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Bayesian multiple and co-clustering methods: Application
to fMRI data
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Abstract: We propose a novel approach for the dimension reduction of high dimensional data to make the data avail-
able for conventional statistical evaluations. Our method is based on nonparametric multiple Gaussian clustering, in
which we assume that in each cluster block, the instances follow an independent and identically (i.i.d.) univariate
Gaussian distribution. We show theoretically that our model can fit multivariate Gaussian distributions with exchange-
able features. We further show how the clusters derived with this specific model can be used to effectively reduce the
dimension of data taking into account associations between attributes. Finally, we demonstrate our approach in an
application to resting state functional magnetic resonance imaging (fMRI) data , which implies subtypes of depression
may be characterized by the treatment effect of antidepressant drug SSRI.

1. Introduction

With the advent of sophisticated data acquisition technolo-
gies and associated research questions, high-dimensional data
are widely available in scientific research. In the field of neu-
roscience, high-dimensional brain imaging data such as mag-
netic resonance imaging (MRI) and positron emission tomogra-
phy (PET) are now increasingly used for a better understanding of
the brain. In these data, typically, voxel*1-wise analyses such as
the two-samplet-test are used to find associations between pheno-
types of subjects (e.g., major depressive disorder) and brain areas
(see e.g. [10]). Such univariate approaches might overlook sets
of voxels whose co-activation pattern differs between two pheno-
types of subjects. However, application of multivariate analyses
is challenging to such data, since the number of features (voxels)
is usually much larger than the number of samples (subjects).

One possible solution for this problem is to reduce the dimen-
sion of features so that the number of features is smaller than
that of the samples: In biology, typically, a factor analytical ap-
proach such as Principal Component Analysis (PCA) is applied
[7]. However, interpretation of the derived principal components
is difficult [13]. Moreover, since PCA focuses only on the vari-
ability of the data, there is a potential for the true data structure
(such as a cluster structure) to become distorted [6].

In this report, we consider a novel approach of dimension re-
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*1 voxel, a volume element in three dimensional space

duction by means of co-clustering and multiple-clustering (more
general class of co-clustering), which are an extension of non-
parametric Gaussian models for feature space. Co-clustering is
a specific class of clustering which simultaneously models par-
titions in both subjects and features, with the assumption of
a subject-cluster (clusters of subjects) structure common to all
feature-clusters (clusters of features) [7]. On the other hand,
multiple clustering relaxes this assumption, allowing for the
subject-clusters within one feature-cluster to be independent from
subject-clusters in other feature clusters (see Figure 1 for these
differences). Specifically, in our approach, we consider a model
that assumes that the entries in each cluster block follow an i.i.d.
univariate Gaussian distribution. This is a special case of the clus-
tering method laid out in [4].
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Fig. 1 Illustration of co-clustering and multiple clustering for subject-
times-feature data (the left and right panels, respectively). S.cluster
and F.cluster denote subject- and feature-cluster, respectively. In
the right panel, subject-clusters are dependent on the corresponding
feature-cluster (the digit in parenthesis denotes the feature-cluster
number); subjects are arranged differently in each feature-cluster.

In both models, features with specific similar distribution pat-
terns are allocated to the same feature-cluster. Further, using the
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derived feature- and subject-clusters in this model, we charac-
terize each subject with the mean value of a Gaussian distribu-
tion fitted to the instances in each cluster block. Through this
process of characterization of the data, the feature dimension is
largely reduced, making it possible to apply a number of conven-
tional statistical methods. In this report, we show that for brain
imaging data, our method of dimension reduction based on the
co-clustering model allows for easy statistical evaluation of brain
activation, originally measured for thousands of voxels. As a con-
sequence, we identify subgroups of depressive subjects, which
are characterized by treatment effect of the antidepressant drug
SSRI (Selective Serotonin Reuptake Inhibitors).

2. Clustering model

As has been seen in Figure 1, the co-clustering model can be
considered as a special case of the multiple-clustering. Hence,
for model description, we focus mainly on the multiple cluster-
ing model, for which several variants have so far been proposed
(see review in [7]). Among these, we focus on the nonparamet-
ric Bayesian model for Gaussian distributions [4]. Specifically,
our model assumes that univariate Gaussian distribution fits each
cluster block, while the model in [4] considers general covariance
structure. In a nutshell, our model is much simpler than that of
[4]. However, in case of high-dimensional case such as fMRI
data, our model has a computational advantage.

