

 1

 Implementing Incremental Aggregate Computation on SciDB

Li Jiang†1 Hideyuki Kawashima†2 Osamu Tatebe†3

SciDB is a typical array DBMSs, a new kind of databases dealing with big data storing and processing in science fields. The
window aggregation is a typical aggregate query of it, especially with the percentile function, which is useful and frequently
used. However, generally naive sorting method is used to calculate the percentile window aggregates, which will do much
redundant computation and lead to low efficiency. In this thesis, we propose an improved method with incremental computation
for percentile window aggregate queries. It uses data structure of self-balancing binary search tree to maintain needed data and
reuses them when computing, eliminates the redundant computation. The time complexity analysis is offered, which shows the
advantages of the proposed method clearly. We implement this method in SciDB, run performance experiments and also examine
the method’s parallel processing features.

1. Introduction

 Nowadays, science and industry are growing increasingly
data-intensive, efficient analysis of big data is getting more and
more important. In many fields, data has multiple dimensions
and does not fit in the table data model so well, leading a high
cost in some analysis tasks. In order to efficiently store and
analyze such multi-dimensional data, array database systems
appeared, with array as basic data model instead of table.
 Our work is to improve the performance of an important
query in array DBMSs, the window aggregates. By exploiting
the idea of incremental computation, redundant works are
reduced and performance is highly improved. In this paper, we
focus on an aggregate operator “percentile”, which is useful for
scientist such as meteorologists. Since the function is
complicated, its acceleration is not trivial. Improvement of other
aggregate operators can be found in our previous work [12].

The proposed method, as well as the naive one, is
implemented into SciDB [7] which is the most popular array
database system. In the experiment, we used JRA55 dataset [14],
which is a series of meteorological data, to evaluate the
performance of proposed method in a real application.

SciDB
 SciDB is a typical array database system, designed to store
and manipulate big array data that often seen in science
community. The data model is multi-dimensional array instead
of table, which is different from relational database. The array
data model naturally fits in data schema well in many fields of
science such as meteorology [16] and astronomy [18, 19].
SciDB inherently supports efficient complex analyses over
multi-dimensional data.

On the viewpoint of system architecture, SciDB adopts a
design of shared nothing storage architecture, and it can process

 †1 Graduate School of System and Information Engineering, University of
Tsukuba
 †2 Faculty of Engineering, Information and System, and Center for
Computational Sciences, University of Tsukuba

†3 CREST, JST

a query in parallel. For storing a large array, SciDB divides it
into small chunks and distribute these chunks across multiple
servers in a cluster, which makes it possible to compute a query
in parallel for each chunk.

Window Aggregates
Window aggregates are one of the most important operators

in array databases. It’s a type of operator frequently used when
analyzing multi-dimensional array data, as quite a common and
necessary query in array databases or array data processing
systems.

A window query computes aggregate operator over a moving
window. Here, a window is more like a sub-array of the original
array and its sizes in each dimension are specified by users. The
window starts at the first grid of array and moves in stride-major
order from the lowest to highest value in each dimension. Figure
1 shows a 3x3 sized window aggregate in 2-dimension, and how
the window moves. The result of a window query is an array
with the same size as the input array, with each cell containing
the aggregate result of that cell’s corresponding window in the
original array.

Figure 1 Window aggregate in a 2-dimensional array

Percentile Operator
A percentile is a measure used in statistics indicating the

value below which a given percentage of observations fall. For
example, among all scores of a class, if a score is in 85th
percentile, then it is exactly higher than 85% of all the scores
[17].

Percentile has many real applications in practice. It is very

IPSJ SIG Technical Report

ⓒ 2014 Information Processing Society of Japan

Vol.2014-OS-130 No.2
2014/7/28

 2

useful and can provide interesting information when analyzing
data. For example, meteorologists want to compute percentiles
over moving time windows at the scope of global areas [16].
This exactly fits in a window aggregate query in array database,
with the aggregate function to be percentile.

Generally, percentile is computed by sorting. But in the case
of window aggregate, it requires to process one sort for each
window, which would be time consuming since there are so
many windows. Thus, we propose another method to process the
window aggregate of percentile more efficiently by reusing
previous window’s data with the concept of incremental
computation. Details of this method are presented in Section 3.

