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Abstract: A fundamental problem in conventional photography is that movement of the camera or captured object
causes motion blur in the image. In this research, we propose coding motion-invariant blur using a programmable
aperture camera. The camera realizes virtual camera motion by translating the opening, and as a result, we obtain a
coded image in which motion blur is invariant with respect to object velocity. Therefore, we can reduce motion blur
without having to estimate motion blur kernels or requiring knowledge of the object speed. We model a projection of
the programmable aperture camera and also demonstrate that our proposed coding works using a prototype camera.
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1. Introduction

Motion blur in an image is the result of either camera shake
or object motion in a scene. When an object moves or the cam-
era shakes during an exposure, the captured image contains blur
caused by these motions, since the obtained image is a superim-
position of the different positions of the objects at the different
times. As a result, we obtain an unclear image, which has lost the
high frequency component of object texture. Since motion blur is
undesirable in any regular photograph, this paper aims to address
the problem.

Various methods have been proposed for dealing with motion
blur. The simplest solution is short exposure imaging. A camera
has a shutter in front of an imager, and in short exposure imag-
ing, the imager is exposed for only a short time when the shutter
is opened to capture an image. If the exposure time is short, we
can ignore any object motion in the scene and avoid motion blur.
However, there is an unavoidable trade-off between motion blur
and the signal-to-noise ratio (SNR) of the image since a shorter
exposure darkens the captured image.

Another solution is lens or sensor shifting, which has been im-
plemented in some modern cameras to stabilize the image. Here
a mechanical actuator is controlled to shift a lens or sensor in
real time during the exposure to compensate for motion of the
camera [1]. This system is applicable to motion blur caused by
camera motion only and not to that resulting from object motion.

An approach that restores a clear scene through deconvolution
has been proposed in image processing [2]. However, the blur
kernels for deconvolution vary according to the object motion and
it is difficult to estimate the kernels or motions. To deal with this
problem, various methods have attempted to estimate the point
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spread functions (PSFs) and restore a sharp image from a sin-
gle input image [3], [4], [5] or multiple input images [6], [7], [8].
However, since a typical motion blur kernel contains many zero-
crossings in the Fourier domain, the kernel loses image informa-
tion and the deconvolution becomes ill-conditioned. To address
this issue, several attempts have been made in the field of compu-
tational photography to control the motion-blur PSF using special
optics or hardware so that the PSF estimation and motion deblur-
ring can be handled easily.

Raskar et al. [9] proposed a fluttering shutter method that mod-
ifies the motion-blur PSF to achieve a broader-band frequency
response and avoid zero-crossings. Although the method does
stabilize the deconvolution results, there is still a requirement for
precise knowledge of motion segmentation and object velocities.
Agrawal et al. [10] improved the fluttering shutter to estimate ob-
ject motion or the deconvolution kernel robustly by modifying the
shuttering pattern. There is, however, an intuitive disadvantage in
terms of the image SNR when employing these shuttering meth-
ods, since half the incoming light is blocked in engineering the
PSF.

Levin et al. [11] proposed parabolic-motion coding of the cam-
era. The parabolic motion of a camera makes the motion blur
invariant to the object speed and the kernel has a broadband fre-
quency in the Fourier domain. This was the first proposal for
motion-invariant photography. The method has an advantage in
terms of the image SNR since it uses the camera motion to en-
gineer the motion-blur PSF and the shutter is completely open
during the exposure. However, the invariance and broadband
properties of motion blur are only applicable to one-dimensional
horizontal motion. In addition, this method requires a mechani-
cal mechanism, such as the use of cams and gears, to implement
the parabolic camera motion. This should be avoided because of
practical implementation difficulties and the limitation on motion
speed restricted by the inertia of the element.
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McCloskey et al. [12] proposed an implementation that
achieves motion-invariant photography using lens shifting. This
method achieves motion-invariant photography more practically
than using camera body motion. Cho et al. [13] extended Levin’s
parabolic-motion coding to two-dimensional object motion. Sim-
ilarly, Bando et al. [14] extended the coding using a circular cam-
era motion. Although these methods engineer a broadband fre-
quency response of the PSFs, they require motion estimation
since motion invariance is not realized, contrary to the method
using Levin’s parabolic motion.