2.1 Model
For i.i.d. d-dimensional random vectorsX1, . . . , Xn, we con-

sider ad × V feature-partition matrixY in which Yj,v = 1 if the
jth feature belongs to thevth feature-cluster. Similarly, we con-
sider aV × n× K subject-partition (3rd-order) tensorZ in which
Zv,i,k = 1 if the ith subject belongs to thekth subject-cluster in
the vth feature-cluster (VandK are sufficiently large). Further,
we denote the parameters for each cluster block (v, k) asθv,k. We
assume that the observation vector in a cluster block follows an
i.i.d. Gaussian distribution. Hence,θv,k can be decomposed into a
mean vectorµv,k and a covariance matrixΣv,k. With this notation,
the conditional probability ofX = (X1, . . . , Xn)t onY, Z, andθv,k
is given by

P(X|Y, Z,Θ) =
V∏
v=1

n∏
i=1

Gauss(Ξv,i |µv,k(v,i),Σv,k(v,i)), (1)

whereΘ denotes{θv,k}; Ξv,i is the vector composed ofXi, j ( j =

1, . . . ,d) such thatYj,v = 1; Gauss(·|µ,Σ) a multivariate Gaus-
sian distribution with meanµ and covariance matrixΣ; k(v, i) the
subject-cluster index in thevth feature-cluster to which theith
subject belongs (i.e.,Zv,i,k = 1).

To estimate the number of feature-clusters and the number of
subject-clusters (conditional on a particular feature-cluster), we
further assume the following nonparametric prior distributions for
Y andZ (via Dirichlet process).

ws ∼ Beta(·|1, α), s= 1,2, . . .

πv = wv

v−1∏
s=1

(1− ws), v = 1,2, . . .

Y j ∼ Mul(·|π)
ul,v ∼ Beta(·|1, β), l = 1,2, . . . , v = 1,2, . . .

ηk,v = uk,v

k−1∏
l=1

(1− ul,v), v = 1,2, . . . , k = 1,2, . . .

Zv,i ∼ Mul(·|ηv),

whereπ = (π1, π2, . . .), ηv = (η1,v, η2,v, . . .), Y j = (Yj,1,Yj,2, . . .),
andZv,i = (Zv,i,1,Zv,i,2, . . .). Beta(·|a,b) is a Beta distribution with
prior sample sizes (a,b). Mul(·|η) is a multinomial distribution of
one sample size and probabilityη. We set the hyperparametersα
andβ (concentration parameters in Dirichlet process) to 1.

For our model, we consider a more restrictive structure forµv,k
andΣv,k than originally defined in [4]: We assume thatµv,k is a
multiple of the unit vector1 and thatΣv,k is a multiple of the iden-
tity matrix I . With these restrictions, the conjugate prior distribu-
tions for the Gaussian parameters can be reduced to a univariate
distribution as follows:

Σv,k = σ
2
v,kI

σ−2
v,k ∼ Ga(·|σ−2

0 /2, γ0σ
−2
0 /2)

µv,k = λv,k1

λv,k ∼ Gauss(·|λ0, γ1σ
2
v,k),

where Ga(·|a,b) denotes the Gamma distribution with shape and
rate parameters (a,b). In the present paper, we setσ−2

0 = 10−4,
γ0 = 1, γ1 = 104, andλ0 = 10−4 so that the prior distributions are
nearly non-informative (though they may be set arbitrarily).

For the co-clustering model, we restrict that subject-cluster is
common to all feature-clusters. Thus, the model in (1) is simply
replaced by the following equation:

P(X|Y, Z,Θ) =
V∏
v=1

n∏
i=1

Gauss(Ξv,i |µv,k(i) ,Σv,k(i)),

whereZ is a n × K matrix in whichZi,k = 1 if the ith subject
belongs to thekth subject-cluster. The remainders of equations
regarding its priors are changed accordingly.

Since the estimation of these parameters from the data in closed
form is intractable, we rely on variational inferences. The varia-
tional method allows for approximation of the maximum a poste-
riori (MAP) estimate for each parameter in an iterative way. Fi-
nally, we estimate the posterior membership probabilities of each
feature and subject (i.e., in terms ofY and Z), which leads to a
multiple clustering solution (see [4] for details).

