
IPSJ SIG Technical Report

Android Demonstration System of Automatic Parallelization and
Power Optimization by OSCAR Compiler

BUI DUC BINH†1　TOMOHIRO HIRANO†2　DOMINIC HILLENBRAND†3

HIROKI MIKAMI†4　KEIJI KIMURA†4　HIRONORI KASAHARA†5

The emergence of multicore processors in smart devices promises higher performance and better user experience. The
parallelization of application enables us to improve the application performance, however, simultaneously utilizing many cores
would drastically drain the device battery life. Therefore, power saving technology has become important. This report shows a
realtime video demonstration system for power reduction controlled by OSCAR Automatic parallelization Compiler on
ODROID-X2, an open Android development platform based on Samsung Exynos4412 Prime. The demonstration results show
that it can save 18.2% power consumption for MPEG-2 Decoder application and 56.6% power consumption for Optical Flow
application by using 2 cores in both applications.

 1 Introduction

 Recently, smart devices have been becoming the most popular
and dominant devices in the electronic market. Smart phone and
tablet sales overtook the global PC sales in 2013 [1].It is also
known that such small hand-held devices are getting rapidly
powerful and affordable as well. They are integrated with high
performance processors, accelerated graphics processing unit,
high resolution display, GPS and so on. These features have
turned smart device in a complete work station which is able to
compete with laptop as well as desktop computer.
 This leads to a significant growth in the number of smart device
users and sequentially, the demands on mobile device are getting
more concerned. It is required by users that smart devices should
be able to provide application performance at desktop-like
performance, however, in order to achieve that high performance,
the hand-held size devices must be able to complete a large
number of computations by powerful and sophisticated hardwares
which are extremely power consuming. Moreover, the battery
size in smart device is limited and not increased as fast as its
hardware. Therefore, achieving higher performance in a longer
time with a limited energy support has become a very important
research issue.
 Nowadays, most of commodity smart phone chips are multi-
core chips. Moreover, it is also known that a system with more
processors can provide better performance than a single core
system. To be able to reach higher performance in smart device, it
is necessary to fully utilize all available processors while still
considering about power consumption. Therefore, the
applications need to be parallelized in order to take advantage of
many cores system. Along with parallelization of application, the
power optimization is also required to overcome the battery life
constraints.
 The Android platform [2] is the most used OS (Operating
System) in smart phones with more than 70% in the market share,
therefore it is important to focus on improving performance and
power consumption in Android devices. Generally, the
applications in Android are developed in Java language. It is
possible to parallelize the applications in Java as shown in [3].
However, it is also indicated by [3] and [4] that Android
applications can be speed up by using Android NDK and JNI.
Android NDK and JNI enable Android developer to use native
code written in C or C++ which is much faster than Java in doing
arithmetic operations. One more way of parallelizing applications
is to parallelize them in native language such as C, C++, then
build shared library by NDK, finally exchange computed data
with Java part through JNI. Android applications can be speed up
two times by firstly using Android NDK and secondly using
parallelized native code.

 Parallelization of application is a very effective way to benefit
from multi-core system, however, manually parallelizing a large
program is very time consuming and most of current applications
are written for single core architecture. There are some
parallelizing compilers, such as OpenMP Compiler [5] and
OSCAR compiler [6][7]. For all of these parallelizing compilers,
OSCAR Compiler can realize not only application parallelization
but also power optimization [8][9]. [10] shows that by using
OSCAR compiler, it can save 86.7% power consumption in case
of using 3 cores compared to ordinary case of using 1 core with
MPEG-2 Decoder application, and 86.5% power consumption in
case of using 3 cores compared to ordinary case of using 1 core
with Optical Flow application. The experiments in [10] were
conducted on ODROID-X2[11] board, an open Android
development platform based on Samsung Exynos4412 Prime
[12]. However, it only showed the execution results of binary
files meaning that no realtime video displaying work was done
while MPEG-2 Decoder and Optical Flow generate data that
should be played on a display.
 This report introduces a full demonstration system of playing
video and measuring power consumption simultaneously. In this
report, we show an efficient way of the collaboration between the
Java UI thread and parallelized native C modules by core
partitioning and thread binding to cores. We also realize a real-
time video play system with low power optimization by utilizing
per-frequency profiling result in addition to the previously
proposed power optimization technique by OSCAR compiler.
 The rest of this report is structured as follows. Section 2
introduces the power management on Android platform and
section 3 introduces the OSCAR compiler. Section 4 and 5
explains the structure of the demonstration system. Section 6
shows the evaluation results and section 7 gives the conclusion of
the report.

