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Abstract: This paper discusses the use of Multipath TCP (MPTCP), which is a TCP extension that allows multiple
TCP flows to be associated to one application-layer logical connection, coupled with OpenFlow traffic engineering in
a single stack to provide a comprehensive multipathing solution, with OpenFlow providing optimal path sets while
MPTCP utilizing them. This design should be able to maximize bandwidth and network path utilization by allowing
hosts to take advantage of presently-unused paths. Design of the testbed, also to be used by our research group in future
projects, is also discussed in this paper. Finally, we discuss evaluation of network performance when using multiple
paths, as well as concerns raised by our work. In summary, our system functioned as expected and provided feasi-
ble performance in small virtual network. This design should be scalable to benefit distributed file storage systems,
data-intensive services, or any high-performance computing systems.

1. Introduction
Recently, networked systems, including distributed file stor-

age, application or web-service servers, and computation clus-
ters, have become more complex, having more server nodes and
being scattered around the world across the wide-area network.
Additionally, many networked systems are multi-homed, that is,
is connected to multiple gateway networks leading into the Inter-
net. Prevalent examples include mobile phones that can connect
to the Internet via the cellular network using 3G and the local-area
network using WiFi.

While new applications, server distributions, and data-
intensive systems can be easily created, modifying network-
ing mechanisms or protocols to accommodate them is not very
easy due to the distributed nature of networking. Any changes
in networking must take into account backward- and forward-
compatibility. Software-defined networking or SDN can be uti-
lized to rapidly test and implement new networking protocols and
concepts with minimal cost.

It is important that networked systems are able to benefit from
the existence of multiple paths by using multiple paths or routes
at once to transfer data from one host to another. For network
logistics reasons, we believe that the application should be able
to create only one application-layer connection and let the trans-
port mechanisms in the operating system handle the splitting and
stripping of such application-layer connection, by creating and
managing multiple transport-layer connections as deemed nec-
essary by the operating system itself. However, such system is
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not in general use.
However, current networked systems still work on the logic

that one application-layer connection is “backed” by only one
transport-layer connection [1]. Therefore, if an application
wishes to create multiple paths for performance or failover rea-
sons, it must perform splitting and/or stripping of the connections
manually. Moreover, if two connections are made to transfer a
file which is pre-striped by the application and one connection
fails, the application must resend the failed data transfer on the
working connection by itself.

By creating a working multipathing solution at the transport
layer or lower, multipathing is potentially available to every ap-
plication without the need for the application developer to cre-
ate specific complex handling solutions for multipathing scenar-
ios like the application-level multipathing. In the previous file
transfer example, a working transport-layer multipathing would
use the same transport-layer buffer for the two transport-layer
connections. When one connection fails, the (generalized) re-
transmission and sliding window mechanism would work on the
remaining connection without requiring application intervention.
As an additional benefit, we can meet higher demands for band-
width used by big-data operations in the industry.

As mentioned earlier, there are many kinds of networked sys-
tems that work across the wide-area network. In our research,
we plan to focus on distributed storage. Wide-area networks have
higher latency and smaller bandwidth compared to local-area net-
work. Additionally, wide-area network routing is much more
complex, consisting of multiple autonomous systems working to-
gether to provide connectivity to the end hosts. Distributed stor-
age tends to have large file transfers, a situation where bandwidth
utilization is important.
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2. Background
2.1 SDN and OpenFlow

OpenFlow is an SDN protocol which allows network traffic
control and management from the centralized OpenFlow Con-
troller instead of distributing such control to each network ele-
ment (switches, routers, etc.). By centralizing network control at
the controller, the network elements can be programmed to add
or remove any switching or routing rules in its flow table. While
OpenFlow provides programming flexibility to the network and
allows many concepts such as QoS or traffic engineering to be re-
alized, it cannot modify communication pattern between the end
hosts themselves. In traditional TCP/IP protocol suite, only one
route or path is used per connection. This limits the maximum
bandwidth of the entire connection to that of the segment with the
least bandwidth, and this cannot be overcome by simply adopting
OpenFlow.

2.2 Multipathing
RFC 2992 [2] mentions many existing multipathing concepts

and algorithms which allow multiple paths to be used in one con-
nection, including Equal-Cost Multipath (ECMP) which is avail-
able in some routing protocols including Open Shortest Path First
(OSPF), Intermediate System to Intermediate System (ISIS), and
implicitly in Routing Information Protocol (RIP); all of these
work at network layer. By using ECMP, routers will load-balance
among the paths which have equal cost with respect to the des-
tination. However, ECMP routing is performed at network layer
and is problematic to TCP, because TCP is not aware of the pres-
ence of ECMP operations. Some ECMP implementations scatter
packets in a round-robin fashion, making packets prone to arriv-
ing out-of-order which will prompt TCP to use retransmission
mechanisms when multiple consecutive ACKs are received, de-
creasing network performance [1].

