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 Implementing Incremental Aggregate Computation on SciDB  
 

Li Jiang†1 Hideyuki Kawashima†2 Osamu Tatebe†3 
 
SciDB is a typical array DBMSs, a new kind of databases dealing with big data storing and processing in science fields. The 
window aggregation is a typical aggregate query of it, especially with the percentile function, which is useful and frequently 
used. However, generally naive sorting method is used to calculate the percentile window aggregates, which will do much 
redundant computation and lead to low efficiency. In this thesis, we propose an improved method with incremental computation 
for percentile window aggregate queries. It uses data structure of self-balancing binary search tree to maintain needed data and 
reuses them when computing, eliminates the redundant computation. The time complexity analysis is offered, which shows the 
advantages of the proposed method clearly. We implement this method in SciDB, run performance experiments and also examine 
the method’s parallel processing features. 

 

1. Introduction  

  Nowadays, science and industry are growing increasingly 
data-intensive, efficient analysis of big data is getting more and 
more important. In many fields, data has multiple dimensions 
and does not fit in the table data model so well, leading a high 
cost in some analysis tasks. In order to efficiently store and 
analyze such multi-dimensional data, array database systems 
appeared, with array as basic data model instead of table. 
  Our work is to improve the performance of an important 
query in array DBMSs, the window aggregates. By exploiting 
the idea of incremental computation, redundant works are 
reduced and performance is highly improved. In this paper, we 
focus on an aggregate operator “percentile”, which is useful for 
scientist such as meteorologists. Since the function is 
complicated, its acceleration is not trivial. Improvement of other 
aggregate operators can be found in our previous work [12]. 

The proposed method, as well as the naive one, is 
implemented into SciDB [7] which is the most popular array 
database system. In the experiment, we used JRA55 dataset [14], 
which is a series of meteorological data, to evaluate the 
performance of proposed method in a real application.  

SciDB 
  SciDB is a typical array database system, designed to store 
and manipulate big array data that often seen in science 
community. The data model is multi-dimensional array instead 
of table, which is different from relational database. The array 
data model naturally fits in data schema well in many fields of 
science such as meteorology [16] and astronomy [18, 19]. 
SciDB inherently supports efficient complex analyses over 
multi-dimensional data. 

On the viewpoint of system architecture, SciDB adopts a 
design of shared nothing storage architecture, and it can process 
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a query in parallel. For storing a large array, SciDB divides it 
into small chunks and distribute these chunks across multiple 
servers in a cluster, which makes it possible to compute a query 
in parallel for each chunk. 

Window Aggregates 
Window aggregates are one of the most important operators 

in array databases. It’s a type of operator frequently used when 
analyzing multi-dimensional array data, as quite a common and 
necessary query in array databases or array data processing 
systems. 

A window query computes aggregate operator over a moving 
window. Here, a window is more like a sub-array of the original 
array and its sizes in each dimension are specified by users. The 
window starts at the first grid of array and moves in stride-major 
order from the lowest to highest value in each dimension. Figure 
1 shows a 3x3 sized window aggregate in 2-dimension, and how 
the window moves. The result of a window query is an array 
with the same size as the input array, with each cell containing 
the aggregate result of that cell’s corresponding window in the 
original array. 

 
Figure 1 Window aggregate in a 2-dimensional array 

Percentile Operator 
A percentile is a measure used in statistics indicating the 

value below which a given percentage of observations fall. For 
example, among all scores of a class, if a score is in 85th 
percentile, then it is exactly higher than 85% of all the scores 
[17].  

Percentile has many real applications in practice. It is very 
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useful and can provide interesting information when analyzing 
data. For example, meteorologists want to compute percentiles 
over moving time windows at the scope of global areas [16]. 
This exactly fits in a window aggregate query in array database, 
with the aggregate function to be percentile.  

Generally, percentile is computed by sorting. But in the case 
of window aggregate, it requires to process one sort for each 
window, which would be time consuming since there are so 
many windows. Thus, we propose another method to process the 
window aggregate of percentile more efficiently by reusing 
previous window’s data with the concept of incremental 
computation. Details of this method are presented in Section 3. 