JRA55 data
Conducted by the Japan Meteorological Agency (JMA),

JRA55 is the second Japanese global atmospheric reanalysis
project. It covers 55 years, extending back to 1958, coinciding
with the establishment of the global radiosonde observing
system. This data project covers the global area, supports a
regular latitude-longitude Gaussian grid (145 latitudes by 288
longitudes, nominally 1.25 degree), and daily 6-hourly data [13].
So this is a typical multi-dimensional data, exactly 3 dimensions:
the longitude, latitude and time. Such data can be managed and
analyzed by array databases efficiently, making it a nice choice
for testing the performance of our proposed method against
naive method.

2. Related Works

2.1 Related researches
 Because array database is quite a new type of database, as a
typical query of it, there are not so many works related about
accelerating window aggregate.
 About array databases, there are some researches to extend
some scientific features, such as data versioning [1, 4] and
uncertain data [9]. Also, efficient distributed storage and parallel
processing of arrays are discussed in some works [2, 3].
 As the most popular array DBMS, SciDB gains more
attentions [5, 7, 8], these works focus on the architecture design
and low-level array storage, while our work is to improve a
specific query in array database. There is another array database,
SciQL[6, 11], which is not so mature as SciDB.

2.2 Previous works
 In previous works, we improved some other aggregate
operators of window aggregates with incremental computation,
such as average, minimum and maximum. Compared with
percentile, these functions are simple and easier to adapt
incremental computing. The experiment results showed a great
improvement in performance [12].

 Also, in this previous work, we implemented an array data
processing system, which can only process analytical tasks with
arrays in main memory. The system is simply designed, lacks of
data management features and can only run queries in one
thread.
 In this paper, we choose to implement the proposed method
into SciDB, a mature open-source array database system. The
result would be more convincing than our previous experimental
environment, and the real workload of our method can be
showed in a well-constructed array database system.

3. Method Details

 This Section discuss about the details of the methods for
computing the window aggregate of percentile. First, for a set of
data observations, how would percentile be computed would be
introduce with details. Then we introduce the naive method, the
quicksort based method and then the proposed method that
leverages incremental computing using data structure,
self-balancing binary search tree.

3.1 Percentile
 In fact, there is no standard definition of how to compute
percentile, however it is known that all the definitions would get
similar results, especially when the number of observation is
very large [17].
 The definition we selected is referred to as nearest rank. The
computing method is explained in the following. For the P-th

percentile (0 ≤ 𝑃 ≤ 100) of 𝑁 values, it first computes an
ordinal rank 𝑛 as

𝑛 =
𝑃

100
× 𝑁 +

1

2

 Then, it rounds the result to the nearest integer, then the value

corresponding the rank 𝑛 among all 𝑁 values (arranged from
least to greatest) is obtained as the percentile value.

3.2 Non-incremental computation
 Because the calculation of the percentile can be treated as
computing the rank n-th value in the data set, a natural way
would be sorting the data set first, then the n-th smallest value is
obviously computed. In this way, quicksort would be a general

choice for sorting the data, with time complexity as O(𝑁log𝑁),
in which N is the total number of sorted values. As for the
percentile window aggregate, one sort process needed for
computing each one window. We refer this method to “quicksort
method”.
 This method is simple and easy to implement. On the other
hand, it has a certain weakness: during the computation, there
are some redundant works wasting the processing resources. If
we observe the windows, it is easy to find out that the

IPSJ SIG Technical Report

ⓒ 2014 Information Processing Society of Japan

Vol.2014-OS-130 No.2
2014/7/28

 3

neighboring windows shared a big part of same area, with only
very few cells different between them. Comparing a window
with its previous window (before moved), only few cells are
removed and few cells are added, with most cells remaining
unchanged. We show this situation in Figure 2.

Figure 2 Comparison between adjacent windows

 Quicksort method ignores this feature of adjacent windows
and only computes every window separately. Actually, if we can
somehow reuse the processed data in the previous window and
compute the percentile incrementally through moving steps, it
will become more efficient.