 2 Power Management on Android

 Android Kernel or Linux Kernel supports a set of basic
functions of DFS (Dynamic Frequency Scaling) by which users
can adjust the system frequency in their own way. Besides, the
Android Kernel also provides an APCI (Advanced Configuration
and Power Interface) with five frequency adjustment schemes.
Respective to each of these schemes, there is one “CPUFreq
Governor” that decides which frequency should be used. The
governor could be a performance-oriented one which sets the
working frequency to the highest supported value. It is called
“performance”. In contrast to the governor performance, the
CPUfreq governor called “powersave” tries to execute all tasks at
the lowest frequency and save energy as far as possible. It is
power-oriented governor. Between these two governors, other
three governors are “ondemand”, “conservative” and

1ⓒ 2014 Information Processing Society of Japan

Vol.2014-ARC-211 No.7
2014/7/28

IPSJ SIG Technical Report

“userspace”. Ondemand will dynamically change the working
frequency depending on the current workload while in userspace
governor, users must specify a working frequency and the whole
system will run at that frequency. The conservative governor is
similar to the ondemand governor. The only difference is that the
conservative governor gradually increases and decreases the
frequency rather than jumping from one frequency to another
one.
 In Linux system, the ondemand governor is enabled by default.
In response to the ACPI event, the ondemand governor changes
CPU frequency depending on CPU utilization. Fig. 1 [13] shows
the original ondemand power control algorithm. After every X
milliseconds, the system checks if the current system utilization
is larger than the defined upper bound value, it will set the
working frequency to the maximum available frequency value.
Likewise, after every Y milliseconds, the system calculates the
current utilization and compares that to the lower bound value. If
the current utilization is smaller than the lower bound, the
working frequency will be decreased by 20%. This process is
repeated and applied for all available CPU(s). The ondemand
governor is very suitable to periodical applications since the
operating system can predict the proper frequency based on the
previous workloads which are quite stable in case of periodical
applications.

Figure 1: Original ondemand algorithm

 In userspace governor, the user changes the working frequency
through sysfs interface. The desired frequency value can be
applied by writing to sysfs filesystem such as
sys/devices/system/cpu/cpuX/cpufreq/scaling_set_speed

 3 OSCAR Compiler

 In order to fully utilize all available processors, the applications
need to be multi-threaded. Most of the current applications were
not developed with considerations about multi-core system as
well as power optimization as a priority. The following briefly
describes OSCAR Compiler and OSCAR API, which is used for
parallelization and power optimization of applications in this
report.
 The compiler exploits three kinds of tasks called macro-tasks
(MT) from a source program. Each MT can be a basic block, a
loop or a function. In constraints of control dependencies and
data dependencies, the parallelism among MTs is exploited by the
compiler and the result is represented as a hierarchically defined
macro task graph (MTG) [6].
 Then macro-tasks are scheduled to available processors. A task
is called ready task if it satisfies the earliest executable condition.
According to the priorities, a macro-task is picked from a list of
ready tasks and assigned to an appropriate core. This process is
repeated until all macro tasks are scheduled.