On the other hand, application layer multipathing is possible
but error-prone [3] and hard to maintain [1]. The task of work-
ing with the multiple paths and flows will fall upon the applica-
tion, which is not aware of the many mechanisms that are already
available and working in the transport layer [4]. Some mecha-
nisms that involve specific transport-layer packets (TCP SYN and
ACK are common examples) may or may not work at all when
implemented in applications, because applications do not see the
information necessary for doing so.

2.3 Multipathing in Transport Layer
For reasons described above, it is more desirable that multi-

ple paths be managed from the transport layer, which is more in-
formed about each path than applications [3] but is also aware of
the high-level connections not accounted for in the network layer.
While SCTP, a transport-layer protocol, is also capable of multi-
pathing, the feature is used only for redundancy purposes and not
to increase bandwidth utilization [5].

Many researchers look at transport layer as a viable position
to multipath. Many works such as concurrent TCP (cTCP) [1],
M/TCP [6], and Heterogeneous Multipath Transport Protocol
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ages multiple TCP subflows.

Fig. 2: Relationship between the traditional network layer model
and derivatives that lead to the core design of MPTCP

(HMTP) [7] provide multipathing solutions in transport layer.
Many of these are mentioned in [8]. Among these, we find
MPTCP [9] to be an interesting protocol as it is implemented as
TCP options and not a separate protocol, allows paths to be added
and removed while the connection is still established, allows mul-
tipathing to be initiated from sender or recipient which allows it
to work in a greater variety of environments, manages congestion
control as a group (not per individual TCP connection), and has
integral security features. It also has extensive research, including
works on making a Linux kernel implementation [10].

2.4 MPTCP
Multipath Transmission Control Protocol, or MPTCP is an ex-

tension to TCP at transport layer to utilize multiple paths between
two network endpoints by stripping data into multiple subflows.
Each subflow then behaves like a TCP flow, with its own conges-
tion control, send and receive windows, and so on. Multipathing
allows us to use more than one path in one logical connection,
increasing bandwidth utilization, improving redundancy and sta-
bility, as well as allowing seamless handovers in certain environ-
ments. It is especially useful in multi-homed networks and sys-
tems, which are more prevalent today.

By decomposing the transport layer into two sublayers as in
Fig. 2a [11], MPTCP can separately recognize the end-to-end and
point-to-point situations better than the traditional model by hav-
ing the upper half, which is the MPTCP extension, work only
with managing the connection and subflows, while the lower half
works like ordinary TCP, dealing with congestion and other mat-
ters in each subflow as in Fig. 2b.

However, even with all the advantages MPTCP could offer,
there still is no guarantee that the multiple paths employed (a
“path set”) will always be the most optimal path set possible, as
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Fig. 1: Our implementation of the MPTCP/OpenFlow stack. MPTCP is used to provide multipath connectivity. Currently, OpenFlow
flow entries are manually set up to behave like a simple routing element.

the paths in a path set may overlap or collide with each other re-
ducing the leverage provided by MPTCP. MPTCP does not have
control over path selection at network layer.

While OpenFlow and MPTCP each has its own limitations, we
believe that by putting them to work in a single implementation,
the traffic engineering and routing techniques in OpenFlow can
provide an optimal path set that MPTCP can use to manage mul-
tiple subflows while presenting a single interface to the applica-
tion, allowing maximum performance to be achieved with mini-
mal additional effort from the application. While such solutions
have already been proved workable in [12], but we have a fur-
ther plan to optimize it specially for wide-area networking and
distributed data storage environments, as well as being a generic,
one-size-fits-most solution.

3. Design and Implementation
3.1 Design Goals

We aim to create a suite of MPTCP and OpenFlow working
cooperatively in the same system implementation. Ideally, Open-
Flow would find optimal path sets while MPTCP utilize them
to distribute traffic across multiple paths to maximize the use of
available bandwidth in the network.

We choose to approach the problem and solve it in certain
conditions, in order of importance: ( 1 ) to maintain compati-
bility to applications, our solution should require minimal or no
changes to applications; ( 2 ) multiple routes should be used be-
tween the two end hosts; ( 3 ) data transfer rate should increase
proportionally to the number of paths being concurrently used;
and ( 4 ) where possible, the multiple routes should not overlap or
intersect with each other, at least in the overlay network level .

In this work, we will attempt to fulfill the first two conditions
by using MPTCP, while hypothesizing on the third (more infor-
mation in section 3.4). The final condition will be met in a later
work by using a more advanced OpenFlow controller.