JRA55 data 
Conducted by the Japan Meteorological Agency (JMA), 

JRA55 is the second Japanese global atmospheric reanalysis 
project. It covers 55 years, extending back to 1958, coinciding 
with the establishment of the global radiosonde observing 
system. This data project covers the global area, supports a 
regular latitude-longitude Gaussian grid (145 latitudes by 288 
longitudes, nominally 1.25 degree), and daily 6-hourly data [13]. 
So this is a typical multi-dimensional data, exactly 3 dimensions: 
the longitude, latitude and time. Such data can be managed and 
analyzed by array databases efficiently, making it a nice choice 
for testing the performance of our proposed method against 
naive method. 

2. Related Works 

2.1 Related researches 
  Because array database is quite a new type of database, as a 
typical query of it, there are not so many works related about 
accelerating window aggregate. 
  About array databases, there are some researches to extend 
some scientific features, such as data versioning [1, 4] and 
uncertain data [9]. Also, efficient distributed storage and parallel 
processing of arrays are discussed in some works [2, 3].  
  As the most popular array DBMS, SciDB gains more 
attentions [5, 7, 8], these works focus on the architecture design 
and low-level array storage, while our work is to improve a 
specific query in array database. There is another array database, 
SciQL[6, 11], which is not so mature as SciDB. 

2.2 Previous works 
  In previous works, we improved some other aggregate 
operators of window aggregates with incremental computation, 
such as average, minimum and maximum. Compared with 
percentile, these functions are simple and easier to adapt 
incremental computing. The experiment results showed a great 
improvement in performance [12]. 

  Also, in this previous work, we implemented an array data 
processing system, which can only process analytical tasks with 
arrays in main memory. The system is simply designed, lacks of 
data management features and can only run queries in one 
thread. 
  In this paper, we choose to implement the proposed method 
into SciDB, a mature open-source array database system. The 
result would be more convincing than our previous experimental 
environment, and the real workload of our method can be 
showed in a well-constructed array database system. 

3. Method Details 

  This Section discuss about the details of the methods for 
computing the window aggregate of percentile. First, for a set of 
data observations, how would percentile be computed would be 
introduce with details. Then we introduce the naive method, the 
quicksort based method and then the proposed method that 
leverages incremental computing using data structure, 
self-balancing binary search tree. 

3.1 Percentile 
  In fact, there is no standard definition of how to compute 
percentile, however it is known that all the definitions would get 
similar results, especially when the number of observation is 
very large [17]. 
  The definition we selected is referred to as nearest rank. The 
computing method is explained in the following. For the P-th 

percentile (0 ≤ 𝑃 ≤ 100) of 𝑁  values, it first computes an 
ordinal rank 𝑛 as 

𝑛 =
𝑃

100
× 𝑁 +  

1

2
 

  Then, it rounds the result to the nearest integer, then the value 

corresponding the rank 𝑛 among all 𝑁 values (arranged from 
least to greatest) is obtained as the percentile value. 

3.2 Non-incremental computation 
  Because the calculation of the percentile can be treated as 
computing the rank n-th value in the data set, a natural way 
would be sorting the data set first, then the n-th smallest value is 
obviously computed. In this way, quicksort would be a general 

choice for sorting the data, with time complexity as O(𝑁log𝑁), 
in which N is the total number of sorted values. As for the 
percentile window aggregate, one sort process needed for 
computing each one window. We refer this method to “quicksort 
method”. 
  This method is simple and easy to implement. On the other 
hand, it has a certain weakness: during the computation, there 
are some redundant works wasting the processing resources. If 
we observe the windows, it is easy to find out that the 
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neighboring windows shared a big part of same area, with only 
very few cells different between them. Comparing a window 
with its previous window (before moved), only few cells are 
removed and few cells are added, with most cells remaining 
unchanged. We show this situation in Figure 2. 
 

 

Figure 2 Comparison between adjacent windows 
 
  Quicksort method ignores this feature of adjacent windows 
and only computes every window separately. Actually, if we can 
somehow reuse the processed data in the previous window and 
compute the percentile incrementally through moving steps, it 
will become more efficient. 