 Since the application is speed up after the parallelization, it is
possible to execute it by a lower frequency at some point while
maintaining the performance as good as in sequential case. Based
on the result of tasks scheduling, the power optimization is
applied. In order to save power consumption, OSCAR compiler
manages to reduce the working frequency as well as exploit clock
gating and power gating. In this report, four levels of frequency
namely HIGH, MID, LOW and VLOW are used [9].
 For each macro task, the compiler checks if it can reduce the
working frequency of that task given that the application
performance is ensured. During the execution time, if there is any
CPU which is not assigned with any task, that CPU would be
forced to power gating or clock gating mode. With multimedia
application, it is required the application to meet the displaying
rate of, for example, 30 frames per second. OSCAR also
considers this point and make sure that application can run at low
frequency but still meet the deadline.
 Finally, the parallelized and power optimized C or Fortran codes
are generated by OSCAR API. The results can be improve to be
more precise and compatible with the target architecture by
providing additional information such as number of cores, cache
memory size in form of compiler options.

 4 Demonstration System

 The purpose of this report is to show a demonstration system of
automatic parallelization and power optimization realtime video
application and this section describes the details of the simple
video application we have developed.
 Android is a powerful Operating System supporting a large
number of mobile applications which are mainly developed in
Java language and Android SDK. However, only Android SDK is
not enough if the developer wants an application to utilize all the
cores, or to speed up an application by making use of the C code
he has got. Android NDK is distributed to enable developers to
program directly into Android native interface, hence, developers
can overcome the limitations of Java, such as performance or
memory management.

 Figure 3: Simple video player model

 Multimedia applications are often required to finish a large
number of computations in a restricted time, therefore, it is
common to use fast C code in computing, then send the result
back to Java thread and let it complete the remaining work, i.e,
displaying the data. Our video application is built based on this
observation. The application can be divided into two parts:
arithmetic part and Java part. The Java part runs on UI (User
Interface) thread which is assigned to CPU 0. This part will be
responsible for displaying computed data, doing garbage
collection and other system related works. Since we should avoid

2ⓒ 2014 Information Processing Society of Japan

Vol.2014-ARC-211 No.7
2014/7/28

IPSJ SIG Technical Report

performing long running operations on the UI thread, it is
necessary to create new threads and implement heavy jobs on
them. By doing so, the UI is not blocked at the calculating time
and it remains responsive. All long running computations are
done on the arithmetic part which is written in C. This part is
parallelized, and optimized by OSCAR compiler. The UI thread
keeps running to perform all basic tasks while waiting for the
results from arithmetic part. In Android application, it is possible
by using AsyncTask [14] to perform background operations and
then pass the results to the UI thread. However, in this
experiment, we create new worker threads on different cores to
take the advantage of OSCAR compiler as well as multi-core
architecture. This core partitioning can efficiently avoid the
interference between Java part and arithmetic part, such as task
migration and cache pollution.

Figure 4: UI thread algorithm

Figure 5: Native thread algorithm

 Figure 3 shows the completed process to compute the data and
display it in the device screen. Figure 4 and 5 describes the
algorithm in UI thread and native thread, respectively. Firstly, UI
Thread invokes a method to require the data of the frame N. This
parameter N is passed as input of native method through JNI. At
JNI, the DalvikVM will map the method invoked by UI Thread to
a native target method which is prepared in a shared C library.
Depending on how many cores the developer want to utilize, it
forks into one, two or three threads working simultaneously.
Forked threads will process all arithmetic calculations and join
after finishing all tasks. When all operations have done, the
shared C library returns the result and again, this result is passed
to Java part through JNI interface, finally the calculated result
will be display to the device screen.
 During the time of working on arithmetic computations, the
frequency is scaled up and down according to the power
optimization result by OSCAR compiler. Since C is a processor
bound language, it is possible to programmatically adjust the
working frequency by opening and writing to a specific sysfs.
Besides that, during this time, the UI Thread on CPU 0 will take
care of rendering, displaying one frame of the video, executing
garbage collection and so on. This process is repeated until all
frames are displayed.
 One point should be noticed here is the JNI communication
delay between Java part and arithmetic part. [15] shows that it

takes about 0.15 microseconds to pass a string from native C
library on to the application. Since the deadline of a multimedia
application is around 30 milliseconds, this delay is negligible.