3.2 Design Decisions
It is essential to maintain compatibility between the multi-

pathing solution and applications. MPTCP preserves vertical
backwards compatibility by providing the same interface to ap-
plications as TCP, so we think it is a viable method. If an ap-
plication does not already use application-layer multipathing on
its own, it will benefit from MPTCP. If the application already
does, it can keep using its own multipathing mechanisms in con-
junction with MPTCP. We expect the performance may be de-
graded, but the application should still function. It is also trivial
to mention that MPTCP suite is compatible with IP, because TCP
packets generated by TCP are already encapsulated in IP. Addi-
tionally, MPTCP is also laterally backwards compatible, able to
revert back to TCP if a host does not have MPTCP installed. This
is because MPTCP is implemented as a set of TCP options, ini-
tiated by sending MP_CAPABLE option during 3-way handshake.
If a similar option is not returned, the initiating host immediately
knows it has to fall back.

As mentioned in the previous section, MPTCP has no control
over the paths taken by each subflow, and a path set can be sub-
optimal. In order to use the most optimal multiple paths, mul-
tiple routes have to be created at the network level so MPTCP
can utilize them. These paths are situated on different networks,
and OpenFlow-based solution is used to provide the overlay net-
work that fits this description. We currently set up flow entries
manually, but we plan to create a controller that works well in
multipathing context in the future to make the work scalable and
suitable for general use.

3.3 The Testbed
We implemented our testbed as described in Fig. 1 on a

VMware vSphere environment. Each node in our setup is de-
ployed onto different host machines, interconnected with a total
rate of 1 Gbps, shared between all users. The GRE connections
established between each pair of hosts (red lines) are manually
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Fig. 3: We set up flow entries in the virtual bridge to forward
packets between corresponding GRE and TAP devices.

limited to 100 Mbps.
We obtained MPTCP kernel (Linux 3.11) and utilities from

[13]. The kernel provides MPTCP functionality while the other
utilities enable us to prevent MPTCP from using certain inter-
faces. In our case, we disabled eth0 to restrict MPTCP to GRE
connections.

For OpenFlow connections, we used Open vSwitch to provide
virtual OpenFlow switches. The GRE and TAP devices are con-
nected by using the flow entries in the switches as shown in Fig. 3.
The TAP devices are then used by MPTCP.

For reference, we used following versions of software compo-
nents:

• CentOS 6.5

• MPTCP Kernel based on mainline version 3.11 [13]

• Open vSwitch version 1.11.0

• iperf version 2.0.4

3.4 Hypotheses on Performance
The GRE connections have data rate limited to 100 Mbps.

Therefore, the total theoretical bandwidth between host A to host
B should be 200 Mbps. When we test a single connection using
iperf, we measured a bandwidth of approximately 95 Mbps. We
therefore hypothesize that when using two GRE connections, the
total data rate should not be greater than 190 Mbps.

3.5 Evaluation Method
We evaluate the network performance by running ordinary

testing mechanisms via iperf, which in our opinion is a very
straightforward TCP test. If MPTCP is active and working
with unmodified applications, iperf should be able to utilize
more bandwidth than without MPTCP. In addition to compari-
son against our hypothesis, we will create two variables that may
affect total bandwidth. The first variable is the MPTCP State be-
tween on, on (but only one path is allowed), and off. The other
variable is the number of iperf threads from 1 to 4. This will
yield 12 settings in total. Each setting is then run for 10 seconds,
5 times, with 5-second pause period in between to make sure that
the next test is not affected by the buffers of previous test. The
result average bandwidth is then averaged for each setting. Tran-
sient bandwidth information is also obtained every 0.5 seconds.

MPTCP is integrated into the kernel and can be turned on and
off at the file /proc/sys/net/mptcp/mptcp_enabled, while
number of connections on iperf can be set by using -P #, where
# is the number of parallel threads to run.

Table 1: Bandwidth measured (in Mbps) between two host nodes
over two GRE links. Each test condition is run for ten seconds
for five times, five seconds apart.

MPTCP, many paths MPTCP, one path w/o MPTCP
1 Thread 189.13 95.17 89.14
2 Threads 190.16 95.46 95.33
3 Threads 190.84 95.23 95.62
4 Threads 191.41 95.52 95.67
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Fig. 4: Transient bandwidth measured during 1-thread and 4-
thread MPTCP tests.

4. Evaluation Results
Since our testbed is implemented on a virtual environment, our

system can be easily configured and modified. In this state, we
decided to keep the network topology as simple as possible, by
having only two nodes with one intermediate. After running the
experiment, we managed to capture data rates when using differ-
ent configurations as detailed in Table 1.

4.1 Bandwidth utilization of MPTCP
From our results in Table 1, we discovered that by using

MPTCP over two paths, the maximum bandwidth between the
two hosts increased approximately one-fold. This means MPTCP
can fully utilize the new path assigned to the two hosts. As shown
in the second column in Table 1, MPTCP can function as well as
without MPTCP even if there is only one path, suggesting that
performance drop, if any, is negligible when using MPTCP. Ad-
ditionally, MPTCP seems to be able to adapt to changing network
conditions on its own. This should allow MPTCP to adapt to any
kind of network as long as we provide appropriate paths to it by
the means of OS- or network-level configuration.

