of 

image chunks, the spatial information is lost. In contrast, we 

select chunks (as named “cell” in our work) at the same location 

between probe and gallery. Since their method is applied for gait 

recognition using RGB images, we replace the gait 

representation in his work with DGHEI. The experimental 

results indicated that the proposed method improved the 

performance in robust depth gait recognition for an individual.  

2. Depth Gait Representation 

  In this section, we will briefly introduce the gait 

representation technique based on depth oriented gradient 

histogram [4], which will be applied in our proposed method as 

a gait template for selecting adaptive random depth subspace.      

  Each subject‟s gait sequence is defined as a series of static 

images which are extracted frame-by-frame from the depth gait 
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video in one full gait cycle. In order to extract the depth gait 

feature from the gait sequence, subject‟s silhouette segmentation 

is carried out by adopting a skeleton-tracking technique 

provided by Microsoft [10]. Then, each image is normalized 

into the same size by scale variation and alignment. In 

traditional gait recognition with RGB images, each 

pre-processed image is converted into binary image as shown in 

Figure 1 (a). In contrast, the depth information within person‟s 

silhouette is represented by grayscale in our work. The higher 

intensity value in each grayscale means that longer physical 

distance occurs at this position, as illustrated in Figure 1 (b). 

The grayscale contain luxuriant edges and depth gradients 

information, which provide additional discrimination clues in 

the following recognition. 

  Computation of the gradient values at each pre-processed 

image in a gait sequence is the first step of calculation. The 

magnitude 𝛾 and orientation 𝜃 of the gradient at a pixel  x, y  

is calculated as the following equations: 

       𝑢 𝑥, 𝑦 = 𝐼 𝑥 − 1, 𝑦 − 𝐼 𝑥 + 1, 𝑦  (1)  

    𝑣 𝑥, 𝑦 = 𝐼 𝑥, 𝑦 − 1 − 𝐼(𝑥, 𝑦 + 1) (2) 

     𝛾 𝑥, 𝑦 =  𝑢(𝑥, 𝑦)2 + 𝑣(𝑥, 𝑦)2  (3)                                      

    𝜃 𝑥, 𝑦 = 𝑎𝑟𝑐𝑡𝑎𝑛 𝑢 𝑥, 𝑦 , 𝑣 𝑥, 𝑦  + 𝜋 (4) 

Here, 𝐼 𝑥, 𝑦  is the gray intensity value at a pixel(𝑥, 𝑦). Then 

the gradient orientations at pixel(𝑥, 𝑦) are discretized into 9 

orientations. In the next step, each pixel within an appropriate 

square image chunk (typically with fixed size of 8 × 8 pixels) 

is weighted by an orientation-based histogram channel with 

regard to the orientation 𝜃. Thus, the chunk, which is called 

„cell‟, is represented by 9-bin histogram of oriented gradients 

and reconstructed to a matrix based on the location in the 

original image. Thus, the pre-processed image is replaced with 

cell-based matrix. The cell-based matrix is visualized in Figure 

1 (c).  

 

 

(a) Binary image 

 

 

(b) Grayscale 

image 

 

 

(c) Visual   

cell-based matrix 

 

Figure 1. Various representations of a single gait image    

                                   

  Finally, the cell-based matrices calculated from a single 

image are averaged over a gait sequence, which is composed of 

T images, and is called DGHEI. 

             𝐻 𝑖, 𝑗, 𝑓 =
1

𝑇
 𝑕𝑡(𝑖, 𝑗, 𝑓)𝑇

𝑡=1       (5) 

Here, 𝑖 and 𝑗 denote the position of a cell and 𝑓 denotes the 

numbers of the histogram of this cell. The final DGHEI 

representation is visualized in Figure 2. In this figure, the origin 

of each gradient vector denotes the position of a cell, and each 

cell is considered as a minimum feature unit for random 

selection. 