3.3 Proposed Method: Incremental Computation with
Self-Balancing BST

Percentile is to compute the n-th smallest value among the
current window. Here n is calculated from the given percentile
p-th as introduced in Section 3.1 In order to obtain this quickly
in each window, we propose to use the data structure of
self-balancing binary search tree [14] to maintain the values of
the current window in sorted orders. When moving to a new
window, the tree contains all the values of the previous window,
so only few insert and delete operations needed to modify it into
a tree only containing the values of the new window. Then the
current percentile can be computed quickly, as the old sorted
values of the previous window in the tree reused, this is an
incremental computation.
3.3.1 Self-balancing Binary Search Tree

It is necessary to first introduce this data structure,
self-balancing binary search tree, or just self-balancing BST for
short from now on in this paper.

BST (Binary Search Tree) is a simple data structure, also
known as ordered/sorted binary tree. It is a node-based binary
tree, each node with a comparable key and satisfies that the key
in any node is larger than the keys from that node’s left
sub-tree’s nodes and smaller than the keys from that node’s right

sub-tree’s nodes. Insert and delete keys are both very fast. In
addition, by recording the size of the sub-tree for each node, it is
convenient to compute the nth (n can be any value) smallest key
in the tree. This operation is called “selection” in BST and is
exactly what we need for calculating the percentile function.

However, a simple BST is efficient only when it is balanced.
Most operations, such as insertion, deletion and selection that
we need, all take time directly proportional to the height of the
tree. In our case, the tree would continuously adding and
removing nodes, so it is very easy for the tree to turn into a bad
unbalanced shape with big height, which leads to low efficiency.

Figure 3 Example: two BSTs with same keys in different shapes

To solve this, self-balancing binary search tree is actually
used, which can automatically keep its height small in the face
of arbitrary insertions and deletions. This kind of BST adjusts its
shape by some rotation operations under certain conditions,
keeping it balanced or near-to-perfect balanced. In such tree,
insertion, deletion and selection operations will all only cost
O(logN) in amortized complexity. Here N is the total number of
nodes in the tree.

3.3.2 Incremental Computation Process
By applying self-balancing binary search tree as the data

structure to maintain the window values for incremental
computation, we can take advantages of the close relationship
between adjacent windows by reusing a lot of processed data
from the previous window in the BST. Many redundant sorting
works are reduced, that leads to high efficiency.
 We here introduce the detailed process steps of the
incremental computation for the percentile window aggregates.
We treat the computation process into 2 stages. First stage is to
generate basic windows from the first n-1 dimensions, then for
every basic window, process the second stage, moving the
window forward in the last dimension, calculate the percentile
for each window incrementally.
 Here a basic window is the first window in a moving round
through the last dimension, so the position of their last
dimension is always in the first, while the other n-1 dimensions’

IPSJ SIG Technical Report

ⓒ 2014 Information Processing Society of Japan

Vol.2014-OS-130 No.2
2014/7/28

 4

positions vary. As shown in the Figure 4, the grey areas are the
basic windows.

Figure 4 Basic windows of a window query in a 2-D array

Here we explain how the incremental computation method
performs in detailed steps with an example small 2-Dimensional
array in the following.

Step 1. Generate a basic window, initialize the self-balancing
BST, and insert all the values of the basic window into the BST.
The result of a selection operation which computes the n-th
smallest key in the BST is the percentile value for the basic
window.

Figure 5 Basic window and Initializing the BST

Step 2. Moving the window forward in the last dimension,
inserting new coming values into the self-balancing BST, while
deleting the old values that no longer in the current window.
After all the updating, the values inside the BST become exactly
the values of the current window. This situation is shown if
Figure 6. Again a selection to get the n-th smallest key in the
tree would be the percentile result.

Figure 6 process a new window, update the BST

Step 3. Keep moving forwards, repeat step 2 to compute the
aggregate percentile values of all the windows that derived from
the basic window in step 1.

Step 4. Moving on to a new basic window, repeat the step 1~3,
which is considered as a computation round. After finishing all
the basic windows’ computation rounds, the percentile window
aggregate is done completely.