3.3 Proposed Method: Incremental Computation with 
Self-Balancing BST 

Percentile is to compute the n-th smallest value among the 
current window. Here n is calculated from the given percentile 
p-th as introduced in Section 3.1 In order to obtain this quickly 
in each window, we propose to use the data structure of 
self-balancing binary search tree [14] to maintain the values of 
the current window in sorted orders. When moving to a new 
window, the tree contains all the values of the previous window, 
so only few insert and delete operations needed to modify it into 
a tree only containing the values of the new window. Then the 
current percentile can be computed quickly, as the old sorted 
values of the previous window in the tree reused, this is an 
incremental computation. 
3.3.1 Self-balancing Binary Search Tree 

It is necessary to first introduce this data structure, 
self-balancing binary search tree, or just self-balancing BST for 
short from now on in this paper. 

BST (Binary Search Tree) is a simple data structure, also 
known as ordered/sorted binary tree. It is a node-based binary 
tree, each node with a comparable key and satisfies that the key 
in any node is larger than the keys from that node’s left 
sub-tree’s nodes and smaller than the keys from that node’s right 

sub-tree’s nodes. Insert and delete keys are both very fast. In 
addition, by recording the size of the sub-tree for each node, it is 
convenient to compute the nth (n can be any value) smallest key 
in the tree. This operation is called “selection” in BST and is 
exactly what we need for calculating the percentile function. 

However, a simple BST is efficient only when it is balanced. 
Most operations, such as insertion, deletion and selection that 
we need, all take time directly proportional to the height of the 
tree. In our case, the tree would continuously adding and 
removing nodes, so it is very easy for the tree to turn into a bad 
unbalanced shape with big height, which leads to low efficiency. 
 

 

Figure 3 Example: two BSTs with same keys in different shapes 
 

To solve this, self-balancing binary search tree is actually 
used, which can automatically keep its height small in the face 
of arbitrary insertions and deletions. This kind of BST adjusts its 
shape by some rotation operations under certain conditions, 
keeping it balanced or near-to-perfect balanced. In such tree, 
insertion, deletion and selection operations will all only cost 
O(logN) in amortized complexity. Here N is the total number of 
nodes in the tree.  

3.3.2 Incremental Computation Process 
By applying self-balancing binary search tree as the data 

structure to maintain the window values for incremental 
computation, we can take advantages of the close relationship 
between adjacent windows by reusing a lot of processed data 
from the previous window in the BST. Many redundant sorting 
works are reduced, that leads to high efficiency. 
  We here introduce the detailed process steps of the 
incremental computation for the percentile window aggregates. 
We treat the computation process into 2 stages. First stage is to 
generate basic windows from the first n-1 dimensions, then for 
every basic window, process the second stage, moving the 
window forward in the last dimension, calculate the percentile 
for each window incrementally. 
  Here a basic window is the first window in a moving round 
through the last dimension, so the position of their last 
dimension is always in the first, while the other n-1 dimensions’ 
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positions vary. As shown in the Figure 4, the grey areas are the 
basic windows. 

 

Figure 4 Basic windows of a window query in a 2-D array  
 

Here we explain how the incremental computation method 
performs in detailed steps with an example small 2-Dimensional 
array in the following. 

Step 1.  Generate a basic window, initialize the self-balancing 
BST, and insert all the values of the basic window into the BST. 
The result of a selection operation which computes the n-th 
smallest key in the BST is the percentile value for the basic 
window. 
 

 
Figure 5 Basic window and Initializing the BST 

 

Step 2.  Moving the window forward in the last dimension, 
inserting new coming values into the self-balancing BST, while 
deleting the old values that no longer in the current window. 
After all the updating, the values inside the BST become exactly 
the values of the current window. This situation is shown if 
Figure 6. Again a selection to get the n-th smallest key in the 
tree would be the percentile result. 
 

 
Figure 6 process a new window, update the BST 

 

Step 3.  Keep moving forwards, repeat step 2 to compute the 
aggregate percentile values of all the windows that derived from 
the basic window in step 1. 

Step 4.  Moving on to a new basic window, repeat the step 1~3, 
which is considered as a computation round. After finishing all 
the basic windows’ computation rounds, the percentile window 
aggregate is done completely. 