 

 

Figure 2. Depth Gradient Histogram Energy Image 

 

3. Adaptive Random Depth Subspace            

Framework 

3.1   Body-region Segmentation  

  In a large intra-class variation database, each subject walks 

with various conditions such as changing clothes, carrying 

baggage. In this case, some parts of depth gait image may be 

affected by partial occlusion or body shape changing. Thus, the 

body shape and depth gradient may not reliable anymore in 

these body parts. In contrast, other unaffected parts maintain 

nearly the same. These parts remain the useful discrimination 

clues for individual recognition. In this case, each body part 

should be treated independently. To tackle robust gait 

recognition for individual under various walking conditions, we 

proposed an unsupervised adaptive subspace selection 

framework. First, we segmented the body part into 4 parts based 

on a prior knowledge by anatomical body properties discussed 

by Dempster et al. [8]. When a body‟s height is H, the upper 

most section is neck (0.87H). Then the following one is pelvis 

(0.48H). The final section is the knee (0.285H).  On the basis 

of these premise, the DGHEI is divided into 4 parts marked 1, 2, 

3 and 4, as shown in Figure 3. Body part 1, 2, 3 and 4 represent 

separated regions which is called head, trunk, thigh and crus in 

anatomy respectively. Therefore, this study takes the various 

contributions of different part for robust individual recognition 

into account. The gait features will be selected and extracted 

independently from each body part in the following work.  

 

 

Figure 3. Body-part segmentation 
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3.2 Random Depth Subspace Selection 

At the beginning of this section, we will introduce the 

definition of subspace. Each subspace is defined as a 

reconstructed matrix by selecting 𝑁  cells from 𝑝𝑡𝑕  part of 

DGHEI randomly.  

The coordinates of each cell are represented by 𝑖 and 𝑗. 

Thus, for recognizing an individual from an input test sequence, 

the procedure of random depth subspace selection and 

construction in 𝑝𝑡𝑕  part is given in Algorithm 1. In this 

algorithm, the gallery (reference) set includes all subjects and 

each subject has several gait sequences with normal walking 

condition (described in Section 5.1). The probe (test) set 

contains the same subjects in gallery set and each subject has 

several gait sequences with various walking conditions. 

Algorithm 1  

Input:                                                               

𝑇: The DGHEI in 𝑝𝑡𝑕  part of one input gait sequence in probe 

set.  

𝐺𝑘 : The DGHEI in 𝑝𝑡𝑕  part of the 𝑘𝑡𝑕  gait sequence in 

gallery set.  

𝑇𝑐𝑒𝑙𝑙𝑖𝑗 : The cell of 𝑇 which is located at(𝑥, 𝑦). 

𝐺𝑐𝑒𝑙𝑙𝑖𝑗
𝑘 : The cell of 𝐺𝑘  which is located at (𝑥, 𝑦).   

𝑁: Total number of cells in each subspace. 

𝐾: Total number of gait sequences in the gallery set 𝐺𝑘 . 

𝑚, 𝑛: 𝑚 × 𝑛 cells constitute each DGHEI in 𝑝𝑡𝑕  part. 

Output:  

𝑆𝑇: Subspace of one input gait sequence in probe set. 

𝑆𝐺𝑘 : Subspace of the 𝑘𝑡𝑕  gait sequence in the gallery set 𝐺𝑘 . 

Procedure: 

(1) 𝑆𝑇 = ∅; 

(2) 𝑆𝐺𝑘 = ∅; 

(3) for 𝑛 ← 1  to 𝑁 do 

(4)    select a pair values of 𝑖, 𝑗 in the range randomly 

    𝑖 = 1,2,3 … , 𝑚; 𝑗 = 1,2,3 … , 𝑛 ; 

(5)    𝑆𝑇 ←  𝑆𝑇; 𝑇𝑐𝑒𝑙𝑙𝑖𝑗  ;  ( 𝐴; 𝐵  denotes that matrices 𝐴  

       and 𝐵 integrate vertically into a new matrix)               

(6)    for 𝑘 ← 1 to 𝐾 do 

(7)        𝑆𝐺𝑘 ←  𝑆𝐺𝑘 ; 𝐺𝑐𝑒𝑙𝑙𝑖𝑗
𝑘  ; 

(8)    end 

(9) end 

In particular, all of cells which contain the same value of zero 

are discarded from the candidate cells, because most of these 

cells correspond to the background and do not contribute 

discrimination for individual recognition. Differently from the 

method by Isam et al. [5], the location of each selected cell for 

each sequence in probe set is consistent with all sequences in 

gallery set for retaining the spatial information efficiently.  