3.4 Parallel Processing
 SciDB is a parallel array DBMS. Beside the special array data
model, its parallel feature is another big advantage. By building
a large cluster consists of multiple nodes, it can accelerate
analytical tasks through its distributed system and run sub-tasks
on each node at the same time.

Here we show our proposed method is processed in parallel
with the architecture of distributed chunking in SciDB.
 SciDB divides a large array into smaller chunks and distribute
these chunks across a cluster to store. As build-in queries of
SciDB, if a query can be processed by the unit of a chunk, and
can collect sub-results of each chunk and figure out the merged
result for the whole query, then this query can be processed in
parallel.
 When computing window aggregate query of percentile using
our proposed incremental computing method in a cluster, every
chunk can be assumed as an independent sub-array. Inside each
chunk, a moving window is processed, as well as a
self-balancing BST is maintained to compute the percentile
incrementally. Figure 7 shows this situation.

Figure 7 Incremental Computation in parallel

 When gathering the sub-output into a final result array, there
is no dependence between chunks. It simply constructs an array
with the result of each chunk in its corresponding area. Then it
obtains the final query result. Therefore, the proposed method is
able to be computed in parallel, which is examined in Section
experiment section 5 that describe the experimental evaluation.

4. Analysis

This Section analyzes time complexity of all the three
methods introduced above to compute the window aggregate
query with percentile operator.

IPSJ SIG Technical Report

ⓒ 2014 Information Processing Society of Japan

Vol.2014-OS-130 No.2
2014/7/28

 5

For the preparation to describe the analysis, some parameters
in window aggregates need to be defined so that the description
is clear. For a n-dimensional array, its dimension sizes is defined

as 𝐷1, 𝐷2, … , 𝐷𝑛. For a window aggregate query over such an
array, the window size is specified in each dimension as
𝑤1, 𝑤2, … , 𝑤𝑛. By this definition, the total number of cells in this
array is shown as ∏ 𝐷𝑖

𝑛
𝑖=1 and total cell number of a normal

window is shown as ∏ 𝑤𝑖
𝑛
𝑖=1 .

4.1 Quicksort Method
Quicksort method computes every window separately.

Therefore, the time complexity is easy to compute.
First, let’s consider the total number of windows. Each cell in

an array has a corresponding window, thus the number of
windows to be computed is same as the total cell number in an
array, which is, in a n-dimensional array case, ∏ 𝐷𝑖

𝑛
𝑖=1

Then let’s consider the quicksort part. For each window, a
quicksort needs to be processed, which sorts all the values in the
window. Since there are ∏ 𝑤𝑖

𝑛
𝑖=1 cells in a window, the time

complexity for computing one window becomes as follows:
𝑂(∏ 𝑤𝑖

𝑛
𝑖=1 𝑙𝑜𝑔 (∏ 𝑤𝑖)𝑛

𝑖=1)
From the analysis above, the total time complexity for

quicksort method is:

𝑂 (∏ 𝐷𝑖

𝑛

𝑖=1

∙ ∏ 𝑤𝑖

𝑛

𝑖=1

∙ log (∏ 𝑤𝑖)

𝑛

𝑖=1

)

4.2 Proposed Method
Because the incremental computation method is more

complicated, consider a 2-dimensional array with dimension

sizes 𝑋 ∙ 𝑌 first and set the window sizes of the query to be
𝑎 ∙ 𝑏.

In this case, at total X basic windows exist. According to the
compute process introduce in section 3.3, in each basic
window’s compute round, need to move on the second
dimension (with size Y) to get new windows and process the
incremental computing. That is Y moving steps at total. In other
words, each basic window has Y derivative windows to be
calculated.