3.4 Parallel Processing 
  SciDB is a parallel array DBMS. Beside the special array data 
model, its parallel feature is another big advantage. By building 
a large cluster consists of multiple nodes, it can accelerate 
analytical tasks through its distributed system and run sub-tasks 
on each node at the same time. 

Here we show our proposed method is processed in parallel 
with the architecture of distributed chunking in SciDB. 
  SciDB divides a large array into smaller chunks and distribute 
these chunks across a cluster to store. As build-in queries of 
SciDB, if a query can be processed by the unit of a chunk, and 
can collect sub-results of each chunk and figure out the merged 
result for the whole query, then this query can be processed in 
parallel. 
  When computing window aggregate query of percentile using 
our proposed incremental computing method in a cluster, every 
chunk can be assumed as an independent sub-array. Inside each 
chunk, a moving window is processed, as well as a 
self-balancing BST is maintained to compute the percentile 
incrementally. Figure 7 shows this situation. 
 

 
Figure 7 Incremental Computation in parallel 

 
  When gathering the sub-output into a final result array, there 
is no dependence between chunks. It simply constructs an array 
with the result of each chunk in its corresponding area. Then it 
obtains the final query result. Therefore, the proposed method is 
able to be computed in parallel, which is examined in Section 
experiment section 5 that describe the experimental evaluation. 

4. Analysis 

This Section analyzes time complexity of all the three 
methods introduced above to compute the window aggregate 
query with percentile operator. 
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For the preparation to describe the analysis, some parameters 
in window aggregates need to be defined so that the description 
is clear. For a n-dimensional array, its dimension sizes is defined 

as 𝐷1, 𝐷2, … , 𝐷𝑛. For a window aggregate query over such an 
array, the window size is specified in each dimension as 
𝑤1, 𝑤2, … , 𝑤𝑛. By this definition, the total number of cells in this 
array is shown as ∏ 𝐷𝑖

𝑛
𝑖=1  and total cell number of a normal 

window is shown as ∏ 𝑤𝑖
𝑛
𝑖=1 .  

4.1 Quicksort Method 
Quicksort method computes every window separately. 

Therefore, the time complexity is easy to compute. 
First, let’s consider the total number of windows. Each cell in 

an array has a corresponding window, thus the number of 
windows to be computed is same as the total cell number in an 
array, which is, in a n-dimensional array case, ∏ 𝐷𝑖

𝑛
𝑖=1  

Then let’s consider the quicksort part. For each window, a 
quicksort needs to be processed, which sorts all the values in the 
window. Since there are ∏ 𝑤𝑖

𝑛
𝑖=1  cells in a window, the time 

complexity for computing one window becomes as follows: 
𝑂( ∏ 𝑤𝑖

𝑛
𝑖=1 𝑙𝑜𝑔 (∏ 𝑤𝑖)𝑛

𝑖=1 ) 
From the analysis above, the total time complexity for 

quicksort method is: 

𝑂 ( ∏ 𝐷𝑖

𝑛

𝑖=1

∙ ∏ 𝑤𝑖

𝑛

𝑖=1

∙ log (∏ 𝑤𝑖)

𝑛

𝑖=1

) 

4.2 Proposed Method 
Because the incremental computation method is more 

complicated, consider a 2-dimensional array with dimension 

sizes 𝑋 ∙ 𝑌 first and set the window sizes of the query to be 
𝑎 ∙ 𝑏.  

In this case, at total X basic windows exist. According to the 
compute process introduce in section 3.3, in each basic 
window’s compute round, need to move on the second 
dimension (with size Y) to get new windows and process the 
incremental computing. That is Y moving steps at total. In other 
words, each basic window has Y derivative windows to be 
calculated. 

When calculating each derivative window, values of a cells 
need to be inserted into the BST, while values of a cells need to 
be deleted from the BST. This is showed in Figure 8. After that, 
one selection operation needed to get the percentile result of the 
current window. Meanwhile, the self-balancing BST always 
maintains exactly all the cells of the current window inside it, so 

the size of the tree is always 𝑎 ∙ 𝑏. Thus every single operation 
in the self-balancing BST, such as insertion, deletion and 

selection, always cost log 𝑎𝑏 

 