In this paper, we propose a novel method that achieves motion-
invariant PSF coding using a programmable aperture camera [15],
[16]. The camera can change its aperture pattern at high speed
using a liquid crystal on silicon device. The camera achieves vir-
tual camera motion by translating patterns of an aperture opening.
Hence, we realize Levin’s motion-invariant photography without
using a mechanical mechanism as in the original method in which
the camera body or some of the elements are moved. Our method
improves practicability and utility with respect to implementation
of the coding. On the other hand, some limitations are present
that do not exist in the previous methods. We model the projec-
tive geometry of the programmable aperture camera, the virtual
camera motion, and the generated PSFs. We investigate the pa-
rameter settings for the aperture pattern and optical parameters of
the camera through simulation experiments. Finally, we confirm
that the proposed method realizes motion-invariant photography
using a prototype camera in experiments.

This journal version extends our work which appeared on
Ref. [17] with more comparisons via extensive simulations and
experiments.

2. Motion-invariant Photography Using a Pro-
grammable Aperture Camera

2.1 Modeling Motion Blur
In a conventional photograph, objects moving at different

speeds cause varying degrees of motion blur with different shapes
and lengths. To remove such motion blur, we must estimate the
speed of each object. To address this problem, Levin et al. [11]
realized motion-invariant photography that makes the PSF invari-
ant to motion through the use of parabolic camera motion during
an exposure. Because of this invariance, we can remove all blur
for all moving objects by deconvolution using a single PSF. In
Levin’s work [11], the obtained PSF that is invariant to motion is
expressed as:

φ(x) =
λ(x)

2T
√

s2
i − 2aix

, (1)

λ(x) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

2,
s2

i

2ai
≤ x < siT − aiT 2,

1, siT − aiT 2 < x < siT + aiT 2,

0, otherwise,

assuming that the image has acceleration ai derived from camera
motion and object velocity si derived from object motion. Both
ai and si are described in the image space. Here x is the position
in the image and 2T is the exposure time. These assumptions are
expressed as:

Fig. 1 Coordinate system of a camera.

Fig. 2 Projective geometry of a normal camera.

x(t) = sit +
ait2

2
. (2)

For detailed derivations of Eqs. (1) and (2) the reader is referred to
Ref. [11]. In this paper, we extend the concept of motion-invariant
photography to be realized by a coded aperture.

Figure 1 shows the assumed coordinate system for modeling
motion blur. The principal point of the lens is at the origin of
the coordinate system, while the optical axis coincides with the
Z-axis. The camera moves along the X-axis of the coordinate sys-
tem during exposure, while an object point, denoted as P(X,Y,Z),
also moves along the X-axis. Point P(X,Y, Z) is projected onto
image point p(x, y). Figure 2 shows an X-Z slice of the projec-
tion for simplicity. P(X,Z) is projected onto p(x) on the imager
plane (Z = −Zp) by a pinhole camera model. This can be ex-
pressed as

x = αX, α =
−Zp

Z
, (3)

where P(X,Z) is a point on a moving object in a scene. We as-
sume that the point moves parallel to the x-axis with the position
expressed as X(t). Similarly, if the camera moves parallel to the
x-axis and the position is expressed as Xc(t), the position of the
projective point p(x) on the image space relative to P can be ex-
pressed as

x(t) = α(X(t) − Xc(t)). (4)

It is shown that distance on the image space corresponds to that
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Fig. 3 Virtual camera motion model for a programmable aperture.

in the real scene with coefficient α from Eq. (4). Thus we obtain
the following relations:

ac =
1
α

ai, (5)

so =
1
α

si, (6)

where the camera acceleration and object velocity in the real
scene are denoted by ac and so, respectively.