When calculating each derivative window, values of a cells
need to be inserted into the BST, while values of a cells need to
be deleted from the BST. This is showed in Figure 8. After that,
one selection operation needed to get the percentile result of the
current window. Meanwhile, the self-balancing BST always
maintains exactly all the cells of the current window inside it, so

the size of the tree is always 𝑎 ∙ 𝑏. Thus every single operation
in the self-balancing BST, such as insertion, deletion and

selection, always cost log 𝑎𝑏

Figure 8 Details of window in one move step

2-D array with size 𝑋 ∙ 𝑌, window size as 𝑎 ∙ 𝑏

From the analysis above, for each move step, adding up the
cost for the insertions, deletions and selection, the time
complexity is 𝑂(𝑎 ∙ log 𝑎𝑏 + 𝑎 ∙ log 𝑎𝑏 + log 𝑎𝑏), which can be
simplified as 𝑂(𝑎 ∙ log 𝑎𝑏)

So the total time complexity of 2-dimensional case is

𝑂(𝑋𝑌𝑎 ∙ log 𝑎𝑏)
Also place the complexity of quicksort method here, with

same definition of dimension and window sizes in 2-D case,

𝑂(𝑋𝑌𝑎𝑏 ∙ log 𝑎𝑏)
It is obvious that our proposed method has a speedup by a

factor of b in 2-Dimensional cases comparing with the quicksort
method..

For a n-dimensional array, the analysis is similar.
First, let’s consider the number of basic windows. Because

basic windows’ position are determined by the first n-1

dimensions, therefore the number of basic windows is ∏ 𝐷𝑖
𝑛−1
𝑖=1 .

Then let’s consider each basic window. In the computation
round based on one basic window, the window is moved along

the last dimension. Therefore 𝐷𝑛 moving steps exist, thus 𝐷𝑛
derivative windows need to be computed.

For each derivative window, the number of new cells to be

inserted into the self-balancing BST is ∏ 𝑤𝑖
𝑛−1
𝑖=1 , same as the

number of cells to be removed. After that, one selection
executed to get the percentile result. When executing all these
BST operations, the tree’s size is the same as window’s total size,
that is ∏ 𝑤𝑖

𝑛
𝑖=1 . Therefore each single operation of the BST

costs log (∏ 𝑤𝑖)𝑛
𝑖=1 . So ∏ 𝑤𝑖

𝑛−1
𝑖=1 times of insertions, ∏ 𝑤𝑖

𝑛−1
𝑖=1

times of deletion and one time of selection, these are all the
operations in the self-balancing BST need to be executed in one
window. Summarize them up, the complexity for one window is

𝑂 ((∏ 𝑤𝑖

𝑛−1

𝑖=1

+ ∏ 𝑤𝑖

𝑛−1

𝑖=1

+ 1) ∙ log (∏ 𝑤𝑖)

𝑛

𝑖=1

)

IPSJ SIG Technical Report

ⓒ 2014 Information Processing Society of Japan

Vol.2014-OS-130 No.2
2014/7/28

 6

It can be simplified into

𝑂 (∏ 𝑤𝑖

𝑛−1

𝑖=1

∙ log (∏ 𝑤𝑖)

𝑛

𝑖=1

)

 Finally, as analyzed above, ∏ 𝐷𝑖
𝑛−1
𝑖=1 basic windows exist, for

each basic window, 𝐷𝑛 windows are to compute, that is, in
total the time complexity for our proposed method is

𝑂 (∏ 𝐷𝑖

𝑛

𝑖=1

∙ ∏ 𝑤𝑖

𝑛−1

𝑖=1

∙ log (∏ 𝑤𝑖)

𝑛

𝑖=1

)

Compare it with the quicksort method, whose complexity is

𝑂 (∏ 𝐷𝑖

𝑛

𝑖=1

∙ ∏ 𝑤𝑖

𝑛

𝑖=1

∙ log (∏ 𝑤𝑖)

𝑛

𝑖=1

)

The incremental computation method gets a speedup factor of

𝑤𝑛 according to the time complexity. This means that our
proposed method would be about 𝑤𝑛 times faster than
quicksort method in theory.

5. Experiment

This chapter introduces the details of experiments, including
the evaluation environment, the data used and performance
comparison.

5.1 Environment
 The experiments were executed over a SciDB cluster that
consists of 9 nodes. Each node has the same environment and its
configuration parameters are as follows:

Operating System : CentOS 6.5
CPU : Intel(R) Xeon(R) E5620 2.40GHz
Main Memory Size : 24GB

 Even for some special experiments on a single node, the
configuration of that node is same as showed above.