Figure 8 Details of window in one move step 

2-D array with size 𝑋 ∙ 𝑌, window size as 𝑎 ∙ 𝑏 
 

From the analysis above, for each move step, adding up the 
cost for the insertions, deletions and selection, the time 
complexity is 𝑂(𝑎 ∙ log 𝑎𝑏 + 𝑎 ∙ log 𝑎𝑏 + log 𝑎𝑏), which can be 
simplified as 𝑂(𝑎 ∙ log 𝑎𝑏) 

So the total time complexity of 2-dimensional case is  

𝑂(𝑋𝑌𝑎 ∙ log 𝑎𝑏) 
Also place the complexity of quicksort method here, with 

same definition of dimension and window sizes in 2-D case, 

𝑂(𝑋𝑌𝑎𝑏 ∙ log 𝑎𝑏) 
It is obvious that our proposed method has a speedup by a 

factor of b in 2-Dimensional cases comparing with the quicksort 
method.. 

For a n-dimensional array, the analysis is similar.  
First, let’s consider the number of basic windows. Because 

basic windows’ position are determined by the first n-1 

dimensions, therefore the number of basic windows is ∏ 𝐷𝑖
𝑛−1
𝑖=1  . 

Then let’s consider each basic window. In the computation 
round based on one basic window, the window is moved along 

the last dimension. Therefore 𝐷𝑛 moving steps exist, thus 𝐷𝑛 
derivative windows need to be computed.  

For each derivative window, the number of new cells to be 

inserted into the self-balancing BST is ∏ 𝑤𝑖
𝑛−1
𝑖=1 , same as the 

number of cells to be removed. After that, one selection 
executed to get the percentile result. When executing all these 
BST operations, the tree’s size is the same as window’s total size, 
that is ∏ 𝑤𝑖

𝑛
𝑖=1 . Therefore each single operation of the BST 

costs log (∏ 𝑤𝑖)𝑛
𝑖=1 . So ∏ 𝑤𝑖

𝑛−1
𝑖=1  times of insertions, ∏ 𝑤𝑖

𝑛−1
𝑖=1  

times of deletion and one time of selection, these are all the 
operations in the self-balancing BST need to be executed in one 
window. Summarize them up, the complexity for one window is 

𝑂 ((∏ 𝑤𝑖

𝑛−1

𝑖=1

+ ∏ 𝑤𝑖

𝑛−1

𝑖=1

+ 1) ∙ log (∏ 𝑤𝑖)

𝑛

𝑖=1

) 
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It can be simplified into 

𝑂 ( ∏ 𝑤𝑖

𝑛−1

𝑖=1

∙ log (∏ 𝑤𝑖)

𝑛

𝑖=1

) 

  Finally, as analyzed above, ∏ 𝐷𝑖
𝑛−1
𝑖=1  basic windows exist, for 

each basic window, 𝐷𝑛 windows are to compute, that is, in 
total the time complexity for our proposed method is 

𝑂 ( ∏ 𝐷𝑖

𝑛

𝑖=1

∙ ∏ 𝑤𝑖

𝑛−1

𝑖=1

∙ log (∏ 𝑤𝑖)

𝑛

𝑖=1

) 

Compare it with the quicksort method, whose complexity is 

𝑂 ( ∏ 𝐷𝑖

𝑛

𝑖=1

∙ ∏ 𝑤𝑖

𝑛

𝑖=1

∙ log (∏ 𝑤𝑖)

𝑛

𝑖=1

) 

The incremental computation method gets a speedup factor of 

𝑤𝑛  according to the time complexity. This means that our 
proposed method would be about 𝑤𝑛  times faster than 
quicksort method in theory.  

5. Experiment 

This chapter introduces the details of experiments, including 
the evaluation environment, the data used and performance 
comparison. 

5.1 Environment 
  The experiments were executed over a SciDB cluster that 
consists of 9 nodes. Each node has the same environment and its 
configuration parameters are as follows: 

Operating System : CentOS 6.5 
CPU  : Intel(R) Xeon(R) E5620 2.40GHz 
Main Memory Size : 24GB 

  Even for some special experiments on a single node, the 
configuration of that node is same as showed above. 