4.2 Performance of multiple threads
In addition to average bandwidth, we also collected transient

bandwidth measured by iperf every 0.5 seconds, as shown in
Fig. 4. We discovered that MPTCP can utilize bandwidth in a
stable manner over both time and number of threads, no worse
than ordinary TCP.

4.3 Packet analysis
In order to check if MPTCP initialized and operated properly,

we have captured the packets exchanged between the two hosts
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Fig. 5: Wireshark analysis of the first packet captured
while MPTCP connection is being established. Here, an
MP CAPABLE option is seen. GRE encapsulation between pub-
lic and private IP addresses are also visible.

using tcpdump and put them into Wireshark, version 1.8.6. *1

Fig. 5 shows the first MPTCP packet with MP_CAPABLE option
being sent from iperf client to server. By inspecting multiple
packets in capture files, we also found out that multiple endpoints
are used during communication. When each pair of endpoints is
being initialized, an MP_JOIN option is sent in addition to normal
TCP handshake.

5. Discussion
In this work we have successfully implemented a host which

utilizes both MPTCP and primitive flow entries to increase
application-layer bandwidth between two end hosts. We also dis-
covered that in this case of a virtual local network, MPTCP can
work with no significant performance drop compared to ordinary
TCP.

By successfully designing and implementing a working
MPTCP–OpenFlow combined testbed that yields superior band-
width utilization and point-to-point data rate, we further reinforce
the existing proof that MPTCP is viable as a drop-in improvement
to TCP. This brings us closer to our research goal.

This, however, is still far from our main research theme. While
iperf can simulate large file transfer, it still works on a host-
to-host basis and still does not fully reflect distributed storage or
other HPC systems.

5.1 Future Works
To continue upon our research focus, we will need to create an

OpenFlow controller that is capable of multipath routing, being

*1 Wireshark supports MPTCP since version 1.7.1.

able to find optimal path set for MPTCP. One among many possi-
ble ways is to predict the throughput and choose the most optimal
path set. [14]

Concerns regarding network saturation (with a massive num-
ber of connections) should be addressable by quality-of-service
schemes that can be enforced by OpenFlow. Another concern was
OS-level overhead because TCP already uses memory to main-
tain buffers and states. By expanding to MPTCP, we multiply
TCP memory overhead and add MPTCP overhead to it. Addi-
tionally, MPTCP adds a new transport-semantic sublayer, which
can contribute to latency and CPU usage.

The MPTCP kernel we use also allows ip link option of
a network device to be configured to backup and handover
modes, in addition to on and off which we are already using.
We believe that by experimenting and using these options, we
should be able to adjust network behavior and make it suitable
for real-world scenarios.

This work only tested MPTCP–OpenFlow stack in a vir-
tual local-area network. We believe that the different condi-
tions present in physical local-area network, with Open vSwitch
or hardware OpenFlow switches, and wide-area networks will
present new dimensions of challenges to our research. To gain
confidence that our system can improve networked system per-
formance while being easily implemented and deployed, we need
to expand our research to test in those challenging environments.

6. Conclusion
In this paper, we discussed our rationale to support transport-

layer multipathing, and evaluated performance of a system con-
figured to use Multipath TCP with OpenFlow on the same stack.
By using MPTCP kernel which works transparently, unmodified
applications can use MPTCP at optimal performance by using
maximum available bandwidth and could use secondary path au-
tomatically when it is routable. Even with one path, MPTCP per-
forms no worse than ordinary TCP. Therefore, MPTCP should
be a good option for networked systems engineers and opera-
tors when considering multipathing solutions, especially in dis-
tributed file storage systems, data-intensive services, or any high-
performance computing systems. However, MPTCP adds a new
sublayer to the transport layer and may increase overhead in terms
of memory and CPU processing. We will investigate this in a fu-
ture work.

Acknowledgments This work was partly supported by JSPS
KAKENHI Grant Number 25730075. The first author also ex-
presses his appreciation to the Japan Student Services Organiza-
tion (JASSO) for the Honors Scholarship during FY2013.

References
[1] Dong, Y., Wang, D., Pissinou, N. and Wang, J.: Multi-Path

Load Balancing in Transport Layer, Next Generation Internet Net-
works, 3rd EuroNGI Conference on, pp. 135–142 (online), DOI:
10.1109/NGI.2007.371208 (2007).

[2] Hopps, C.: Analysis of an Equal-Cost Multi-Path Algorithm, RFC
2992, RFC Editor (2000).
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