5.2 Implementation
 In order to evaluate the performance between the proposed
method and the quicksort method, we implement these two
methods into SciDB. Here is some information.
 Language : C++
 Number of Lines : 1300
 SciDB version : 13.12
 The source codes of our implementation can be accessed on
Github [20]. From source codes, only a plugin file can be built.
It should be loaded into SciDB system to work correctly.
 SciDB supports a convenient plugin-mechanism that allows
users to implement their own defined operators. A
user-defined-operator can be loaded into SciDB as a plugin.
Once loaded, the plugin-operator can be executed exactly same
as the built-in operators of SciDB. With plenty inte

rfaces provided to access data from array, user can focus on
implementing desired operator without considering the
low-level’s system issues.

5.3 Data
 The data used for experiments is the JRA55 data [14]. The
chosen data attributes and query parameter settings fit in real
meteorological applications that require to computing percentile.
The evaluated queries are required in real analysis by
meteorologists.

For the experiment, we loaded 20 years’ surface temperature
data of JRA55 into the SciDB cluster. The size of one year’s
surface temperature data is about 4GB. When loading the data,
we converted JRA55 files from GRIB2 format to CSV format
since SciDB currently does not provide a mechanism to load
GRIB2 format file whereas CSV is provided.

5.4 Performance Evaluation
5.4.1 Proposed Method vs. Quicksort Method
 To compare the efficiency of these two methods, we designed
two series of test cases, with different parameter settings.

The first series of evaluations are executed over an array
containing the JRA55’s surface temperature data of year 2012.

The array is a 3-dimensional array of size 288×145×366,
corresponding with longitude, latitude and time. The first two
dimensions specify the location of the cell on earth, while the
last dimension specifies which day’s data the cell contains. In
each cell, the main attribute is the surface temperature at 12
o’clock on that day.

The window aggregate query tested here is required by our
cooperating meteorologists [16]. They wish to calculate
percentiles over temporal windows, more specifically, to
calculate percentiles of every 30 days’ temperature data.
Meanwhile, on the spatial aspect, they don’t require overlap
windows, so the computation is over single spatial cells. Figure
9 shows this.

Figure 9 Window query in a real meteorological application,
computing percentile in temporal window of 30 days.

IPSJ SIG Technical Report

ⓒ 2014 Information Processing Society of Japan

Vol.2014-OS-130 No.2
2014/7/28

 7

Therefore, when designing the window parameters of the
testing query, we set window size of the first two dimensions as
1x1, and only increase the window size in the temporal
dimension. The tested attribute is the surface temperature at
noon and the percentile percentage was set as 70%. The result is
shown in Table 1 and Figure 10.

Table 1 Query Processing Time (in seconds) with
JRA55 Data of Year 2012 (288x145x366)

Window Size 1x1x5 1x1x10 1x1x15 1x1x20 1x1x25 1x1x30

Balanced-BST 2.97 s 2.99 s 2.98 s 3.03 s 2.98 s 3.04 s

Quicksort 7.31 s 14.28 s 20.96 s 27.99 s 34.90 s 41.01 s

Speedup 2.46 4.78 7.03 9.25 11.71 13.49

Note: the balanced-BST represents the incremental competition
method, while quicksort represents the naive sort method.

It shows improvements in running time of our proposed

incremental computation method against the naive sort method.
As the window size gets larger, the effect of improvement also
gets larger. The last case with window size 1x1x30 is exactly the
query needed in the meteorological analyze we mentioned. It
gets a significant speedup by factor of 13.49.