2.2 Factor-analytical representation of model
Although our multiple clustering model is simply built based

on an ensemble of univariate Gaussian distributions, it has some
interesting properties for its model representation. As a general
property of mixture models, our model can flexibly fit different
types of underlying generative distributions of the data. In par-
ticular, in the present section, we explore factor-analytical repre-
sentation of the model. To clarify, we focus on a single vector
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Ξv,i for a specific pair of (v, i) and for simplicity denote it asΞ =
(Ξ1, . . . ,Ξd′ ) (i.e., we focus on a particular feature-cluster, while
considiering mixture structures in subjects). Hewitt-Savage’s the-
orem (generalization of the deFinetti theorem [3]) states that a
finite set of infinite random sequences,Ξ1, . . . ,Ξd′ , is exchange-
able, if and only if

P(Ξ) = P(Ξ1, . . . ,Ξd′ ) =
∫ d′∏

j=1

P(Ξ j |ϕ)m(ϕ),

wherem is a probability measure ofϕ on aσ-field [5]. Our
model includes a special case of this theorem whereP(·|ϕ) =
Gauss(·|ϕ,(1 − ρ)c) andϕ ∼ Gauss(λ0, ρc) with 0 ≤ ρ < 1 and
c > 0, resulting in

P(Ξ) = Gauss(Ξ|λ01,c(ρ11T + (1− ρ)I )). (2)

This form is a typical instance whenΞ1, . . . ,Ξd′ are exchange-
able, implying that our model fits data such that variables within
the same feature-cluster are exchangeable Gaussian. Further-
more, the combination of Eqs. (2) and (1) implies thatXi follows
a multivariate Gaussian distribution of*2

P(Xi |Y) =
V∏
v=1

Gauss(Ξv|λ0,v1,cv(ρv11T + (1− ρv)I ))

= Gauss(Xi |µ,WWT +Ψ),

where

µ = (λ0,11T , . . . , λ0,V1T)T

W =


√

c1ρ11 0 0
0 . . . 0
0 0

√
cVρV1


Ψ =


c1(1− ρ1)I 0 0

0 . . . 0
0 0 cV(1− ρV)I

 , (3)

whereµ is ad × 1 vector;W ad × V matrix;Ψ ad × d matrix.
Equivalently,Xi , conditional on the feature-cluster matrixY, is

given usingV-dimensional latent variablesZ i :

Xi |Y =WZi + µ + ϵ i ,

whereZ i ∼ Gauss(·|0,I ) andϵ i ∼ Gauss(·|0,Ψ).
This model has the following restrictions: 1) features within

the same feature-cluster share the same mean; 2) the covari-
ance of features within the same feature-cluster is represented
asc(ρ11t + (1 − ρ)I ); 3) features belonging to different feature-
clusters are uncorrelated. Restrictions 2) and 3) imply that this
model has the effect of a factor analyzer similar to the probabilis-
tic PCA [8] which is modeled as (using our notation)

P(Xi) = Gauss(Xi |µ,WWT +Ψ),

whereΨ = σ2I .
More specifically, our model has the effect of sparse PCA be-

cause of zero elements in the off-diagonal blocks ofW in Eqs. (3).
In particular, our model makesW sparse in such a way that a sin-
gle latent variable represents a specific set of features.

*2 Note that the suffix v denotes that the corresponding parameters are spe-
cific to thevth feature-cluster; we sort features according to their mem-
bership of the feature-clusters, but the order of features within the same
feature-cluster is arbitrary.

Fig. 2 Heatmap ofthe reduced data. Subject-clusters are sorted by the pro-
portion of remission (that is based on HRSD scores); the lines in
the heatmap show boundaries of the subject-clusters ; the subject-
clusters are indexed as S1, . . . ,S7; connect-clusters are sorted by
their correlations with the proportion of remission.

Fig. 3 Heatmap ofthe original data. The subject- and connectivity-clusters
are sorted as in Figure 2.

2.3 Dimension reduction: characterization of feature-
cluster

Making use of the exchangeability, we can characterize a sub-
ject by assigning the mean value of the corresponding cluster uni-
variate Gaussian distribution, mapping then×d matrixX to an×V

matrixS,

f : Xi, j → Si,v( j) with Si,v( j) = λv( j),k(v( j),i), (4)

wherev( j) denotes the index of the feature-cluster to which the
jth feature belongs. Alternatively, we can characterize a subject
by assigning the feature-cluster entry mean of this subject:

f : Xi, j → Si,v( j) with Si,v( j) =
∑

j′∈v( j)

Xi, j′/|v( j)|, (5)

where|v( j)| is the cluster size of the feature-clusterv( j). Unlike
Eqs. (4), the dimension reduction method in Eqs. (5) retains the
subject variability in each feature-cluster. These mappings can
substantially reduce data size and enable further statistical analy-
sis. We see an example in the following section.