 5 Demonstration Board Setup

 5.1 ODROID-X2 Board
 In this experiment, the ODROID-X2 is used as the development
board. ODROID-X2 has the Samsung Exynos4412 Prime chip
which is integrated by four ARM Cortex-A9 cores and 2GB
memory. Each of these cores supports the maximum frequency
clock of 1.7GHz. In addition, this board comes with six USB 2.0
ports, micro HDMI. The board is installed with Android 4.1.2
Operating System. Moreover ODROID-X2 board is
homogeneous multi-core architecture, meaning that all four cores
always have the same behaviors when the working frequency is
changed.
 Since the ODROID-X2 board does not support power
measurement on any part of it, some modifications are
implemented in order to measure the power consumption. A
circuit is wired near the PMIC (Power Management IC) [16].
That circuit includes a 40[mΩ] shunt resistor and an amplifier.
The power consumption is calculated by the following formula:

P=
1

40×10−3
×dV ×V

Where P is power consumption, dV is potential difference and V
is supply voltage.

Figure 4: ODROID-X2 Board

 5.2 Experimental Demonstration Structure
 The demonstration is arranged as shown in Fig. 6 and the
demonstration screen is shown in Fig. 7. Since the ODROID-X2
is a micro sized development platform, it does not come with a
screen and therefore, it is necessary to connect it to an external
screen. The main computation is run on the main ODROID-X2
board and the result will be displayed on the connected screen,
simultaneously. The execution time is shown on the screen in the
form of fps (frames per second). By this we can keep track to the
application performance.
 Meantime, the development board Power Management IC part
(below the cooler metal block shown in Fig. 4) is connected to an
amplifier. The amplifier is then connected to a measurement

3ⓒ 2014 Information Processing Society of Japan

Vol.2014-ARC-211 No.7
2014/7/28

IPSJ SIG Technical Report

device whose results are recorded by a different PC. There are
several options set on that PC such as sampling frequency,
number of precision digits. In addition, it is also possible to
capture the power wave-form, obtain the average power
consumption as well as export data to a CSV file.

 Figure 6: Experimental demonstration structure

Figure 7: Demonstration screenshot

 6 Evaluation

 6.1 Evaluated Application
 In this section we explain 2 multimedia applications used in our
demonstration.
 6.1.1 MPEG-2 Decoder
 MPEG-2 Decoder is a standard video coding application from
Mediabench. It converts MPEG-2 video coded bitstream into
uncompress video frames. In our experiment, a raw video
output .yuv extension file is obtained after running this
application. We load the requested frame data from that raw file
and convert it to rgb bitstream of the length 352x240 and finally
show that on the device screen by placing the data result into a
SurfaceView which is a dedicated drawing surface supported by
Android.
 The input data of MPEG-2 Decoder application is partitioned