Figure 10 Query Processing Time with window Size

From the result above, a performance feature of the

incremental computation method can be found. With all the

other parameters fixed, no matter how 𝑤𝑛, the window size in
last dimension varies, the processing time of the query almost
remain the same. This feature is consistent with our time
complexity analysis described in Section 4.2. As analyzed, the
time complexity of our proposed method is

𝑂 (∏ 𝐷𝑖

𝑛

𝑖=1

∙ ∏ 𝑤𝑖

𝑛−1

𝑖=1

∙ log (∏ 𝑤𝑖)

𝑛

𝑖=1

)

It is obvious that compared with other parameters, 𝑤𝑛 makes
very little contribution in this expression, only a factor inside

log. This is the reason why the increasing of 𝑤𝑛 almost has no
effect to the query time in the evaluation above.
 Here is the second series of test data. This time, we only
change the window sizes in the first 2 dimensions (longitude and
latitude) and remain the time dimension unchanged. When the
window size becomes large, the quicksort method costs too
much time, therefore we choose a smaller array than the one in
the previous experiment, with only one month’s data, the JRA55
data of 2012, January. This array contains temperature at 0, 6,
12, 18 o’clock in one day instead of only the data at 12 o’clock.
Therefore the 3rd dimension of this array is 124 (31x4) instead
of 31.

Table 2 Query Processing Time (in seconds) with
JRA55 Data of Year 2012, January (288x145x124)

Window Size 1x1x5 2x2x5 3x3x5 4x4x5 5x5x5

Balanced-BST 1.26 s 4.44 s 9.83 s 18.38 s 28.75 s

Quicksort 3.03 s 11.32 s 26.39 s 47.00 s 72.24 s

Speedup 2.41 2.55 2.68 2.56 2.51

 The result of experiment is shown in Table 2 and Figure 11.
Again, the result shows improvements in efficiency of the
proposed method for the percentile window aggregate query.

Figure 11 Query Processing Time with window Size

 More can be found from the two test series above. We already
understand from the time complexity analysis in section 4 that
in theory, comparing with the quicksort method, our proposed

method has a speedup factor of 𝑤𝑛 , which in the above
3-dimensional cases, is 𝑤3 , that is the last window size
parameter. The experiment results can prove this analysis. In
this test series, as the 𝑤3 remains the same, the speedup value
of proposed method against the quicksort method also almost

remains the same. Meanwhile, in the first test series, as the 𝑤3
increases in linear, so does the speedup value. To show this

more clearly, dividing speedup values with 𝑤3 in every test
case of both series, the results seem both to be a same constant.

IPSJ SIG Technical Report

ⓒ 2014 Information Processing Society of Japan

Vol.2014-OS-130 No.2
2014/7/28

 8

This proved that our analysis of the speedup factor to be 𝑤𝑛 is
correct. It should be noted that of course, a constant factor exists
here.
5.4.2 Cluster vs. Single Node
 After the evaluation between two methods, how the
incremental computation method performs in parallel should
also be evaluated.
 As introduced before, the cluster we used for testing consists
of 9 nodes. To evaluate the parallel computing performance, a
single node cluster was also built as a comparison. The same
JRA55 dataset for evaluating was also loaded into this single
node. The queries tested here is the same ones tested in Section
5.4.1, with window sizes of the query varying only in the first
two dimensions.

Table 3 Parallel Test: Cluster (9 Nodes) vs. Single Node

Window Size 1x1x5 2x2x5 3x3x5 4x4x5 5x5x5

Cluster 1.26s 4.44s 9.83s 18.38s 28.75s

Single Node 5.90s 22.19s 48.13s 88.37s 136.53s

Speedup 4.68 5.00 4.90 4.81 4.75

The result of experiments is shown in Table 3. The

experimental result shows that the cluster processes the same
percentile window aggregate about 5 times faster than the single
node server. It is acceptable since in a parallel computation
across a database cluster, there would be other time cost besides
query running time, such as communication cost between nodes.
With the situation of analyzing huge amount of data by window
aggregates, building a large cluster to calculate the query in
parallel can be an efficient solution.

6. Conclusions

 This paper proposes an efficient algorithm for percentile
window aggregate query in array databases. By using the data
structure of self-balancing binary search tree, lots of redundant
work has been eliminated comparing to the naive quicksort
method, leading a much better efficiency.
 We implemented this method as well as the quicksort method
in SciDB, which is an open-source array database system.
Performance experiments were executed with real scientific data
— the JRA55 dataset. The result showed excellent improvement.
The improvement ratio was consistent with the time complexity
analysis results. In summary, the incremental computation

method has a speedup by a factor of 𝑤𝑛 comparing with the
naive sorting method. This 𝑤𝑛 is one of the window query
parameters, meaning the window size in the last dimension. We
conclude that our proposed method succeeded to improve the

efficiency of window percentile computation over array data.