The center of the camera aperture is also the center of the
projection in the projective geometry, and a projective change
can thus be realized by motion of this aperture position. In
this research, we realize the virtual camera motion needed for
motion-invariant photography by temporally changing the aper-
ture patterns. Figure 3 shows the projective geometry of the pro-
grammable aperture camera. It is described with a similar form
to that of Fig. 2. The geometry is on the X-Z space. An objective
point in the scene is P(X,Z), and it is projected to the image plane
(Z = −Zp) as p(x). The aperture is assumed to lie on the plane
Z = 0. The lens focal distance is denoted as f . The distance Zp

between the lens plane and focal point Q can then be expressed
as

1
f
=

1
Z
+

1
Zq
. (7)

By setting the position of the pinhole aperture as A(Xa, 0), as
shown in Fig. 3, the ray radiating from P goes towards the fo-
cal point Q through lens refraction via A and is projected onto
point p on the image. The relation of the projection of projective
point p can be modeled as

x(t) = αX(t) − βXa(t), (8)

β = Zp

(
1
f
− 1

Z
− 1

Zp

)
. (9)

From Eqs. (4) and (8) it is found that the motion of the camera
differs from that of the aperture, whereas the motion is the same
as the object motion in the projection of the programmable aper-
ture camera. Since it is also shown that the distance in the image
corresponds to that in the real scene with coefficients α and β, we
obtain the following relation:

aa =
1
β

ai. (10)

Fig. 4 Relation between the programmable aperture and static PSF.

Setting the aperture motion to a constant acceleration as in the
equation below obtained from Eqs. (4) and (8), we can represent
motion-invariant photography with aperture motion.

Xa(t) =
α

β
Xc(t) =

α

β
act2 (11)

Since the proposed method imitates the camera motion in Levin’s
work [11], the limitation that the object motion must have con-
stant acceleration and one-dimensional horizontal motion corre-
sponding to the camera motion is also the same as in that work.

2.2 Relation between Aperture and Static PSF Size
An actual camera aperture is an opening of finite radius R > 0

and not a pinhole like that depicted in Fig. 3. Radius r gener-
ated by the static PSF on the image space is proportional to R, as
shown in Fig. 4. Radius r of the static PSF projected onto projec-
tive point p on the image can be modeled as

r = −Zp

(
1
f
− 1

Z
− 1

Zp

)
R

= −βR. (12)

If coefficient β is zero, there is no parallax. Therefore, we must
accept depth blur in generating a parallax to make |β| > 0, since
the static PSF is no longer an impulse function (r > 0). The gen-
erated static PSF can be modeled as a pillbox function with radius
r,

ψ(x, y) =

⎧⎪⎪⎨⎪⎪⎩
1
πr2 , x2 + y2 ≤ r2,

0, otherwise.
(13)

The motion blur caused by our proposed method is modeled using
a combination of static PSF and temporal PSF, and is expressed
as:

Φ(x, y) = φ(x) ∗ ψ(x, y). (14)

We use Φ(x, y) to restore motion blur as a deconvolution PSF.

2.3 Relation between Aperture Size and Object Speed
The aperture position must be moved to realize motion-

invariant photography using a programmable aperture camera.
The maximum size of the aperture radius of the Rmax is restricted
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Fig. 5 Relation between aperture size and length of the aperture motion.

by the lens and the caliber of the optical system. When a large
motion of aperture ΔXa is required, the size of aperture R must be
smaller than Rmax, as shown in Fig. 5.