3. Application to real data

In this section, by means of the co-clustering method, we an-
alyze resting state functional MRI (rsfMRI) data, which has re-
cently become a common source of investigation in the study of
brain activity related to mental disorders. Our objective is to iden-
tify subtypes of depressive subjects in an unsupervised manner.

The sample size of our data is 125, in which 66 were obtained
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Fig. 4 Correlations between HRSD scores after 6 weeks of the dosage of
SSRI, and mean values of each connect-cluster; An asterisk * denotes
that the corresponding correlation is significant at level ofα = 0.05

from healthy subjects (control) and 59 from major depressive dis-
order subjects (depression). For the depressive subjects, the brain
scan of rsfMRI was taken before the start of the treatment by
the antidepressant drug SSRI (Selective Serotonin Reuptake In-
hibitors). Features of this dataset are composed by 9730 func-
tional connectivity (FC) between 140 pre-specified brain areas.
As pre-processing of data, we standardized each feature (FC)
using the mean and the standard deviation of the control sub-
jects, which yielded the data of the depressive subjects with size
59× 9739.

First, we applied the co-clustering method to this data. Due
to computational costs*3 and later inference difficulties, we re-
stricted the maximum number of feature-clusters to 15 (in our
context, we call them connect-clusters). The results of dimension
reduction by means of the co-clustering method are displayed in
Figure 2 (compare these results with those of the original data dis-
played in Figure 3). As can be seen in Figure 2, the co-clustering
method reveals possible cluster-structures both in subjects and
features.

Second, as a next step, we further analyzed the reduced data
to characterize the subject-clusters by the treatment effect of an-
tidepressant drug SSRI. We evaluated the treatment effect of the
drug on depression in terms of HRSD (Hamilton Rating Scale for
Depression) score after six weeks of the dosage of SSRI. HRSD
score is based on dozens clinical questions to measure severity of
depression: the larger the score is, the more severe the depres-
sive disorder. We evaluated correlations between HRSD scores
and the mean values of each connect-cluster. The results are dis-
played in Figure 4 in which significant correlations are shown
with an asterisk. As can be seen in Figure 4, the correlations for
connect-clusters 13, 14 and 15 are significant at levelα = 0.05.
This suggests that the subject-clusters of depression may be char-
acterized by the SSRI treatment effect and that the relevant brain
regions for the treatment effect may be included in connect-
clusters 13, 14, and 15. For these connect-clusters, the most
relevant brain areas in terms of frequencies of connectivity to
the other brain areas are identified as follows: ParaCENT.Lob.R,
HIPP.L, ParaCENT.Lob.L, and PtCENT.R for connect-cluster 13;
TEMP.Mid.R 20, and TEMP.Inf.R for connect-cluster 14; Para-
CENT.Lob.R, and FRNT.Med.Orb.R for connect-cluster 15.

*3 The present simulationtook five hours using two Intel Xeion E5649
CPUs with 6 cores each and a total of 48 GB main memory.

4. Conclusion

In this report, we introduced a specific class of multiple clus-
tering model based on nonparametric Bayesian mixture models
which assumes conditional independence of features within a
cluster block, while considering a co-clustering model as a spe-
cial case of the multiple clustering model. Using this model, we
proposed a method to reduce data dimension without distorting
correlated feature structures.

Theoretically, it was shown that this model can have an effect
of (sparse) factor analyzer, capturing a specific type of correla-
tions between features. In neurological data, we can assume that
this type of co-activation of neurons is often the case, but they are
overlooked or not modeled by other clustering methods. More-
over, our model evaluates partitions of samples and attributes si-
multaneously, which enables effective fitting of a given multiple
clustering structure.

In an application to brain imaging data, our model provided a
means to find subtypes of depressive subjects and simultaneously
reduce data dimensions. Using the reduced dimension, it was im-
plied that some brain regions are relevant to the treatment effect
of antidepressant drug SSRI.
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