into slices and the application decodes the input data slice by
slice. OSCAR exploits the slice level parallelism. The deadline
for MPEG-2 Decoder is set to 30[fps] (33[ms] per frame)
 6.1.2 Optical Flow
 The Optical Flow is a benchmark application tracking specific
features in an image across multiple frames. In our experiment,
Optical Flow is used to draw a vector field of displacement
vectors showing the movement of 16x16 blocks from two
consecutive frames.
 OSCAR compiler exploits the parallelism on computing the
motion vectors of each pixel block in two images. The deadline
for Optical Flow is set to 30[fps] (33[ms] per frame).
 6.1.3 Application Parallelization and Power Optimization
 After being parallelized by OSCAR compiler, the shared
libraries are built for both two applications. The compiler flag is
“-O3 -pthread -mfpu=neon -ftree-vectorize”, the target CPU is set
to “armeabi-v7a”. By using shared libraries in case of utilizing 1,
2 and 3 cores, the performance of two applications is observed
and when it is confirmed that both two applications are speed up
with OSCAR compiler, we apply the power optimization.
 The reason is that once the application is speed up, we have
more available time till the deadline. This implies we likely have
chance to reduce the working frequency as well as have the CPU
stay at idle state longer, therefore, the power consumption can be
saved.
 The applications are compiled by OSCAR compiler. Firstly,
OSCAR pre-calculates the costs of all macro-tasks based on the
number of arithmetic operations in them. These data are stored in
the data structure of OSCAR. By using the pre-calculated data
and the imported deadline, OSCAR estimates the execution time,
the cost, the energy of each block in the application and tries to
make the best decision of the working frequency for each block.
 OSCAR supports 4 levels of working frequency: HIGH, MID,
LOW, VLOW. Depending on the architecture, each of those steps
will correspond to one specific value of frequency. For example,
in the current target platform ODROID-X2 which supports the
frequency in the range of 200MHz to 1700MHz, HIGH is
1700MHz, MID is 800MHz, LOW is 400MHz, VLOW is
200MHz. These would be different if an Intel CPU is used
instead of our ARM-core board.

 Figure 8: OSCAR power control

 With the help of additional profiler information, OSCAR
determines the most proper frequency for each macro task. It also
computes the idle time until deadline and generates some codes
to notify the CPU to go to idle state. Besides that, there are some
cases when it is impossible to parallelize a sequential set of tasks,
those tasks are assigned to one specific CPU and OSCAR will
force the other CPU(s) to idle state while waiting for those tasks
completed. Once they are finished, the working CPU will wake
all remaining CPU(s) up. Fig. 8 shows an example of OSCAR

4ⓒ 2014 Information Processing Society of Japan

Vol.2014-ARC-211 No.7
2014/7/28

IPSJ SIG Technical Report

power optimization in case of using 2 cores. There are 5 macro
tasks from MT1 to MT5. MT2 and MT3 belong to the same loop
in the sequential program but work on different cores after the
sequential program is parallelized by OSCAR compiler. While
core 1 is executing MT1, core 2 is waiting for core 1 to finish
MT1. At this time, since there is no load on core 2, it is possible
to apply clock gating on core 2 in order to save energy. Then, for
MT2 and MT3, which are simultaneously executed on core 1 and
core 2 respectively, the working frequency is reduced while
assuring the deadline. The execution time of these tasks will be
longer but they still finish before the deadline. We assume that it
is impossible to parallelize MT4 and MT5. During the execution
time of these tasks, core 2 has no task on it, hence, we can apply
clock gating to core 2 until the deadline. Meantime, core 1 is
running MT4 and MT5 and it finishes these two tasks before the
deadline. Again, we apply clock gating to core 1 on the remaining
time until the deadline.

 6.2 Evaluation Results
 This section shows the results of power measurements on the
ODROID-X2. We compare the power consumptions of two
applications in case of using OSCAR compiler and not using
OSCAR compiler. With OSCAR compiler power control, the
cpufreq governor is set to userspace. In contrast, the benchmark
application without power control is executed with the linux
ondemand governor.