Acknowledgement

Here we thank to Prof. Matsueda for his fruitful comments on
a meteorological application with percentile. This work is
partially supported by JSPS KAKENHI Grant Number
24240015C, JSPS KAKENHI Grant Number 25280043HA. It is
also supported by JST CREST “System Software for Post

Petascale Data Intensive Science” and JST CREST“Extreme
Big Data (EBD) Next Generation Big Data Infrastructure
Technologies Towards Yottabyte/Year”

Reference
1) Adam Seering, Philippe Cudre-Mauroux, Samuel M. Samuel etc.
Efficient Versioning for Scientific Array Databases, ICDE, 2012.
2) Alex V. Ballegooij, Roberto Cornacchia, Arjen P. deVries, Martin
Kersten. Distribution Rules for Array Database Queries. Database and
Expert Systems Applications Lecture Notes in Computer Science
Volume 3588, 2005, p 55-64
3) Emad Soroush, Magdalena Balazinska, and Daniel Wang.
ArrayStore: A Storage Manager for Complex Parallel Array Processing.
SIGMOD conference, 2011
4) Emad Soroush and Magdalena Balazinska. Time Travel in a
Scientific Array Database. ICDE, 2013.
5) M.Stonebraker, J. Becla, D. DeWitt etc. Requirements for Science
Data Bases and SciDB. CIDR Conference, Asilomar, CA, USA, 2009
6) M. Kersten, Y. Zhang, M. Ivanova. SciQL, A query language for
science applications. EDBT/ICDT 2011 Workshop on Array Databases.
7) P. Cudre-Mauroux, H. Kimura, K.-T. Lim etc. A Demonstration of
SciDB: A Science-Oriented DBMS. VLDB’09 Vol. 2, Num. 1,
1534-1537, Lyon, France, 2009
8) Paul G. Brown. Overview of SciDB, Large Scale Array Storage,
Processing and Analysis. SIGMOD Conference, 2010
9) Tingjian Ge, Zdonik, S. Handling Uncertain Data in Array
Database Systems. ICDE 2008. IEEE 24th International Conference.
10) SciDB Development team. SciDB User Guide version 12.10, 2012.
11) Ying Zhang, Martin Kersten, Milena Ivanova. SciQL: bridging the
gap between science and relational DBMS. IDEAS 2011, p 124-133
12) Li Jiang, Hideyuki Kawashima; An Incremental Computation
Scheme over Array Database. IPSJ SIG technical reports, Volume
2013-DBS-158, Issue 8, November, 2013.
13) A. Ebita, S. Kobayashi, Y. Ota etc. The Japanese 55-year
Reanalysis “JRA-55”: An Interim Report, SOLA, 2011, Vol. 7, 149−152
14) JRA55 data online archive. http://gpvjma.ccs.hpcc.jp/~jra55/#
15) Daniel D. Sleator, Robert E. Tarjan; Self-Adjusting Binary Search
Tree, Journal of the Association for Computing Machinery, Vol. 32,
No.3, July 1985
16) M. Matsueda, T. Nakazawa. 2014: Early warning products for
severe weather events derived from operational medium-range ensemble
forecasts. Meteorol. Appl. doi:10.1002/met.1444.
17) http://en.wikipedia.org/wiki/Percentile
18) Matthew Moyers , Emad Soroush and etc. A Demonstration of
Iterative Parallel Array Processing in Support of Telescope Image
Analysis. VLDB, Volume. 6, Issue 12, August, 2013
19) Jacob VanderPlas, Emad Soroush and etc. Squeezing a Big Orange
into Little Boxes: The AscotDB System for Parallel Processing of Data
on a Sphere. IEEE Data Eng. Bull. 36(4): 11-20, 2013
20) Li Jiang. Source codes of the implementation.
https://github.com/ljiangjl/Percentile-in-SciDB.git

IPSJ SIG Technical Report

ⓒ 2014 Information Processing Society of Japan

Vol.2014-OS-130 No.2
2014/7/28