ΔXa = 2(Rmax − R) (15)

As a result, when using a certain exposure time T , a larger motion
of aperture ΔXa produces greater acceleration:

aa =
2ΔXa

T 2
. (16)

As explained in Levin’s work [11], large aperture acceleration aa

is needed to restore large motion blur. When setting a large ac-
celeration aa, radius R becomes small and the amount of light
decreases simultaneously. This means that there is a trade-off be-
tween acceleration aa and the SNR ratio of the captured image.

aa =
4

T 2
(Rmax − R) (17)

We have explained that acceleration depends on the size of radius
R, however, the motion invariance of the proposed method de-
pends more directly on the acceleration in the image space ai than
the physical aperture acceleration aa, and therefore we rewrite
Eq. (17) as Eq. (18).

ai =
4

T 2
β(Rmax − R) (18)

From this equation, if we set β to a larger value, acceleration
ai that is presented in the image space also increases. β can be
considered to be the difference between position Zq where an ob-
ject is focused and the imager position Zp from Eq. (9). In short,
β can be regarded as the amount that the image is out-of-focus.
Furthermore, as shown in Eq. (12), a greater β produces a greater
static PSF for a given aperture size. A greater static PSF results
in a worse quality of the restored image. Hence, there is another
trade-off. If we would like to use greater aperture acceleration
in the image space ai, we must accept that the quality of the re-
stored image will be worse as a result of the greater static PSF.
The PSF size is also affected by the object positions, although we
can set the fixed size of the aperture. In Section 4.2, we evaluate
the optimal PSF size for recovering an image.

3. Simulation Experiments

We investigated the limitations of our proposed method and op-
timization of the parameters through simulation experiments. We

Fig. 6 Relation between PSNR and object velocity with varying camera ac-
celeration.

used 30 natural images downloaded from Flickr as scene textures,
and generated artificially captured images including motion blur,
thereby realizing the image acquisition process using our motion-
invariant coding. We added Gaussian noise with zero mean and
standard deviation of 0.01 to the images to emulate readout noise
as a standard of the experiment. We used Weiner deconvolution,
since it is simple and suitable for analysis.

3.1 Camera Acceleration and Object Velocity
First we evaluated how much acceleration to apply to recover

the motion blur with the object speed. In the experiment we set
the camera acceleration in the image ai to 0.008, 0.016, 0.032,
0.064, 0.128, 0.256, and generated coded images in which the
captured scenes contained objects with varying motion. Since we
assumed motion invariance, we used the PSF for an object with
zero speed (si = 0) for the deconvolution. We calculated PSNR
between the original image and the deconvolved image, and eval-
uated the image quality and invariance of the deconvolution ac-
cording to the PSNR.

In Fig. 6, PSNR is plotted against object speed. We set si to
0.01 to 4.0 pixels/ms to emulate a moving object, as indicated on
the horizontal axis of this figure. Figure 6 shows that the PSNR is
high when object velocity si is low. If we use a higher setting for
the acceleration of the camera ai, PSNR becomes flatter across
the object speeds. This shows that a higher ai gives more invari-
ance to a wide range of object speeds, although there is a trade-off
between acceleration ai and the peak quality of the restored im-
age, since greater acceleration yields larger motion coding and
makes the deconvolution more difficult. Hence, we should set ai

according to the maximum velocity anticipated in the scene.

3.2 Effect of Static PSF Size
Our method requires that the focusal point Zq is displaced from

the imager position Zp to realize a parallax for coding. This
means that the coded image has defocus blur as well as motion
blur. Both types of blur can be recovered simultaneously by de-
convolution, but the quality of the restored image will be worse
than that of Levin’s method, since our coded image has defocus
blur while Levin’s method assumes an impulse as the static PSF.
In this section, we examine how static PSF size affects the quality
of the restored image by means of a simulation experiment.

Figure 7 shows PSNR across the static PSF r with different
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Fig. 7 Relation between PSNR and the static PSF radius with varying cam-
era acceleration.

Fig. 8 Image quality ratio compared with short exposure imaging for vary-
ing noise levels.

camera acceleration in image ai. In Fig. 7, the PSNR curve has
a peak at 2.5 pixels for ai = 0.05. The figure also shows peaks
at 1 and 3.5 pixels for ai = 0.025 and ai = 0.1, respectively.
This confirms that the optimal setting of r differs from the cod-
ing acceleration, which handles the different object speed ranges.
Thus, r should be set considering the acceleration that will be
used, which is similar to the finding in Section 3.1.