Assume that we select 𝐿𝑝  subspaces from the 𝑝𝑡𝑕  part in a 

probe sequence, and then the same number of subspaces 𝐿 will 

be selected from corresponding part for each sequence 

belonging to gallery set. Thus the total number of subspace in 

each sequence is:  

  𝐿𝑝
𝑃
𝑝=1 = 𝐿  (6)          

In this equation, 𝑃 is the total number of body parts and 𝑃 = 4 

in our experiment (as described in Section 3.1). These subspaces 

are considered as the new gait features for classification instead 

of the DGHEI.   

3.3 Adaptive Proportion Assignment 

  In this section, we will apply an adaptive feature selection 

technique to decide the number of subspaces (𝐿𝑝 ) for 𝑝𝑡𝑕  body 

part. The proportion of 𝐿 is variable for each input sequence in 

a probe set.  

Without assuming specific clothes type and baggage carrying 

condition for each input test sequence, we cannot decide what 

part of DGHEI is affected by walking condition. However, Li et 

al. [6] tested on a RGB gait database with the variation of 

walking condition and obtained the results that notable changes, 

especially the pixel number, appeared in subject‟s silhouette 

image under the variance of walking conditions. 

  

 

Figure 4. Pixel number distributions in “trunk” part 

 

Figure 4 shows a sample about the distribution of pixel 

number in “trunk” part under two different walking conditions. 

It is observed that the number of pixels mainly falls into two 

scopes. As the described in Section 3.1, the subspaces extracted 

from this part when subjects walk with down jacket are 

interfered features for individual recognition.  

Based on the distribution of pixel number, we can calculate a 

probability by the fuzzy membership for an input test sequence 

as follows: 

𝑀𝑒𝑚𝑝 =

 
 
 

 
 

1 −

0,                           𝜃𝑝
2 ≤ 𝑋𝑝 ;

𝑋𝑝−𝜃𝑝
1

𝜃𝑝
2−𝜃𝑝

1 ,     𝜃𝑝
1 ≤ 𝑋𝑝 ≤ 𝜃𝑝

2; 

0,                         𝑋𝑝 ≤ 𝜃𝑝
1;

       (7) 

In equation (7), Mem𝑝  denotes the probability towards 𝑝𝑡𝑕  

part. Higher value of the probability means that human 

silhouette has a greater chance of being unaffected by walking 

conditions in 𝑝𝑡𝑕  part. 𝑋𝑝  is the average pixel number of all 

images in 𝑝𝑡𝑕  part. Meanwhile, 𝜃𝑝
2 and 𝜃𝑝

1 is the upper and 

lower bound of pixel number in gallery set, respectively. The 

thresholds are decided only from the normal walking sequences 

in the gallery set. From this equation we can see that we will not 

select the subspaces from the 𝑝𝑡𝑕  body part if the number of its 

pixels is deviated from the range of  [𝜃𝑝
1, 𝜃𝑝

2] . Then the 

proportion (𝑃𝑟𝑜𝑝 ) of 𝐿  to be calculated for 𝑝𝑡𝑕  body part 

within a probe gait sequence is obtained as follows:  

𝑃𝑟𝑜𝑝 =
𝑀𝑒𝑚 𝑝

 𝑀𝑒𝑚 𝑝
𝑃
𝑝=1

   (8) 
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Finally, the number 𝐿𝑝  of subspaces selected from the 𝑝𝑡𝑕  

part in a test sequence is calculated as follows: 

𝐿𝑝 = 𝑃𝑟𝑜𝑝 × 𝐿                    (9) 

Note that the proportion obtained from equation (8) satisfies the 

constraint of depth subspace selection framework as shown in 

Section 3.2 such that 0 ≤ 𝑃𝑟𝑜𝑝 ≤ 1 and  𝑃𝑟𝑜𝑝
𝑃
𝑝=1 = 1.   

Figure 5 shows the results of proportion assignment when a 

subject walks under four different walking conditions. The 

numbers of selected subspaces are similar in four kinds of body 

parts under the normal walking condition because each part is 

unobstructed and contains useful discrimination clues for 

individual recognition. Nevertheless, when a person carries a 

bag while walking, the pixel number increases and goes beyond 

the thresholds for two lower body parts due to the bag‟s volume. 

In this case, we will select subspaces only from “head” part and 

“trunk” part for discarding the interfered information from the 

region of bag. 