5.2 Implementation 
  In order to evaluate the performance between the proposed 
method and the quicksort method, we implement these two 
methods into SciDB. Here is some information. 
  Language  : C++ 
  Number of Lines   : 1300 
  SciDB version : 13.12 
  The source codes of our implementation can be accessed on 
Github [20]. From source codes, only a plugin file can be built. 
It should be loaded into SciDB system to work correctly. 
  SciDB supports a convenient plugin-mechanism that allows 
users to implement their own defined operators. A 
user-defined-operator can be loaded into SciDB as a plugin. 
Once loaded, the plugin-operator can be executed exactly same 
as the built-in operators of SciDB. With plenty inte 

rfaces provided to access data from array, user can focus on 
implementing desired operator without considering the 
low-level’s system issues.  

5.3 Data 
  The data used for experiments is the JRA55 data [14]. The 
chosen data attributes and query parameter settings fit in real 
meteorological applications that require to computing percentile. 
The evaluated queries are required in real analysis by 
meteorologists. 

For the experiment, we loaded 20 years’ surface temperature 
data of JRA55 into the SciDB cluster. The size of one year’s 
surface temperature data is about 4GB. When loading the data, 
we converted JRA55 files from GRIB2 format to CSV format 
since SciDB currently does not provide a mechanism to load 
GRIB2 format file whereas CSV is provided. 

5.4 Performance Evaluation 
5.4.1 Proposed Method vs. Quicksort Method 
  To compare the efficiency of these two methods, we designed 
two series of test cases, with different parameter settings.  

The first series of evaluations are executed over an array 
containing the JRA55’s surface temperature data of year 2012. 

The array is a 3-dimensional array of size 288×145×366, 
corresponding with longitude, latitude and time. The first two 
dimensions specify the location of the cell on earth, while the 
last dimension specifies which day’s data the cell contains. In 
each cell, the main attribute is the surface temperature at 12 
o’clock on that day.  

The window aggregate query tested here is required by our 
cooperating meteorologists [16]. They wish to calculate 
percentiles over temporal windows, more specifically, to 
calculate percentiles of every 30 days’ temperature data. 
Meanwhile, on the spatial aspect, they don’t require overlap 
windows, so the computation is over single spatial cells. Figure 
9 shows this. 

 

Figure 9 Window query in a real meteorological application, 
computing percentile in temporal window of 30 days. 
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Therefore, when designing the window parameters of the 
testing query, we set window size of the first two dimensions as 
1x1, and only increase the window size in the temporal 
dimension. The tested attribute is the surface temperature at 
noon and the percentile percentage was set as 70%. The result is 
shown in Table 1 and Figure 10. 
 

Table 1 Query Processing Time (in seconds) with  
JRA55 Data of Year 2012 (288x145x366)  

Window Size 1x1x5 1x1x10 1x1x15 1x1x20 1x1x25 1x1x30 

Balanced-BST 2.97 s 2.99 s 2.98 s 3.03 s 2.98 s 3.04 s 

Quicksort 7.31 s 14.28 s 20.96 s 27.99 s 34.90 s 41.01 s 

Speedup 2.46 4.78 7.03 9.25 11.71 13.49 

Note: the balanced-BST represents the incremental competition 
method, while quicksort represents the naive sort method. 

 
It shows improvements in running time of our proposed 

incremental computation method against the naive sort method. 
As the window size gets larger, the effect of improvement also 
gets larger. The last case with window size 1x1x30 is exactly the 
query needed in the meteorological analyze we mentioned. It 
gets a significant speedup by factor of 13.49. 
 

 
Figure 10 Query Processing Time with window Size 

 
From the result above, a performance feature of the 

incremental computation method can be found. With all the 

other parameters fixed, no matter how 𝑤𝑛, the window size in 
last dimension varies, the processing time of the query almost 
remain the same. This feature is consistent with our time 
complexity analysis described in Section 4.2. As analyzed, the 
time complexity of our proposed method is  

𝑂 ( ∏ 𝐷𝑖

𝑛

𝑖=1

∙ ∏ 𝑤𝑖

𝑛−1

𝑖=1

∙ log (∏ 𝑤𝑖)

𝑛

𝑖=1

) 

It is obvious that compared with other parameters, 𝑤𝑛 makes 
very little contribution in this expression, only a factor inside 

log. This is the reason why the increasing of 𝑤𝑛 almost has no 
effect to the query time in the evaluation above. 
  Here is the second series of test data. This time, we only 
change the window sizes in the first 2 dimensions (longitude and 
latitude) and remain the time dimension unchanged. When the 
window size becomes large, the quicksort method costs too 
much time, therefore we choose a smaller array than the one in 
the previous experiment, with only one month’s data, the JRA55 
data of 2012, January. This array contains temperature at 0, 6, 
12, 18 o’clock in one day instead of only the data at 12 o’clock. 
Therefore the 3rd dimension of this array is 124 (31x4) instead 
of 31. 
 