3.3 Effect of Noise Levels
We often use a high ISO setting to capture images in a dark

scene. However, a higher ISO setting yields a higher level of
noise in the image. We expect that conventional short exposure is
preferable for application in a bright scene, but motion-invariant
coding has the advantage in a dark scene. We evaluated under
which conditions higher quality could be obtained by coding as
opposed to short exposure imaging.

Figure 8 shows the image quality ratio of the proposed aper-
ture coding to short exposure imaging against the noise level. The
graph also shows the ratio for Levin’s method. The ratios were
calculated as

Ratio =

√
MSEshort

MSE
, (19)

where MSEshort is the mean-squared error (MSE) for short ex-
posure imaging, while MSE is that for the proposed method
or Levin’s method. A similar evaluation criterion was using
in Ref. [18]. In the simulation, ai was set to 0.025, 0.05, and
0.1 pixels/ms2.

This figure shows that the proposed method and Levin’s

Fig. 9 Relation between PSNR and the displacement from the assumed ob-
ject depth.

method have an advantage over short exposure in the case where
the noise level is greater than 0.004, which denotes dark scene
illumination. We can also see that Levin’s method shows a much
higher quality ratio than the proposed method, since the former
method does not include depth blur for coding. However, this
method requires physical coding motion such as camera shifting.

3.4 Effect of Scene Depth
Thus far we have assumed that the scene has a single depth

and thus scene depth has been ignored when multiple objects are
placed at various depths in the scene. This is an unrealistic as-
sumption. As already defined in Eq. (12), the static PSF size r

changes according to the object depth. The image quality de-
creases as a result of deconvolution error if the captured PSF size
differs from the deconvolved one given by the assumed object
depth. Camera acceleration ai for motion-invariant coding also
changes as defined in Eq. (18), if the object depth differs from
the assumed one. This may degrade the invariance of motion
blur. We evaluated the range of depths in which we can apply our
method using a single PSF by means of a simulation experiment.
To ensure that the evaluation was focused on this purpose, we set
those parameters not affecting the evaluation to the values used in
Sections 3.1 and 3.2.

Figure 9 shows the PSNR against scene depth for different
assumed depths. The dotted line denotes the assumed object
depth. Note that the horizontal axis is calibrated using a loga-
rithmic scale. The PSNR reached its highest value with a zero
displacement, which means that the captured PSF matches the
deconvolved one. The PSNR becomes worse as the object is dis-
placed close to or far from the assumed depth, since the PSF
changes with a change in depth. If we allow some degradation
of the restored image from the peak of the PSNR curve, it can
be considered that some range of depths is acceptable and the
depth difference is negligible. These plots show that the range is
narrower when the assumed depth is close to the camera, and is
wider when it is far from the camera, similar to the depth of field
(DOF) of a normal camera.

4. Real Experiments

We carried out some real experiments. We constructed a pro-
totype camera which has a similar implementation to the camera
in the paper [15], [16]. The overview of the camera is shown in
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Fig. 10 Prototype camera.

Table 1 Specifications of the prototype camera.

Image resolution 1,280 × 960

Image acquisition frame rate 15 fps

Aperture resolution 1,280 × 1,024

Aperture frame rate 365 fps

Minimum F-number 2.8

Field of view 46◦

Fig. 11 Target scene.

Fig. 10. The camera consists of LCoS (Forth dimension display
SXGA-3DM), CCD (Point Grey Grasshopper GRAS-14S5C-C),
polarizing beam splitter (Edmund Optics #49002), Primary lens
(Nikon Rayfact 25 mm F1.4 SF2514MC) and custom made relay
lenses (f = 27 mm, F/# = 2). The specifications of the prototype
are given in Table 1.