 

  

  
Figure 5. Proportion of subspace number 𝐿 in each body part 

under four different walking conditions 

 

4. Individual Classification 

Let 𝑆𝑇 and 𝑆𝐺𝑘  be two corresponding subspaces selected 

in Algorithm 1 for a sequence in probe set and 𝑘𝑡𝑕  sequence in 

gallery set, respectively. We apply Euclidean distance to 

measure the similarity of two subspaces:  

             𝑑 𝑝, 𝑔𝑘 =  𝑆𝑇 − 𝑆𝐺𝒌      (10) 

Where 𝑑 𝑝, 𝑔𝑘  is the distance between this test sequence (𝑝) 

and 𝑘𝑡𝑕  sequence 𝑔𝑘  in gallery set. Then 𝑝 is classified as 

the nearest neighbor strategy. Since 𝐿 random depth subspaces 

are extracted from each test sequence, we will acquire 𝐿 

classification results for each sequence in the probe set. The 

final decision is taken by majority voting from 𝐿 results. A 

flow chart of recognizing an individual from an input test 

sequence is shown in Figure 6. The gallery set comprising K 

normal walking sequences while the test sequence is a subject‟s 

gait sequence of walking with unknown clothes types and 

postures. The preprocessed images are applied for both DGHEI 

calculation and adaptive proportion assignment. Each subspace 

from the test sequence is matched with K subspaces of the 

gallery set with a distance described in equation (10).  

 

 

 

 

 

 

 

5. Experiments 

5.1 Robust Depth Gait Database 

  Since no depth gait database containing multiple walking 

conditions from frontal viewpoint is available in public domain, 

we prepared our own depth gait database of frontal depth video 

frames by Microsoft Kinect XBOX 360. This database is 

captured in an indoor environment and consists of 12 subjects 

with several walking conditions. Each subject was instructed to 

start at the back maker and walk towards the sensor up to the 

front marker 28 times.  

The gait data of each subject is recorded as both color (not 

used) and depth video frames, including 4 normal walking 

sequences (wearing T-shirt, regular pants and natural swinging 

arms), 8 to 12 clothes-varying sequences and 12 to 16 sequences 

of other walking conditions, named as Set A, Set B and Set C 

respectively. As shown in Figure 7, we chose some typical dress, 

such as skirt, down jacket and long coat, for simulating real 

application. Meanwhile, some common walking posture is 

selected, including walking with a side-carrying bag and 

Gallery set 

Gait feature 

representation 

Preprocessing 

DGHEI 

Test sequence 

Preprocessing 

Body part 

segmentation 

Body part 

segmentation 

Pixel number 

measurement 

Upper and lower 

bound 

Gait feature 

representation 

 

Adaptive proportion 

assignment 

Pixel number 

measurement 

Each part‟s pixel 

number 

DGHEI 

Proportion of L 

Random depth 

subspace selection 

L subspaces of test 
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L × K subspaces of 

gallery set 

Individual 

Classification 

Series of images Series of images 
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Figure 6. Flow chart of the ARDS framework 
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burying his/her hands in the pockets.  

 

     

Figure 7. Sample images of walking condition 

 

5.2 Experimental Setup 

To evaluate the robustness of our method, we segment Set A 

into two different subsets: Set A1 consists of the 2 sequences of 

normal walking, taken as the gallery set; Set A2 includes the rest 

2 of sequences. Note that only normal walking sequences 

constitute the gallery set, which is more realistic in real-world 

applications. For each subject, the probe set is composed of 

three subsets: Set A2, Set B and Set C. The purpose of testing on 

three subsets is to evaluate the effectiveness of each method 

toward different walking conditions. In addition, the gallery set 

is also referred for calculating the thresholds as described in 

section 3.3.  Since our proposed method is a random system, 

only one experiment is not enough for evaluation and 

comparison. We measured the mean accuracy by running ten 

times.  

5.3 Results and Discussion 

Table 1 shows the maximum and minimum of the accuracy 

obtained by ten times of run for our depth gait database. We 

implemented the GEI, GEV and DGHEI for our depth gait 

database, and compared our experimental results with these 

three methods for demonstrating the effectiveness of our method. 

Considering real-world gait recognition of individual, it is not 

realistic to train a model for all possible walking conditions for 

each subject. Thus, the methods breached the above-mentioned 

requirements are eliminated in comparison prior to the 

experiment.  