Figure 9: Power consumption of MPEG-2 Decoder

 Fig.9 shows the power consumption results of MPEG-2 Decoder
corresponding to number of processors (1, 2 and 3). The power
consumption in case of 1 core with power optimization is
0.33[W] which is the same as that in linux ondemand governor
0.33[W]. OSCAR and ondemand governor are equal on 1PE
(processor element). The power consumption of 2PE with power
control consumes 0.27[W] compared to 0.35[W] in case of not be
implemented by OSCAR compiler. In this case, the power
consumption is saved 22.9%.Using 3PE with power optimization
consumes 0.36[W] while using 3PE in ondemand governor
consumes 0.5[W], it can save up to 28% energy in case of 3PE.
The best result is 2PE with power reduction control 0.27PE
which reduced 18.2% compared to 1PE in the default Linux
ondemand governor 0.33[W].
 Fig. 10 shows the power consumption results of Optical Flow
application in 3 cases: 1PE, 2PE and 3PE. For 1PE, the power
consumption is 1.27[W] with OSCAR power optimization. In
contrast, with ondemand power control, the result is 1.27[W].
There is no big difference on power consumption in this case. For
2PE, with power control, the power consumption is 0.55[W]
while it is 0.9[W] without using OSCAR power control. The
power consumption is reduced about 38.9% by implementing
OSCAR power optimization. The power consumption of 3PE

with OSCAR power control consumes 0.66[W] compared to
0.92[W] without using OSCAR power control. It is saved 28.2%
by OSCAR power reduction control. In the best case (2PE with
OSCAR compiler power optimization), the power consumption is
reduced 56.6% against the execution with 1PE in Linux
ondemand governor.

Figure 10: Power consumption of Optical Flow

 Fig. 11 shows the power waveforms with OSCAR power
optimization. In this figure, we can observe the peaks in the wave
form. These peaks indicate the time when the application finishes
calculating 1 frame data and transfer the calculated data to UI
thread to display the frame. During that time, the system is
running at the highest frequency or in OSCAR's HIGH mode. In
other times, since OSCAR tries to keep the working frequency as
low as possible, as a result, the application will be running at
lower frequencies.

 Figure 11: Power waveform with OSCAR power control

 On the other hands, Fig. 12 points out a characteristic of
ondemand power control. Since the ondemand governor decides
the working frequency based on the CPU utilization and previous
system work-load, it tends to keep the frequency stable when
dealing with periodical application such as multi-media
application because there is not much difference between the
numbers of computations in consecutive frames. In ondemand

5ⓒ 2014 Information Processing Society of Japan

Vol.2014-ARC-211 No.7
2014/7/28

IPSJ SIG Technical Report

governor, the applications run at fixed frequency most of the time
except the beginning of the application and the time of garbage
collection.

 Figure 12: Power waveform with ondemand governor

 In our experiment, the ondemand governor keeps the system
running at the frequency which is close to OSCAR's MID step.
This might be a characteristic of ondemand or most of current
architecture which is to run at an average frequency to assure the
performance and somehow avoid switching frequency as much as
possible. However, DVFS have been showing that it is useful to
reduce the power consumption. By making use of DVFS,
OSCAR keeps the application running at lower frequency in
longer time and this results in the reduction in power
consumption.

Table 1: CPU idle time

2PE 3PE

MPEG-2 Decoder 4.615 ms 5.418 ms

Optical Flow 5.013 ms 5.406 ms

 One more thing need to be noticed is that with OSCAR
compiler, even though using 3PE is faster than using 2PE, the
power consumption in case of 2PE is better than that in case of
3PE. Table 1 shows the idle time of 2PE and 3PE until deadline.
From this table, it is observed that there is no crucial difference
in the idle time between 2PE and 3PE. Since there is one more
PE used in case of 3PE, the power consumption in case of 2PE is
lower than in case of 3PE. [17] also points out that for small
applications, it is more efficient when using less number of cores
while for large applications, it might be more efficient with a
larger number of cores.