Figure 11 shows the arrangement of the target scene in the ex-
periment, in which we use two trains going right and left as mov-
ing objects. We set a backdrop for the background namely, the far
side railroad track, the near side railroad track and a miniature car
at a distance of 505 mm, 500 mm, 495 mm and 490 mm, respec-
tively, so that these objects appeared in the DOF. When the image
was captured using normal photography, the focal point was set
on the object. All captured images (Figs. 12–15) were adjusted to
almost the same intensity. We captured the scene and obtained the
image shown in Fig. 12. For this experimental setup, the motion

of the far side train appeared as linear motion of 1.0 pixels/ms in
the image space, and the near side train is 1.4 pixels/ms. Since we
set the camera exposure time to 45 ms, motion blur appeared with
a length of about 45 pixels (the far side train) and 63 pixels (the
near side train) in a normal photograph (The length was obtained
from Fig. 12). The frame rate of the aperture change is 365 fps for
the prototype camera, which means that 16 aperture patterns can
be displayed during the exposure time. We set the radius of the
displaying aperture pattern R as 145.5 pixels (F9.85) against the
width of the aperture pattern display of 1,280 pixels to make the
static PSF size r = 2 pixels. Under these conditions, acceleration
of 0.089 pixels/ms2 was presented in the imager plane. We coded
the motion blur using this acceleration. Figure 13 shows the im-
age captured by our motion-invariant photography. In this figure,
both the moving trains and the static background are blurred. We
used the measured PSF, which was captured in advance, for de-
convolution (For deconvolution, we used BM3D deconvolution
proposed by Dabov et al. [19]). Figure 14 shows the restoration
result obtained by deconvolution of the captured image (Fig. 13)
with the single measured PSF. This figure shows that we can re-
duce motion blur through deconvolution since the edge of the im-
age is sharper than that captured by normal photography (Fig. 12).
In addition, we reduced blur of the static background equally
without motion estimation or segmentation. We also compared
our result with a simple short exposure photograph. Figure 15
depicts the image obtained through short exposure imaging with
the exposure time set to 0.679 ms so as to ignore all motion in the
scene. In this case we used F2.8, which is the maximum radius
setting of the lens. It can be seen that the short exposure results in
a noisy image with loss of gradation, because the amount of light
is reduced and noise is emphasized by the intensity adjustment.
Our coded and deconvolved result yields a better image, which
is both sharper than the blurred image and brighter than the short
exposure image.

In addition, we showed other application results. A soccer ball
is moving left to right by hand in Fig. 16, and a man is passing
right to left in Fig. 17. The images on the top row were captured
by normal photography, and the bottom row were deconvolved.
The scenes has been captured as different depth ranges to the
train scene (Figs. 12–15: 500 mm, Fig. 16: 1,000 mm and Fig. 17:
3,000 mm). We can confirmed that our method works in different
depth ranges and settings as well. Note that these blurred images
and coded images for deconvolution were captured individually.
We took care so that the moving objects have the same velocity,
but these cannot be retained strictly as well as the experiment in
Figs. 12–15.

5. Conclusion

In this research, we proposed a novel method for coding a
motion-invariant PSF using a programmable aperture camera.
The camera can dynamically change the aperture pattern at a high
frame rate and realizes virtual camera motion by translating the
opening. As a result, we can obtain a coded image in which mo-
tion blur is invariant with respect to the object velocity. Thus, we
can recover motion blur without estimating motion blur kernels
or requiring knowledge of the object speeds. To realize this, we
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Fig. 12 Image captured by normal photography.

Fig. 14 Deconvolved image.

modeled the projective geometry of the programmable aperture
camera, virtual motion of the camera, and the generated PSFs.
We analyzed the parameter settings and optical parameters re-
quired for the proposed motion-invariant photography and dis-
cussed the range of parameters for which the proposed method is
superior to short exposure in a simulation experiment. Moreover,
we experimentally demonstrated that our proposed coding works
with the prototype camera.

Fig. 13 Blurred image recorded by motion-invariant photography.

Fig. 15 Image captured using short exposure.
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Fig. 17 A man is walking right to left. The distance to the man is set as
3,000 mm.
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