Table 2 Query Processing Time (in seconds) with  
JRA55 Data of Year 2012, January (288x145x124)  

Window Size 1x1x5 2x2x5 3x3x5 4x4x5 5x5x5 

Balanced-BST 1.26 s 4.44 s 9.83 s 18.38 s 28.75 s 

Quicksort 3.03 s 11.32 s 26.39 s 47.00 s 72.24 s 

Speedup 2.41 2.55 2.68 2.56 2.51 

 
  The result of experiment is shown in Table 2 and Figure 11. 
Again, the result shows improvements in efficiency of the 
proposed method for the percentile window aggregate query.  
 

 
Figure 11 Query Processing Time with window Size 

 
  More can be found from the two test series above. We already 
understand from the time complexity analysis in section 4 that 
in theory, comparing with the quicksort method, our proposed 

method has a speedup factor of 𝑤𝑛 , which in the above 
3-dimensional cases, is 𝑤3 , that is the last window size 
parameter. The experiment results can prove this analysis. In 
this test series, as the 𝑤3 remains the same, the speedup value 
of proposed method against the quicksort method also almost 

remains the same. Meanwhile, in the first test series, as the 𝑤3 
increases in linear, so does the speedup value. To show this 

more clearly, dividing speedup values with 𝑤3 in every test 
case of both series, the results seem both to be a same constant. 
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This proved that our analysis of the speedup factor to be 𝑤𝑛 is 
correct. It should be noted that of course, a constant factor exists 
here. 
5.4.2 Cluster vs. Single Node 
  After the evaluation between two methods, how the 
incremental computation method performs in parallel should 
also be evaluated. 
  As introduced before, the cluster we used for testing consists 
of 9 nodes. To evaluate the parallel computing performance, a 
single node cluster was also built as a comparison. The same 
JRA55 dataset for evaluating was also loaded into this single 
node. The queries tested here is the same ones tested in Section 
5.4.1, with window sizes of the query varying only in the first 
two dimensions. 
 

Table 3 Parallel Test: Cluster (9 Nodes) vs. Single Node 

Window Size 1x1x5 2x2x5 3x3x5 4x4x5 5x5x5 

Cluster 1.26s 4.44s 9.83s 18.38s 28.75s 

Single Node 5.90s 22.19s 48.13s 88.37s 136.53s 

Speedup 4.68 5.00 4.90 4.81 4.75 

 
The result of experiments is shown in Table 3. The 

experimental result shows that the cluster processes the same 
percentile window aggregate about 5 times faster than the single 
node server. It is acceptable since in a parallel computation 
across a database cluster, there would be other time cost besides 
query running time, such as communication cost between nodes. 
With the situation of analyzing huge amount of data by window 
aggregates, building a large cluster to calculate the query in 
parallel can be an efficient solution. 

6. Conclusions 

  This paper proposes an efficient algorithm for percentile 
window aggregate query in array databases. By using the data 
structure of self-balancing binary search tree, lots of redundant 
work has been eliminated comparing to the naive quicksort 
method, leading a much better efficiency. 
  We implemented this method as well as the quicksort method 
in SciDB, which is an open-source array database system. 
Performance experiments were executed with real scientific data 
— the JRA55 dataset. The result showed excellent improvement. 
The improvement ratio was consistent with the time complexity 
analysis results. In summary, the incremental computation 

method has a speedup by a factor of 𝑤𝑛 comparing with the 
naive sorting method. This 𝑤𝑛 is one of the window query 
parameters, meaning the window size in the last dimension. We 
conclude that our proposed method succeeded to improve the 

efficiency of window percentile computation over array data. 
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