As shown in Table 2, it is obvious that the GEI using binary 

silhouettes that is extracted from the depth images achieved 

worse performance than these which is applied for the depth 

information, because the physical distance provides additional 

discrimination clues from the depth images. GEV and DGHEI, 

as the methods focusing on depth gait images, extended the 

concept of the GEI to 3D and showed good performance in Set 

A2. However, the performance becomes worse when the 

intra-class variation exceeds individual variation for different 

walking conditions such as Set B and Set C. This is because the 

GEV features, as well as DGHEI, are extracted from the whole 

body silhouettes, which is affected by the variation of walking 

conditions. Performance is remarkably improved in DGHEI 

because some body parts with significant discrimination clues, 

such as legs, are not obstructed. In this case, using DGHEI to 

extract the gradient information from these body parts becomes 

smooth, and it is possible to obtain better accuracy than other 

above mentioned methods.  

As seen in the Table 2, the accuracy (Mean accuracy with 

running ten times) of our proposed method is superior to other 

methods in these data sets. Specifically, proposed method 

improves the accuracy higher in Set B than other subsets. Based 

on the body local gradient information of body and adaptive 

proportion assignment, proposed method is capable of avoiding 

the interfered information as much as possible under the 

variation of clothing effectively. 

In our proposed method, there are two significant parameters 

which need to be investigated for effectiveness: (1)𝑁 ; the 

number of cells in each subspace; (2) 𝐿; the total number of 

subspaces in each gait sequence. We obtained the mean accuracy 

by running ten times under each combination of 𝑁 and 𝐿 as 

shown in Figure 8. In our experiment, each value of 𝑁 has 

been tested by setting the range from 2 to 8. The best mean 

accuracy is obtained for 𝑁=3. Though it is not proved in Isam 

et al. [5], the mean accuracy will be decreased as well, when the 

value of 𝑁 decrease from the most suitable value (𝑁=3 in our 

experiment). In case where the size of each subspace is too 

small, the corresponding subspaces from same subject have 

more probability to be mismatched by the slight discrepancies of 

the same body part between probe and gallery. Meanwhile, if the 

𝑁 is too large, the mean accuracy will be decreased due to 

overfitting problem.  

As Shown in Figure 8, in accordance with the growth of 𝐿, 

the mean accuracy is increased and is stable in a range for each 

decided value of 𝑁 . Thus we decided the parameter 

combination as 𝑁=3 and 𝐿=300, which is also lead to the best 

performance in our experiment.  

 

Table 1. Maximum and minimum accuracy of proposed method 

with running ten times 

Condition:  

𝐿=300, 𝑁=3 

Set A2 Set B Set C ALL 

Maximum 95.83% 

(23/24) 

77.42% 

(96/124) 

76.83% 

(126/164) 

78.53% 

(245/312) 

Minimum 87.50% 

(21/24) 

69.35% 

(86/124) 

73.78% 

(121/164) 

73.08% 

(228/312) 

Mean 93.33% 71.85% 75.43% 75.38% 

 

 Table 2. Performance comparison by algorithm 

Methods Set A2 Set B Set C ALL 

GEI [2] 83.33% 

(20/24) 

31.45% 

(39/124) 

36.59% 

(60/164) 

38.14% 

(119/132) 

GEV [3] 91.86% 

(22/24) 

55.65% 

(69/124) 

62.20% 

(102/164) 

61.86% 

(193/312) 

DGHEI [4] 91.86% 

(22/24) 

42.74% 

(53/124) 

73.78% 

(121/164) 

62.82% 

(196/312) 

Proposed 93.33% 71.85% 75.43% 75.38% 
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Figure 8. Performance comparison with respect to 𝑁 

 

6. Conclusion 

This paper introduced an effective method, which is called 

Adaptive Random Depth Subspace (ARDS) framework in 

robust depth gait recognition for individual. Different form the 

related method of depth gait recognition, we extend the whole- 

based feature extraction to part-based selection for adjusting the 

walking conditions variation. For real-world application, we 

combine the adaptive feature selection technique with the 

random selection procedure to assign the number of subspaces 

for each body part. Experimental results showed superior 

performance to the existing methods. In this work, body-part 

segmentation is accomplished by the premise of anatomical 

body properties, which may cause the mismatch due to the body 

proportion variation of the subjects. Open issues include the 

investigation of other techniques for dynamic body-part 

detection and segmentation. 
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