 7 Conclusion

 Reducing energy consumption is gradually becoming one of the
most important issue in smart device industry and automatically
optimize the power consumption is a very promising way in order
to attack that with a higher time efficiency as well as lower
energy consumption. This report shows a realtime video
demonstration system for parallelization and power reduction
controlled by OSCAR Automatic Parallelization Compiler. With

MPEG2 Decoder Application, in case of using 2PE, it can save
18.2% power consumption comparing with the case of using 1PE
in ondemand governor. With Optical Flow Application, the best
result is in case of 2PE with OSCAR Compiler Power Control,
which saves 56.6% power consumption comparing with the case
of 1PE, ondemand governor.
Reference
1) Louis Columbus "IDC: 87% Of Connected Devices Sales By 2017
Will Be Tablets And Smartphones" forbes.com 9 Dec. 2013. Mon. 30
May. 2014 <http://www.forbes.com/sites/louiscolumbus/2013/09/12/idc-
87-of-connected-devices-by-2017-will-be-tablets-and-smartphones/>
2) Android platform
http://developer.android.com/tools/revisions/platforms.html
3) Kundu, T.K. ; Paul, K. "Improving Android Performance and Energy
Efficiency" VLSI Design (VLSI Design), 2011 24th International
Conference on, On page(s): 256 – 261
4) Ki-Cheol Son ; Jong-Yeol Lee "The method of android application
speed up by using NDK", Awareness Science and Technology (iCAST),
2011 3rd International Conference on, On page(s): 382 - 385
5) OpenMP: http://openmp.org/wp/
6) Kasahara, H., Obata, M., Ishizaka, K. “Automatic coarse grain task
parallel pro-cessing on smp using openmp”, Workshop on Languages and
Compilers for ParallelComputing (2001) 1–15
7) Obata, M., Shirako, J., Kaminaga, H., Ishizaka, K., Kasahara, H.
“HierarchicalParallelism Control for Multigrain Parallel Processing”
Lecture Notes in ComputerScience2481(2005) 31–44
8) Kimura, K., Mase, M., Mikami, H., Miyamoto, T., Shirako, J.,
Kasahara, H. “OSCAR API for Real-time Low-Power Multicores and Its
Performance on Multicoresand SMP Servers” Lecture Notes in Computer
Science (2010) 188–202
9) Shirako, J., Oshiyama, N., Wada, Y., Shikano, H., Kimura, K.,
Kasahara, H. “Compiler Control Power Saving Scheme for Multi Core
Processors” Lecture Notesin Computer Science (2007) 362–376
10) Yamamoto, H., Hirano, T., Muto, K., Mikami, H., Goto, T.,
Hillenbrand, D., Takamura, M., Kimura, K., Kasahara, H. “OSCAR
Compiler Controlled Multicore PowerReduction on Android Platform”,
The 26th International Workshop on Languages and Compilers for
Parallel Computing (2013)
11) Samsung Electronics Co., L.: White Paper of Exynos 5.1(1) (April
2011) 1–8
12) Hardkernel: ODROID-X2
http://www.hardkernel.com/renewal2011/products/prdtinfo.php?
gcode=G135235611947
13) AsynTask:
http://developer.android.com/reference/android/os/AsyncTask.html
14) The Ondemand Governor
https://www.kernel.org/doc/ols/2006/ols2006v2-pages-223-238.pdf
15) Sangchul Lee; Jae Wook Jeon "Evaluating performance of Android
platform using native C for embedded systems", Control Automation and
Systems (ICCAS), 2010 International Conference on, On page(s) 1160 -
1163
16) SAMSUNG ELECTRONICS: Samsung Semiconductors Global
Site
https://www.samsung.com/global/business/semiconductor/product/poweri
c/overview
17) Mikami, H., Kitaki S., Mase, M., Hayashi, A., Shimaoka, M.,
Kimura, K., Edahiro, M., Kasahara, H. “Evaluation of Power
Consumption at Execution of Multiple Automatically Parallelized and
Power Controlled Media Applications on the RP2 Low-power Multicore”,
Proc. of LCPC 2011(The 24th International Workshop on Languages and
Compilers for Parallel Computing), Colorado State University, Fort
Collins, Colorado, Sept 8-10, 2011.

6ⓒ 2014 Information Processing Society of Japan

Vol.2014-ARC-211 No.7
2014/7/28

